7,096 research outputs found

    An Incremental Construction of Deep Neuro Fuzzy System for Continual Learning of Non-stationary Data Streams

    Full text link
    Existing FNNs are mostly developed under a shallow network configuration having lower generalization power than those of deep structures. This paper proposes a novel self-organizing deep FNN, namely DEVFNN. Fuzzy rules can be automatically extracted from data streams or removed if they play limited role during their lifespan. The structure of the network can be deepened on demand by stacking additional layers using a drift detection method which not only detects the covariate drift, variations of input space, but also accurately identifies the real drift, dynamic changes of both feature space and target space. DEVFNN is developed under the stacked generalization principle via the feature augmentation concept where a recently developed algorithm, namely gClass, drives the hidden layer. It is equipped by an automatic feature selection method which controls activation and deactivation of input attributes to induce varying subsets of input features. A deep network simplification procedure is put forward using the concept of hidden layer merging to prevent uncontrollable growth of dimensionality of input space due to the nature of feature augmentation approach in building a deep network structure. DEVFNN works in the sample-wise fashion and is compatible for data stream applications. The efficacy of DEVFNN has been thoroughly evaluated using seven datasets with non-stationary properties under the prequential test-then-train protocol. It has been compared with four popular continual learning algorithms and its shallow counterpart where DEVFNN demonstrates improvement of classification accuracy. Moreover, it is also shown that the concept drift detection method is an effective tool to control the depth of network structure while the hidden layer merging scenario is capable of simplifying the network complexity of a deep network with negligible compromise of generalization performance.Comment: This paper has been published in IEEE Transactions on Fuzzy System

    CORe50: a New Dataset and Benchmark for Continuous Object Recognition

    Full text link
    Continuous/Lifelong learning of high-dimensional data streams is a challenging research problem. In fact, fully retraining models each time new data become available is infeasible, due to computational and storage issues, while na\"ive incremental strategies have been shown to suffer from catastrophic forgetting. In the context of real-world object recognition applications (e.g., robotic vision), where continuous learning is crucial, very few datasets and benchmarks are available to evaluate and compare emerging techniques. In this work we propose a new dataset and benchmark CORe50, specifically designed for continuous object recognition, and introduce baseline approaches for different continuous learning scenarios

    Single stream parallelization of generalized LSTM-like RNNs on a GPU

    Full text link
    Recurrent neural networks (RNNs) have shown outstanding performance on processing sequence data. However, they suffer from long training time, which demands parallel implementations of the training procedure. Parallelization of the training algorithms for RNNs are very challenging because internal recurrent paths form dependencies between two different time frames. In this paper, we first propose a generalized graph-based RNN structure that covers the most popular long short-term memory (LSTM) network. Then, we present a parallelization approach that automatically explores parallelisms of arbitrary RNNs by analyzing the graph structure. The experimental results show that the proposed approach shows great speed-up even with a single training stream, and further accelerates the training when combined with multiple parallel training streams.Comment: Accepted by the 40th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 201

    Making Good on LSTMs' Unfulfilled Promise

    Get PDF
    LSTMs promise much to financial time-series analysis, temporal and cross-sectional inference, but we find that they do not deliver in a real-world financial management task. We examine an alternative called Continual Learning (CL), a memory-augmented approach, which can provide transparent explanations, i.e. which memory did what and when. This work has implications for many financial applications including credit, time-varying fairness in decision making and more. We make three important new observations. Firstly, as well as being more explainable, time-series CL approaches outperform LSTMs as well as a simple sliding window learner using feed-forward neural networks (FFNN). Secondly, we show that CL based on a sliding window learner (FFNN) is more effective than CL based on a sequential learner (LSTM). Thirdly, we examine how real-world, time-series noise impacts several similarity approaches used in CL memory addressing. We provide these insights using an approach called Continual Learning Augmentation (CLA) tested on a complex real-world problem, emerging market equities investment decision making. CLA provides a test-bed as it can be based on different types of time-series learners, allowing testing of LSTM and FFNN learners side by side. CLA is also used to test several distance approaches used in a memory recall-gate: Euclidean distance (ED), dynamic time warping (DTW), auto-encoders (AE) and a novel hybrid approach, warp-AE. We find that ED under-performs DTW and AE but warp-AE shows the best overall performance in a real-world financial task

    Continual Reinforcement Learning in 3D Non-stationary Environments

    Full text link
    High-dimensional always-changing environments constitute a hard challenge for current reinforcement learning techniques. Artificial agents, nowadays, are often trained off-line in very static and controlled conditions in simulation such that training observations can be thought as sampled i.i.d. from the entire observations space. However, in real world settings, the environment is often non-stationary and subject to unpredictable, frequent changes. In this paper we propose and openly release CRLMaze, a new benchmark for learning continually through reinforcement in a complex 3D non-stationary task based on ViZDoom and subject to several environmental changes. Then, we introduce an end-to-end model-free continual reinforcement learning strategy showing competitive results with respect to four different baselines and not requiring any access to additional supervised signals, previously encountered environmental conditions or observations.Comment: Accepted in the CLVision Workshop at CVPR2020: 13 pages, 4 figures, 5 table

    Lifelong Learning of Spatiotemporal Representations with Dual-Memory Recurrent Self-Organization

    Get PDF
    Artificial autonomous agents and robots interacting in complex environments are required to continually acquire and fine-tune knowledge over sustained periods of time. The ability to learn from continuous streams of information is referred to as lifelong learning and represents a long-standing challenge for neural network models due to catastrophic forgetting. Computational models of lifelong learning typically alleviate catastrophic forgetting in experimental scenarios with given datasets of static images and limited complexity, thereby differing significantly from the conditions artificial agents are exposed to. In more natural settings, sequential information may become progressively available over time and access to previous experience may be restricted. In this paper, we propose a dual-memory self-organizing architecture for lifelong learning scenarios. The architecture comprises two growing recurrent networks with the complementary tasks of learning object instances (episodic memory) and categories (semantic memory). Both growing networks can expand in response to novel sensory experience: the episodic memory learns fine-grained spatiotemporal representations of object instances in an unsupervised fashion while the semantic memory uses task-relevant signals to regulate structural plasticity levels and develop more compact representations from episodic experience. For the consolidation of knowledge in the absence of external sensory input, the episodic memory periodically replays trajectories of neural reactivations. We evaluate the proposed model on the CORe50 benchmark dataset for continuous object recognition, showing that we significantly outperform current methods of lifelong learning in three different incremental learning scenario
    • …
    corecore