Most state-of-the-art approaches for named-entity recognition (NER) use semi
supervised information in the form of word clusters and lexicons. Recently
neural network-based language models have been explored, as they as a byproduct
generate highly informative vector representations for words, known as word
embeddings. In this paper we present two contributions: a new form of learning
word embeddings that can leverage information from relevant lexicons to improve
the representations, and the first system to use neural word embeddings to
achieve state-of-the-art results on named-entity recognition in both CoNLL and
Ontonotes NER. Our system achieves an F1 score of 90.90 on the test set for
CoNLL 2003---significantly better than any previous system trained on public
data, and matching a system employing massive private industrial query-log
data.Comment: Accepted in CoNLL 201