1,850 research outputs found

    In silico case studies of compliant robots: AMARSI deliverable 3.3

    Get PDF
    In the deliverable 3.2 we presented how the morphological computing ap- proach can significantly facilitate the control strategy in several scenarios, e.g. quadruped locomotion, bipedal locomotion and reaching. In particular, the Kitty experimental platform is an example of the use of morphological computation to allow quadruped locomotion. In this deliverable we continue with the simulation studies on the application of the different morphological computation strategies to control a robotic system

    Evolvability signatures of generative encodings: beyond standard performance benchmarks

    Full text link
    Evolutionary robotics is a promising approach to autonomously synthesize machines with abilities that resemble those of animals, but the field suffers from a lack of strong foundations. In particular, evolutionary systems are currently assessed solely by the fitness score their evolved artifacts can achieve for a specific task, whereas such fitness-based comparisons provide limited insights about how the same system would evaluate on different tasks, and its adaptive capabilities to respond to changes in fitness (e.g., from damages to the machine, or in new situations). To counter these limitations, we introduce the concept of "evolvability signatures", which picture the post-mutation statistical distribution of both behavior diversity (how different are the robot behaviors after a mutation?) and fitness values (how different is the fitness after a mutation?). We tested the relevance of this concept by evolving controllers for hexapod robot locomotion using five different genotype-to-phenotype mappings (direct encoding, generative encoding of open-loop and closed-loop central pattern generators, generative encoding of neural networks, and single-unit pattern generators (SUPG)). We observed a predictive relationship between the evolvability signature of each encoding and the number of generations required by hexapods to adapt from incurred damages. Our study also reveals that, across the five investigated encodings, the SUPG scheme achieved the best evolvability signature, and was always foremost in recovering an effective gait following robot damages. Overall, our evolvability signatures neatly complement existing task-performance benchmarks, and pave the way for stronger foundations for research in evolutionary robotics.Comment: 24 pages with 12 figures in the main text, and 4 supplementary figures. Accepted at Information Sciences journal (in press). Supplemental videos are available online at, see http://goo.gl/uyY1R

    On the Evolutionary Co-Adaptation of Morphology and Distributed Neural Controllers in Adaptive Agents

    Get PDF
    The attempt to evolve complete embodied and situated artiļ¬cial creatures in which both morphological and control characteristics are adapted during the evolutionary process has been and still represents a long term goal key for the artiļ¬cial life and the evolutionary robotics community. Loosely inspired by ancient biological organisms which are not provided with a central nervous system and by simple organisms such as stick insects, this thesis proposes a new genotype encoding which allows development and evolution of mor- phology and neural controller in artiļ¬cial agents provided with a distributed neural network. In order to understand if this kind of network is appropriate for the evolution of non trivial behaviours in artiļ¬cial agents, two experiments (description and results will be shown in chapter 3) in which evolution was applied only to the controllerā€™s parameters were performed. The results obtained in the ļ¬rst experiment demonstrated how distributed neural networks can achieve a good level of organization by synchronizing the output of oscillatory elements exploiting acceleration/deceleration mechanisms based on local interactions. In the second experiment few variants on the topology of neural architecture were introduced. Results showed how this new control system was able to coordinate the legs of a simulated hexapod robot on two diļ¬€erent gaits on the basis of the external circumstances. After this preliminary and successful investigation, a new genotype encoding able to develop and evolve artiļ¬cial agents with no ļ¬xed morphology and with a distributed neural controller was proposed. A second set of experiments was thus performed and the results obtained conļ¬rmed both the eļ¬€ectiveness of genotype encoding and the ability of distributed neural network to perform the given task. The results have also shown the strength of genotype both in generating a wide range of diļ¬€erent morphological structures and in favouring a direct co-adaptation between neural controller and morphology during the evolutionary process. Furthermore the simplicity of the proposed model has showed the eļ¬€ective role of speciļ¬c elements in evolutionary experiments. In particular it has demonstrated the importance of the environment and its complexity in evolving non-trivial behaviours and also how adding an independent component to the ļ¬tness function could help the evolutionary process exploring a larger space solutions avoiding a premature convergence towards suboptimal solutions

    Exploring the effects of robotic design on learning and neural control

    Full text link
    The ongoing deep learning revolution has allowed computers to outclass humans in various games and perceive features imperceptible to humans during classification tasks. Current machine learning techniques have clearly distinguished themselves in specialized tasks. However, we have yet to see robots capable of performing multiple tasks at an expert level. Most work in this field is focused on the development of more sophisticated learning algorithms for a robot's controller given a largely static and presupposed robotic design. By focusing on the development of robotic bodies, rather than neural controllers, I have discovered that robots can be designed such that they overcome many of the current pitfalls encountered by neural controllers in multitask settings. Through this discovery, I also present novel metrics to explicitly measure the learning ability of a robotic design and its resistance to common problems such as catastrophic interference. Traditionally, the physical robot design requires human engineers to plan every aspect of the system, which is expensive and often relies on human intuition. In contrast, within the field of evolutionary robotics, evolutionary algorithms are used to automatically create optimized designs, however, such designs are often still limited in their ability to perform in a multitask setting. The metrics created and presented here give a novel path to automated design that allow evolved robots to synergize with their controller to improve the computational efficiency of their learning while overcoming catastrophic interference. Overall, this dissertation intimates the ability to automatically design robots that are more general purpose than current robots and that can perform various tasks while requiring less computation.Comment: arXiv admin note: text overlap with arXiv:2008.0639

    Morphology Dependent Distributed Controller for Locomotion in Modular Robots

    Get PDF
    Stigmergy is defined as a mechanism of coordination through indirect communication among agents, which can be commonly observed in social insects such as ants. In this work we investigate the emergence of coordination for locomotion in modular robots through indirect communication among modules. We demonstrate how intra-configuration forces that exist between physically connected modules can be used for self-organization in modular robots, and how the emerging global behavior is a result of the morphology of the robotic configuration
    • ā€¦
    corecore