65 research outputs found

    Interleaved text/image Deep Mining on a large-scale radiology database

    Full text link
    Despite tremendous progress in computer vision, effec-tive learning on very large-scale (> 100K patients) medi-cal image databases has been vastly hindered. We present an interleaved text/image deep learning system to extract and mine the semantic interactions of radiology images and reports from a national research hospital’s picture archiv-ing and communication system. Instead of using full 3D medical volumes, we focus on a collection of representa-tive ~216K 2D key images/slices (selected by clinicians for diagnostic reference) with text-driven scalar and vector la-bels. Our system interleaves between unsupervised learn-ing (e.g., latent Dirichlet allocation, recurrent neural net language models) on document- and sentence-level texts to generate semantic labels and supervised learning via deep convolutional neural networks (CNNs) to map from images to label spaces. Disease-related key words can be predicted for radiology images in a retrieval manner. We have demon-strated promising quantitative and qualitative results. The large-scale datasets of extracted key images and their cat-egorization, embedded vector labels and sentence descrip-tions can be harnessed to alleviate the deep learning “data-hungry ” obstacle in the medical domain

    Zero-Shot Learning for Semantic Utterance Classification

    Get PDF
    We propose a novel zero-shot learning method for semantic utterance classification (SUC). It learns a classifier f:XYf: X \to Y for problems where none of the semantic categories YY are present in the training set. The framework uncovers the link between categories and utterances using a semantic space. We show that this semantic space can be learned by deep neural networks trained on large amounts of search engine query log data. More precisely, we propose a novel method that can learn discriminative semantic features without supervision. It uses the zero-shot learning framework to guide the learning of the semantic features. We demonstrate the effectiveness of the zero-shot semantic learning algorithm on the SUC dataset collected by (Tur, 2012). Furthermore, we achieve state-of-the-art results by combining the semantic features with a supervised method

    Lexicon Infused Phrase Embeddings for Named Entity Resolution

    Full text link
    Most state-of-the-art approaches for named-entity recognition (NER) use semi supervised information in the form of word clusters and lexicons. Recently neural network-based language models have been explored, as they as a byproduct generate highly informative vector representations for words, known as word embeddings. In this paper we present two contributions: a new form of learning word embeddings that can leverage information from relevant lexicons to improve the representations, and the first system to use neural word embeddings to achieve state-of-the-art results on named-entity recognition in both CoNLL and Ontonotes NER. Our system achieves an F1 score of 90.90 on the test set for CoNLL 2003---significantly better than any previous system trained on public data, and matching a system employing massive private industrial query-log data.Comment: Accepted in CoNLL 201

    Efficient Estimation of Word Representations in Vector Space

    Full text link
    We propose two novel model architectures for computing continuous vector representations of words from very large data sets. The quality of these representations is measured in a word similarity task, and the results are compared to the previously best performing techniques based on different types of neural networks. We observe large improvements in accuracy at much lower computational cost, i.e. it takes less than a day to learn high quality word vectors from a 1.6 billion words data set. Furthermore, we show that these vectors provide state-of-the-art performance on our test set for measuring syntactic and semantic word similarities

    Improving language modeling using densely connected recurrent neural networks

    Get PDF
    In this paper, we introduce the novel concept of densely connected layers into recurrent neural networks. We evaluate our proposed architecture on the Penn Treebank language modeling task. We show that we can obtain similar perplexity scores with six times fewer parameters compared to a standard stacked 2-layer LSTM model trained with dropout (Zaremba et al. 2014). In contrast with the current usage of skip connections, we show that densely connecting only a few stacked layers with skip connections already yields significant perplexity reductions.Comment: Accepted at Workshop on Representation Learning, ACL201

    Deep Learning: Our Miraculous Year 1990-1991

    Full text link
    In 2020, we will celebrate that many of the basic ideas behind the deep learning revolution were published three decades ago within fewer than 12 months in our "Annus Mirabilis" or "Miraculous Year" 1990-1991 at TU Munich. Back then, few people were interested, but a quarter century later, neural networks based on these ideas were on over 3 billion devices such as smartphones, and used many billions of times per day, consuming a significant fraction of the world's compute.Comment: 37 pages, 188 references, based on work of 4 Oct 201

    Representation Learning: A Review and New Perspectives

    Full text link
    The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning
    corecore