201 research outputs found

    Waymark in the Depths: Baseband Signal Transmission and OFDM in Underwater Acoustic Propagation Channel Models

    Get PDF
    In the intricate environment of underwater acoustic propagation, establishing reliable communication channels stands as a formidable challenge, primarily due to the medium's inherent properties, such as high path loss, multipath propagation, and time-varying channel characteristics. "Waymark in the Depths: Baseband Signal Transmission and OFDM in Underwater Acoustic Propagation Channel Models" presents an innovative exploration into enhancing underwater communication systems by leveraging advanced signal processing techniques and channel modeling strategies. At the core of this research lies the integration of Orthogonal Frequency Division Multiplexing (OFDM) with baseband signal transmission, aiming to mitigate the detrimental effects of the underwater acoustic environment on signal integrity and throughput. By dissecting the acoustic channel's unique attributes, the study devises a comprehensive channel model that encapsulates the dynamic nature of underwater acoustics, including the impact of temperature, salinity, and pressure on sound speed and signal dispersion. This model serves as a waymark, guiding the development of tailored OFDM techniques that are optimized for the underwater medium, focusing on maximizing spectral efficiency and minimizing error rates. The research meticulously examines the interplay between baseband signal processing and OFDM in this context, illustrating how their synergistic application can overcome the bandwidth limitations and frequency-selective fading characteristic of underwater channels. Through extensive simulation and experimental validation, the study demonstrates the feasibility of achieving high-speed, reliable underwater communication, highlighting significant improvements in data rates and link stability. Furthermore, the research delves into adaptive modulation schemes and coding strategies, optimized for the derived channel model, to bolster the robustness of the communication link against the unpredictable underwater environment. This pioneering work not only sheds light on the complexities of underwater acoustic signal transmission but also charts a path forward for the next generation of underwater communication systems. By pushing the boundaries of current technological capabilities and offering a solid theoretical foundation, this research contributes significantly to the field of underwater acoustics and opens new horizons for marine exploration, environmental monitoring, and submarine communication networks. Through its comprehensive analysis and innovative approaches, "Waymark in the Depths" not only addresses the technical challenges of underwater signal transmission but also lays down a crucial waymark for future endeavors in the uncharted territories of the ocean's depths

    On the Effect of Channel Knowledge in Underwater Acoustic Communications: Estimation, Prediction and Protocol

    Get PDF
    Underwater acoustic communications are limited by the following channel impairments: time variability, narrow bandwidth, multipath, frequency selective fading and the Doppler effect. Orthogonal Frequency Division Modulation (OFDM) is recognized as an effective solution to such impairments, especially when optimally designed according to the propagation conditions. On the other hand, OFDM implementation requires accurate channel knowledge atboth transmitter and receiver sides. Long propagation delay may lead to outdated channel information. In this work, we present an adaptive OFDM scheme where channel state information is predicted through a Kalman-like filter so as to optimize communication parameters, including the cyclic prefix length. This mechanism aims to mitigate the variability of channel delay spread. This is cast in a protocol where channel estimation/prediction are jointly considered, so as to allow efficiency. The performance obtained through extensive simulations using real channels and interference show the effectiveness of the proposed scheme, both in terms of rate and reliability, at the expense of an increasing complexity. However, this solution is significantly preferable to the conventional mechanism, where channel estimation is performed only at the receiver, with channel coefficients sent back to the transmit node by means of frequent overhead signaling

    Adapting Deep Learning for Underwater Acoustic Communication Channel Modeling

    Get PDF
    The recent emerging applications of novel underwater systems lead to increasing demand for underwater acoustic (UWA) communication and networking techniques. However, due to the challenging UWA channel characteristics, conventional wireless techniques are rarely applicable to UWA communication and networking. The cognitive and software-defined communication and networking are considered promising architecture of a novel UWA system design. As an essential component of a cognitive communication system, the modeling and prediction of the UWA channel impulse response (CIR) with deep generative models are studied in this work. Firstly, an underwater acoustic communication and networking testbed is developed for conducting various simulations and field experiments. The proposed test-bed also demonstrated the capabilities of developing and testing SDN protocols for a UWA network in both simulation and field experiments. Secondly, due to the lack of appropriate UWA CIR data sets for deep learning, a series of field UWA channel experiments have been conducted across a shallow freshwater river. Abundant UWA CIR data under various weather conditions have been collected and studied. The environmental factors that significantly affect the UWA channel state, including the solar radiation rate, the air temperature, the ice cover, the precipitation rate, etc., are analyzed in the case studies. The obtained UWA CIR data set with significant correlations to weather conditions can benefit future deep-learning research on UWA channels. Thirdly, a Wasserstein conditional generative adversarial network (WCGAN) is proposed to model the observed UWA CIR distribution. A power-weighted Jensen–Shannon divergence (JSD) is proposed to measure the similarity between the generated distribution and the experimental observations. The CIR samples generated by the WCGAN model show a lower power-weighted JSD than conventional estimated stochastic distributions. Finally, a modified conditional generative adversarial network (CGAN) model is proposed for predicting the UWA CIR distribution in the 15-minute range near future. This prediction model takes a sequence of historical and forecast weather information with a recent CIR observation as the conditional input. The generated CIR sample predictions also show a lower power-weighted JSD than conventional estimated stochastic distributions

    Federated Meta Learning Enhanced Acoustic Radio Cooperative Framework for Ocean of Things Underwater Acoustic Communications

    Full text link
    Sixth-generation wireless communication (6G) will be an integrated architecture of "space, air, ground and sea". One of the most difficult part of this architecture is the underwater information acquisition which need to transmitt information cross the interface between water and air.In this senario, ocean of things (OoT) will play an important role, because it can serve as a hub connecting Internet of things (IoT) and Internet of underwater things (IoUT). OoT device not only can collect data through underwater methods, but also can utilize radio frequence over the air. For underwater communications, underwater acoustic communications (UWA COMMs) is the most effective way for OoT devices to exchange information, but it is always tormented by doppler shift and synchronization errors. In this paper, in order to overcome UWA tough conditions, a deep neural networks based receiver for underwater acoustic chirp communication, called C-DNN, is proposed. Moreover, to improve the performance of DL-model and solve the problem of model generalization, we also proposed a novel federated meta learning (FML) enhanced acoustic radio cooperative (ARC) framework, dubbed ARC/FML, to do transfer. Particularly, tractable expressions are derived for the convergence rate of FML in a wireless setting, accounting for effects from both scheduling ratio, local epoch and the data amount on a single node.From our analysis and simulation results, it is shown that, the proposed C-DNN can provide a better BER performance and lower complexity than classical matched filter (MF) in underwater acoustic communications scenario. The ARC/FML framework has good convergence under a variety of channels than federated learning (FL). In summary, the proposed ARC/FML for OoT is a promising scheme for information exchange across water and air

    A chaotic spread spectrum system for underwater acoustic communication

    Get PDF
    The work is supported in part by NSFC (Grant no. 61172070), IRT of Shaanxi Province (2013KCT-04), EPSRC (Grant no.Ep/1032606/1).Peer reviewedPostprin

    Visible Light Communication (VLC)

    Get PDF
    Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC
    corecore