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Introduction
Understanding the theoretical foundations of how memories
are encoded and retrieved in neural populations is a central
challenge in neuroscience. A popular theoretical scenario for
modeling memory function is the notion of attractors in a re-
current neural network [1,2].

Figure : A cartoon of attractors and its basin of attraction in energy
landscape.

The Hebbian learning is one candidate for learning attractors
(memory patterns) in a recurrent network [1,2]. It is known
[3] that the number of attractors (M) that can be stored with
this learning rule in a binary recurrent network (of N binary
neurons) is in the order of 0.138 times the number of neurons
i.e. α = 0.138 where α = M

N , which is far from the maximum
storage capacity that could be achieved by any learning rule
in attractor neural networks (Gradner bound α = 2) [4]. While
there is no unsupervised learning rule for storing random pat-
terns close to the maximum capacity in recurrent networks
(except in the sparse coding limit [5]), the supervised percep-
tron learning rule achieves the maximum capacity.

Here, we propose an input-driven unsupervised learning rule
for storing long-term memory in a recurrent neural network
which is inspired by the perceptron learning rule that does not
suffer from the drawbacks of Hebbian learning and reaches
close to the maximum storage capacity.

Overview of the model
Our goals:

I To come up with a learning rule for a recurrent
neural network

I It should be able to store memories close to the
maxial storage capacity

I It should implement basic biological con-
straints

I To have stable dynamics.

Two crucial features from theoretical perspective
to achieve the goals:

I Strong external input (or external field) to
each neuron

I Three learning thresholds for potentiation or
depression

Note: These features of the learning rule could be
implemented in networks composed of any model
neurons.

We address two questions:
I How many patterns can be stored in a recur-

rent network of N neurons?

I How strong the external field should be to
store the patterns?

The structure of the model
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I Each neuron i receives an external binary input
(xi ∈ {0,X}) and N inputs from other neurons
(sj ∈ {0,1}; j = 1, . . . ,N).

I Synaptic strengths (Jij) are continuous and non-
negative ( Jij ∈ [0,+∞) & Jii = 0).

The dynamics of the model
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i are the state and the local field of neu-
ron i

I x t
i ∈ {0,X} the external field to neuron i at time

t

I The strength of external field X was set to γN

I The parameters I, λ, D0 are inhibition parame-
ters (set such that the network remains stable)

I Θ is the Heaviside step function; θ is the thresh-
old set to 0.35N

I The dynamics was simulated with synchronous
updating

I As a result the network avoided the two trivial
dynamical fixed-points (all neurons zero or all
neurons one)

The learning rule

The learning rule that is used to store M patterns
(M = αN) is implemented by comparing the value
of local field with three learning thresholds:

– If θ0 < v t
i < θ ⇒ depress active synapses

(J t
ij = J t−1

ij − η)

– If θ < v t
i < θ1⇒ potentiate active synapses

(J t
ij = J t−1

ij + η)

– Otherwise ⇒ change nothing

I Applied only to the excitatory-to-excitatory re-
current connections.

I The patterns chosen at random at 0.5 coding
probability.

I θ = 0.35N, θ0 = 1
2JN − I and θ1 = θ0 +

X where J is the initial average of connection
weights and I is an inhibition constant.

I The learning rate was η = 0.01.

I To add robustness to the learning rule: θ′0 =
θ0−φ and θ′1 = θ1+φ. The auxiliary parameter φ
can be tuned to set a trade-off between capacity
and robustness.

Results
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A The histogram of local field values of all of the
neurons before and after learning. Local field val-
ues after learning are pushed away from the po-
tentiation (light-orange) and depression (light-blue)
regions due to the learning rule.

Results (Continued)
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Hopfield network
Our model

B

B The capacity of the network (α = M/N) ver-
sus the size of basin of attraction for our model
and a Hopfield network. The result of simulations
with N = 1001, γ = X/N = 0.5, η = 0.01. φ
was optimized such that for a given size of basin
of attraction, the highest number of patterns could
be stored. To obtain the critical storage capacity
for each basin size, we initiated the network with
patterns corrupted with a given noise level (this
noise level was defined as the fraction of the units’
states whose state was drawn randomly and inde-
pendently from the pattern) and then determined
the number of successful recalls of the patterns.
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C Minimum γ (relative strength of external field)
versus α. This curve is computed for a network
with N = 1001 at a fixed φ = 0.05θ0 and at zero
basin of attraction. We simulated a range of val-
ues for gamma then we measured the storage ca-
pacity. Afterwards, we picked the minimum gamma
for each storage capacity (10 different seeds). At
γ ∼ 0.24 the capacity is around α ∼ 0.8. To store
more patterns one needs to increase gamma.

Discussion

I We proposed an unsupervised learning rule for
storing long-term memory in recurrent neural
networks.

I Our model can store close to the critical stor-
age capacity (in our model α ∼ 1.6) whereas
a Hopfield network with Hebbian learning rule
is not able to go beyond α ∼ 0.138, therefore
we achieve more than 11-fold improvement at
zero size basin of attraction.

I Stable and robust dynamics.

I The activity level of the network is stable and
robust.

I The storage capacity reduces by lowering the
strength of the external fields. Below γ ∼ 0.24
the network cannot learn all the patterns per-
fectly.

I The learning rule can be implemented for any
neuron models.

I In the sparse coding limit, the unsupervised,
covariance rule reaches the Gardner bound
[5]. Therefore, one expects that the benefit of
these learning thresholds should decrease in
that limit.

I Our proposed learning rule implements basic
biophysical constraints: it uses only the lo-
cal information available to a neuron and its
synapses (i.e. locality), and it can store a new
pattern independently of previously learned pat-
terns (i.e. incrementality).

I The network contains separate excitatory or
inhibitory units, i.e. synaptic strengths do not
change sign (in contrast with the Hopfield
model).

I No explicit error signal: neurons do not need
to have access to an explicit error signal from
their output, i.e. the difference between the de-
sired output and the current output, but they can
infer that information with high reliability by ex-
ploiting the statistical properties of the distribu-
tion of the local fields.

I The learning rule is in agreement with exper-
imental findings [6]; it also predicts that when
the firing rate (or post-synaptic membrane po-
tential) goes above a certain threshold no po-
tentiation should occur.
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