77,024 research outputs found

    Input-driven unsupervised learning in recurrent neural networks

    Get PDF
    Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is an attractor neural network with Hebbian learning (e.g. the Hopfield model). The model simplicity and the locality of the synaptic update rules come at the cost of a limited storage capacity, compared with the capacity achieved with supervised learning algorithms, whose biological plausibility is questionable. Here, we present an on-line learning rule for a recurrent neural network that achieves near-optimal performance without an explicit supervisory error signal and using only locally accessible information, and which is therefore biologically plausible. The fully connected network consists of excitatory units with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the patterns to be memorized are presented on-line as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs ('local fields'). Synapses corresponding to active inputs are modified as a function of the position of the local field with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. An additional parameter of the model allows to trade storage capacity for robustness, i.e. increased size of the basins of attraction. We simulated a network of 1001 excitatory neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction: our results show that, for any given basin size, our network more than doubles the storage capacity, compared with a standard Hopfield network. Our learning rule is consistent with available experimental data documenting how plasticity depends on firing rate. It predicts that at high enough firing rates, no potentiation should occu

    Compositional Verification for Autonomous Systems with Deep Learning Components

    Full text link
    As autonomy becomes prevalent in many applications, ranging from recommendation systems to fully autonomous vehicles, there is an increased need to provide safety guarantees for such systems. The problem is difficult, as these are large, complex systems which operate in uncertain environments, requiring data-driven machine-learning components. However, learning techniques such as Deep Neural Networks, widely used today, are inherently unpredictable and lack the theoretical foundations to provide strong assurance guarantees. We present a compositional approach for the scalable, formal verification of autonomous systems that contain Deep Neural Network components. The approach uses assume-guarantee reasoning whereby {\em contracts}, encoding the input-output behavior of individual components, allow the designer to model and incorporate the behavior of the learning-enabled components working side-by-side with the other components. We illustrate the approach on an example taken from the autonomous vehicles domain

    A three-threshold learning rule approaches the maximal capacity of recurrent neural networks

    Get PDF
    Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model has a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the number of stored patterns.Comment: 24 pages, 10 figures, to be published in PLOS Computational Biolog

    Network community detection via neural embeddings

    Full text link
    Recent advances in machine learning research have produced powerful neural graph embedding methods, which learn useful, low-dimensional vector representations of network data. These neural methods for graph embedding excel in graph machine learning tasks and are now widely adopted. However, how and why these methods work -- particularly how network structure gets encoded in the embedding -- remain largely unexplained. Here, we show that shallow neural graph embedding methods encode community structure as well as, or even better than, spectral embedding methods for both dense and sparse networks, with and without degree and community size heterogeneity. Our results provide the foundations for the design of novel effective community detection methods as well as theoretical studies that bridge network science and machine learning.Comment: 38 pages, 7 figure

    Infinite Width Graph Neural Networks for Node Regression/ Classification

    Full text link
    This work analyzes Graph Neural Networks, a generalization of Fully-Connected Deep Neural Nets on Graph structured data, when their width, that is the number of nodes in each fullyconnected layer is increasing to infinity. Infinite Width Neural Networks are connecting Deep Learning to Gaussian Processes and Kernels, both Machine Learning Frameworks with long traditions and extensive theoretical foundations. Gaussian Processes and Kernels have much less hyperparameters then Neural Networks and can be used for uncertainty estimation, making them more user friendly for applications. This works extends the increasing amount of research connecting Gaussian Processes and Kernels to Neural Networks. The Kernel and Gaussian Process closed forms are derived for a variety of architectures, namely the standard Graph Neural Network, the Graph Neural Network with Skip-Concatenate Connections and the Graph Attention Neural Network. All architectures are evaluated on a variety of datasets on the task of transductive Node Regression and Classification. Additionally, a Spectral Sparsification method known as Effective Resistance is used to improve runtime and memory requirements. Extending the setting to inductive graph learning tasks (Graph Regression/ Classification) is straightforward and is briefly discussed in 3.5.Comment: 49 Pages, 2 Figures (with subfigures), multiple tables, v2: made table of contents fit to one page and added derivatives on GAT*NTK and GAT*GP in A.4, v3: shorten parts of introduction and fixed typos, added numberings to equations and discussion section, v4: fix two missing citations on page 1

    Input-driven unsupervised learning in recurrent neural networks

    Get PDF
    Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is an attractor neural network with Hebbian learning (e.g. the Hopfield model). The model simplicity and the locality of the synaptic update rules come at the cost of a limited storage capacity, compared with the capacity achieved with supervised learning algorithms, whose biological plausibility is questionable. Here, we present an on-line learning rule for a recurrent neural network that achieves near-optimal performance without an explicit supervisory error signal and using only locally accessible information, and which is therefore biologically plausible. The fully connected network consists of excitatory units with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the patterns to be memorized are presented on-line as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs (’local fields’). Synapses corresponding to active inputs are modified as a function of the position of the local field with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. An additional parameter of the model allows to trade storage capacity for robustness, i.e. increased size of the basins of attraction. We simulated a network of 1001 excitatory neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction: our results show that, for any given basin size, our network more than doubles the storage capacity, compared with a standard Hopfield network. Our learning rule is consistent with available experimental data documenting how plasticity depends on firing rate. It predicts that at high enough firing rates, no potentiation should occur

    Theoretical Insights into Neural Networks and Deep Learning: Advancing Understanding, Interpretability, and Generalization

    Get PDF
    This work aims to provide profound insights into neural networks and deep learning, focusing on their functioning, interpretability, and generalization capabilities. It explores fundamental aspects such as network architectures, activation functions, and learning algorithms, analyzing their theoretical foundations. The paper delves into the theoretical analysis of deep learning models, investigating their representational capacity, expressiveness, and convergence properties. It addresses the crucial issue of interpretability, presenting theoretical approaches for understanding the inner workings of these models. Theoretical aspects of generalization are also explored, including overfitting, regularization techniques, and generalization bounds. By advancing theoretical understanding, this paper paves the way for informed model design, improved interpretability, and enhanced generalization in neural networks and deep learning, pushing the boundaries of their application in diverse domains
    • …
    corecore