Recurrent neural networks (RNNs) have shown outstanding performance on
processing sequence data. However, they suffer from long training time, which
demands parallel implementations of the training procedure. Parallelization of
the training algorithms for RNNs are very challenging because internal
recurrent paths form dependencies between two different time frames. In this
paper, we first propose a generalized graph-based RNN structure that covers the
most popular long short-term memory (LSTM) network. Then, we present a
parallelization approach that automatically explores parallelisms of arbitrary
RNNs by analyzing the graph structure. The experimental results show that the
proposed approach shows great speed-up even with a single training stream, and
further accelerates the training when combined with multiple parallel training
streams.Comment: Accepted by the 40th IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) 201