5 research outputs found

    Reconocimiento automático de la actividad de vacunos en pastoreo

    Get PDF
    The use of collars, pedometers or activity tags is expensive to record cattle's behavior in short periods (e.g. 24h). Under this particular situation, the development of low-cost and easy-to-use technologies is relevant. Similar to smartphone apps for human activity recognition, which analyzes data from embedded triaxial accelerometer sensors, we develop an Android app to record activity in cattle. Four main steps were followed: a) data acquisition for model training, b) model training, c) app deploy, and d) app utilization. For data acquisition, we developed a system in which three components were used: two smartphones and a Google Firebase account for data storage. For model training, the generated database was used to train a recurrent neural network. The performance of training was assessed by the confusion matrix. For all actual activities, the trained model provided a high prediction (> 96 %). The trained model was used to deploy an Android app by using the TensorFlow API. Finally, three cell phones (LG gm730) were used to test the app and record the activity of six Holstein cows (3 lactating and 3 non-lactating). Direct and non-systematic observations of the animals were made to contrast the activities recorded by the device. Our results show consistency between the direct observations and the activity recorded by our Android app.El uso de podómetros o collares para registrar el comportamiento del ganado en períodos cortos de tiempo (e.g. 24 h) es costoso. En esta situación particular, el desarrollo de tecnologías de bajo costo y fáciles de usar es relevante. Al igual que las aplicaciones de teléfonos inteligentes para el reconocimiento de la actividad humana, las cuales analizan datos de sensores de aceleración integrados, en este trabajo desarrollamos una aplicación de Android para registrar la actividad del ganado. Para el desarrollo de esta aplicación, se siguieron cuatro pasos principales: a) adquisición de datos para el entrenamiento del modelo, b) entrenamiento del modelo, c) desarrollo de la aplicación y d) utilización de la aplicación. Para la adquisición de datos, desarrollamos un sistema en el que se utilizaron tres componentes: dos teléfonos inteligentes (uno en la vaca y otro para el observador) y una cuenta de Google Firebase para el almacenamiento de datos. Para el entrenamiento del modelo, la base de datos generada se utilizó para entrenar una red neuronal recurrente. El rendimiento del entrenamiento se evaluó mediante la matriz de confusión. Para todas las actividades, el modelo entrenado proporcionó una predicción alta (> 96 %). El modelo entrenado se utilizó para desarrollar una aplicación de Android con la API de TensorFlow. Finalmente, se utilizaron tres teléfonos celulares (LG gm730) para registrar la actividad de seis vacas Holstein (3 en producción y 3 secas). Se realizaron observaciones directas y no sistemáticas de los animales para contrastar las actividades registradas por el dispositivo. Los resultados mostraron coherencia entre las observaciones directas y la actividad registrada por el dispositivo

    Detecting Weak Signals of the Future: A System Implementation Based on Text Mining and Natural Language Processing

    Full text link
    [EN] Organizations, companies and start-ups need to cope with constant changes on the market which are difficult to predict. Therefore, the development of new systems to detect significant future changes is vital to make correct decisions in an organization and to discover new opportunities. A system based on business intelligence techniques is proposed to detect weak signals, that are related to future transcendental changes. While most known solutions are based on the use of structured data, the proposed system quantitatively detects these signals using heterogeneous and unstructured information from scientific, journalistic and social sources, applying text mining to analyze the documents and natural language processing to extract accurate results. The main contributions are that the system has been designed for any field, using different input datasets of documents, and with an automatic classification of categories for the detected keywords. In this research paper, results from the future of remote sensors are presented. Remote sensing services are providing new applications in observation and analysis of information remotely. This market is projected to witness a significant growth due to the increasing demand for services in commercial and defense industries. The system has obtained promising results, evaluated with two different methodologies, to help experts in the decision-making process and to discover new trends and opportunities.This research is partially supported by EIT Climate-KIC of the European Institute of Technology (project EIT Climate-KIC Accelerator-TC_3.1.5_190607_P066-1A) and InnoCENS from Erasmus + (573965-EPP-1-2016-1-SE-EPPKA2-CBHE-JP).Griol-Barres, I.; Milla, S.; Cebrián Ferriols, AJ.; Fan, H.; Millet Roig, J. (2020). Detecting Weak Signals of the Future: A System Implementation Based on Text Mining and Natural Language Processing. Sustainability. 12(19):1-21. https://doi.org/10.3390/su12197848S1211219Zahra, S. A., Gedajlovic, E., Neubaum, D. O., & Shulman, J. M. (2009). A typology of social entrepreneurs: Motives, search processes and ethical challenges. Journal of Business Venturing, 24(5), 519-532. doi:10.1016/j.jbusvent.2008.04.007Ansoff, H. I. (1975). Managing Strategic Surprise by Response to Weak Signals. California Management Review, 18(2), 21-33. doi:10.2307/41164635Report on Weak Signals Collection. TELMAP, European Commission Seventh Framework Project (IST-257822) https://cordis.europa.eu/docs/projects/cnect/2/257822/080/deliverables/001-D41Weaksignalscollectionfinal.docDator, J. (2005). Universities without «quality» and quality without «universities». On the Horizon, 13(4), 199-215. doi:10.1108/10748120510627321Hiltunen, E. (2008). The future sign and its three dimensions. Futures, 40(3), 247-260. doi:10.1016/j.futures.2007.08.021Thorleuchter, D., Scheja, T., & Van den Poel, D. (2014). Semantic weak signal tracing. Expert Systems with Applications, 41(11), 5009-5016. doi:10.1016/j.eswa.2014.02.046Julien, P.-A., Andriambeloson, E., & Ramangalahy, C. (2004). Networks, weak signals and technological innovations among SMEs in the land-based transportation equipment sector. Entrepreneurship & Regional Development, 16(4), 251-269. doi:10.1080/0898562042000263249Xindong Wu, Xingquan Zhu, Gong-Qing Wu, & Wei Ding. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26(1), 97-107. doi:10.1109/tkde.2013.109Koivisto, R., Kulmala, I., & Gotcheva, N. (2016). Weak signals and damage scenarios — Systematics to identify weak signals and their sources related to mass transport attacks. Technological Forecasting and Social Change, 104, 180-190. doi:10.1016/j.techfore.2015.12.010Davis, J., & Groves, C. (2019). City/future in the making: Masterplanning London’s Olympic legacy as anticipatory assemblage. Futures, 109, 13-23. doi:10.1016/j.futures.2019.04.002Irvine, N., Nugent, C., Zhang, S., Wang, H., & NG, W. W. Y. (2019). Neural Network Ensembles for Sensor-Based Human Activity Recognition Within Smart Environments. Sensors, 20(1), 216. doi:10.3390/s20010216Huang, M., & Liu, Z. (2019). Research on Mechanical Fault Prediction Method Based on Multifeature Fusion of Vibration Sensing Data. Sensors, 20(1), 6. doi:10.3390/s20010006Awan, F. M., Saleem, Y., Minerva, R., & Crespi, N. (2020). A Comparative Analysis of Machine/Deep Learning Models for Parking Space Availability Prediction. Sensors, 20(1), 322. doi:10.3390/s20010322MohamadiBaghmolaei, R., Mozafari, N., & Hamzeh, A. (2017). Continuous states latency aware influence maximization in social networks. AI Communications, 30(2), 99-116. doi:10.3233/aic-170720McGrath, J., & Fischetti, J. (2019). What if compulsory schooling was a 21st century invention? Weak signals from a systematic review of the literature. International Journal of Educational Research, 95, 212-226. doi:10.1016/j.ijer.2019.02.006Chao, W., Jiang, X., Luo, Z., Hu, Y., & Ma, W. (2019). Interpretable Charge Prediction for Criminal Cases with Dynamic Rationale Attention. Journal of Artificial Intelligence Research, 66, 743-764. doi:10.1613/jair.1.11377Van Veen, B. L., Roland Ortt, J., & Badke-Schaub, P. G. (2019). Compensating for perceptual filters in weak signal assessments. Futures, 108, 1-11. doi:10.1016/j.futures.2019.02.018Thorleuchter, D., & Van den Poel, D. (2015). Idea mining for web-based weak signal detection. Futures, 66, 25-34. doi:10.1016/j.futures.2014.12.007Rowe, E., Wright, G., & Derbyshire, J. (2017). Enhancing horizon scanning by utilizing pre-developed scenarios: Analysis of current practice and specification of a process improvement to aid the identification of important ‘weak signals’. Technological Forecasting and Social Change, 125, 224-235. doi:10.1016/j.techfore.2017.08.001Yoon, J. (2012). Detecting weak signals for long-term business opportunities using text mining of Web news. Expert Systems with Applications, 39(16), 12543-12550. doi:10.1016/j.eswa.2012.04.059Yoo, S., & Won, D. (2018). Simulation of Weak Signals of Nanotechnology Innovation in Complex System. Sustainability, 10(2), 486. doi:10.3390/su10020486Suh, J. (2018). Generating Future-Oriented Energy Policies and Technologies from the Multidisciplinary Group Discussions by Text-Mining-Based Identification of Topics and Experts. Sustainability, 10(10), 3709. doi:10.3390/su10103709Kwon, L.-N., Park, J.-H., Moon, Y.-H., Lee, B., Shin, Y., & Kim, Y.-K. (2018). Weak signal detecting of industry convergence using information of products and services of global listed companies - focusing on growth engine industry in South Korea -. Journal of Open Innovation: Technology, Market, and Complexity, 4(1). doi:10.1186/s40852-018-0083-6Ben-Porat, O., Hirsch, S., Kuchi, L., Elad, G., Reichart, R., & Tennenholtz, M. (2020). Predicting Strategic Behavior from Free Text. Journal of Artificial Intelligence Research, 68. doi:10.1613/jair.1.11849Fink, L., Yogev, N., & Even, A. (2017). Business intelligence and organizational learning: An empirical investigation of value creation processes. Information & Management, 54(1), 38-56. doi:10.1016/j.im.2016.03.009Ilmola, L., & Kuusi, O. (2006). Filters of weak signals hinder foresight: Monitoring weak signals efficiently in corporate decision-making. Futures, 38(8), 908-924. doi:10.1016/j.futures.2005.12.019Doulamis, N. D., Doulamis, A. D., Kokkinos, P., & Varvarigos, E. M. (2016). Event Detection in Twitter Microblogging. IEEE Transactions on Cybernetics, 46(12), 2810-2824. doi:10.1109/tcyb.2015.2489841Atefeh, F., & Khreich, W. (2013). A Survey of Techniques for Event Detection in Twitter. Computational Intelligence, 31(1), 132-164. doi:10.1111/coin.12017Mehmood, N. Q., Culmone, R., & Mostarda, L. (2017). Modeling temporal aspects of sensor data for MongoDB NoSQL database. Journal of Big Data, 4(1). doi:10.1186/s40537-017-0068-5Bjeladinovic, S. (2018). A fresh approach for hybrid SQL/NoSQL database design based on data structuredness. Enterprise Information Systems, 12(8-9), 1202-1220. doi:10.1080/17517575.2018.1446102Čerešňák, R., & Kvet, M. (2019). Comparison of query performance in relational a non-relation databases. Transportation Research Procedia, 40, 170-177. doi:10.1016/j.trpro.2019.07.027Yangui, R., Nabli, A., & Gargouri, F. (2016). Automatic Transformation of Data Warehouse Schema to NoSQL Data Base: Comparative Study. Procedia Computer Science, 96, 255-264. doi:10.1016/j.procs.2016.08.138Willett, P. (2006). The Porter stemming algorithm: then and now. Program, 40(3), 219-223. doi:10.1108/00330330610681295Griol-Barres, I., Milla, S., & Millet, J. (2019). Implementación de un sistema de detección de señales débiles de futuro mediante técnicas de minería de textos. Revista española de Documentación Científica, 42(2), 234. doi:10.3989/redc.2019.2.1599Kim, J., Han, M., Lee, Y., & Park, Y. (2016). Futuristic data-driven scenario building: Incorporating text mining and fuzzy association rule mining into fuzzy cognitive map. Expert Systems with Applications, 57, 311-323. doi:10.1016/j.eswa.2016.03.043Mendonça, S., Pina e Cunha, M., Kaivo-oja, J., & Ruff, F. (2004). Wild cards, weak signals and organisational improvisation. Futures, 36(2), 201-218. doi:10.1016/s0016-3287(03)00148-4Ishikiriyama, C. S., Miro, D., & Gomes, C. F. S. (2015). Text Mining Business Intelligence: A small sample of what words can say. Procedia Computer Science, 55, 261-267. doi:10.1016/j.procs.2015.07.044Yuen, J. (2018). Comparison of Impact Factor, Eigenfactor Metrics, and SCImago Journal Rank Indicator and h-index for Neurosurgical and Spinal Surgical Journals. World Neurosurgery, 119, e328-e337. doi:10.1016/j.wneu.2018.07.144Thomason, J., Padmakumar, A., Sinapov, J., Walker, N., Jiang, Y., Yedidsion, H., … Mooney, R. (2020). Jointly Improving Parsing and Perception for Natural Language Commands through Human-Robot Dialog. Journal of Artificial Intelligence Research, 67, 327-374. doi:10.1613/jair.1.11485Tseng, Y.-H., Lin, C.-J., & Lin, Y.-I. (2007). Text mining techniques for patent analysis. Information Processing & Management, 43(5), 1216-1247. doi:10.1016/j.ipm.2006.11.011Gergelova, M. B., Labant, S., Kuzevic, S., Kuzevicova, Z., & Pavolova, H. (2020). Identification of Roof Surfaces from LiDAR Cloud Points by GIS Tools: A Case Study of Lučenec, Slovakia. Sustainability, 12(17), 6847. doi:10.3390/su12176847Badmos, O., Rienow, A., Callo-Concha, D., Greve, K., & Jürgens, C. (2018). Urban Development in West Africa—Monitoring and Intensity Analysis of Slum Growth in Lagos: Linking Pattern and Process. Remote Sensing, 10(7), 1044. doi:10.3390/rs10071044Thomson, E., Malhi, Y., Bartholomeus, H., Oliveras, I., Gvozdevaite, A., Peprah, T., … Doughty, C. (2018). Mapping the Leaf Economic Spectrum across West African Tropical Forests Using UAV-Acquired Hyperspectral Imagery. Remote Sensing, 10(10), 1532. doi:10.3390/rs10101532Samasse, K., Hanan, N., Tappan, G., & Diallo, Y. (2018). Assessing Cropland Area in West Africa for Agricultural Yield Analysis. Remote Sensing, 10(11), 1785. doi:10.3390/rs10111785Anchang, J. Y., Prihodko, L., Kaptué, A. T., Ross, C. W., Ji, W., Kumar, S. S., … Hanan, N. P. (2019). Trends in Woody and Herbaceous Vegetation in the Savannas of West Africa. Remote Sensing, 11(5), 576. doi:10.3390/rs11050576Jung, H. C., Getirana, A., Arsenault, K. R., Holmes, T. R. H., & McNally, A. (2019). Uncertainties in Evapotranspiration Estimates over West Africa. Remote Sensing, 11(8), 892. doi:10.3390/rs11080892Mondal, P., Liu, X., Fatoyinbo, T. E., & Lagomasino, D. (2019). Evaluating Combinations of Sentinel-2 Data and Machine-Learning Algorithms for Mangrove Mapping in West Africa. Remote Sensing, 11(24), 2928. doi:10.3390/rs11242928Meftah, M., Damé, L., Keckhut, P., Bekki, S., Sarkissian, A., Hauchecorne, A., … Bui, A. (2019). UVSQ-SAT, a Pathfinder CubeSat Mission for Observing Essential Climate Variables. Remote Sensing, 12(1), 92. doi:10.3390/rs12010092Zhang, W., Yoshida, T., & Tang, X. (2008). Text classification based on multi-word with support vector machine. Knowledge-Based Systems, 21(8), 879-886. doi:10.1016/j.knosys.2008.03.044Griol-Barres, I., Milla, S., & Millet, J. (2020). Improving strategic decision making by the detection of weak signals in heterogeneous documents by text mining techniques. AI Communications, 32(5-6), 347-360. doi:10.3233/aic-190625Dzedzickis, A., Kaklauskas, A., & Bucinskas, V. (2020). Human Emotion Recognition: Review of Sensors and Methods. Sensors, 20(3), 592. doi:10.3390/s20030592Haegeman, K., Marinelli, E., Scapolo, F., Ricci, A., & Sokolov, A. (2013). Quantitative and qualitative approaches in Future-oriented Technology Analysis (FTA): From combination to integration? Technological Forecasting and Social Change, 80(3), 386-397. doi:10.1016/j.techfore.2012.10.002Silva, V. O., Martins, C. A. P. S., & Ekel, P. Y. (2018). An Efficient Parallel Implementation of an Optimized Simplex Method in GPU-CUDA. IEEE Latin America Transactions, 16(2), 564-573. doi:10.1109/tla.2018.832741

    Discovering human activities from binary data in smart homes

    Get PDF
    With the rapid development in sensing technology, data mining, and machine learning fields for human health monitoring, it became possible to enable monitoring of personal motion and vital signs in a manner that minimizes the disruption of an individual’s daily routine and assist individuals with difficulties to live independently at home. A primary difficulty that researchers confront is acquiring an adequate amount of labeled data for model training and validation purposes. Therefore, activity discovery handles the problem that activity labels are not available using approaches based on sequence mining and clustering. In this paper, we introduce an unsupervised method for discovering activities from a network of motion detectors in a smart home setting. First, we present an intra-day clustering algorithm to find frequent sequential patterns within a day. As a second step, we present an inter-day clustering algorithm to find the common frequent patterns between days. Furthermore, we refine the patterns to have more compressed and defined cluster characterizations. Finally, we track the occurrences of various regular routines to monitor the functional health in an individual’s patterns and lifestyle. We evaluate our methods on two public data sets captured in real-life settings from two apartments during seven-month and three-month periods

    Modelling of a System for the Detection of Weak Signals Through Text Mining and NLP. Proposal of Improvement by a Quantum Variational Circuit

    Full text link
    Tesis por compendio[ES] En esta tesis doctoral se propone y evalúa un sistema para detectar señales débiles (weak signals) relacionadas con cambios futuros trascendentales. Si bien la mayoría de las soluciones conocidas se basan en el uso de datos estructurados, el sistema propuesto detecta cuantitativamente estas señales utilizando información heterogénea y no estructurada de fuentes científicas, periodísticas y de redes sociales. La predicción de nuevas tendencias en un medio tiene muchas aplicaciones. Por ejemplo, empresas y startups se enfrentan a cambios constantes en sus mercados que son muy difíciles de predecir. Por esta razón, el desarrollo de sistemas para detectar automáticamente cambios futuros significativos en una etapa temprana es relevante para que cualquier organización tome decisiones acertadas a tiempo. Este trabajo ha sido diseñado para obtener señales débiles del futuro en cualquier campo dependiendo únicamente del conjunto de datos de entrada de documentos. Se aplican técnicas de minería de textos y procesamiento del lenguaje natural para procesar todos estos documentos. Como resultado, se obtiene un mapa con un ranking de términos, una lista de palabras clave clasificadas automáticamente y una lista de expresiones formadas por múltiples palabras. El sistema completo se ha probado en cuatro sectores diferentes: paneles solares, inteligencia artificial, sensores remotos e imágenes médicas. Este trabajo ha obtenido resultados prometedores, evaluados con dos metodologías diferentes. Como resultado, el sistema ha sido capaz de detectar de forma satisfactoria nuevas tendencias en etapas muy tempranas que se han vuelto cada vez más importantes en la actualidad. La computación cuántica es un nuevo paradigma para una multitud de aplicaciones informáticas. En esta tesis doctoral también se presenta un estudio de las tecnologías disponibles en la actualidad para la implementación física de qubits y puertas cuánticas, estableciendo sus principales ventajas y desventajas, y los marcos disponibles para la programación e implementación de circuitos cuánticos. Con el fin de mejorar la efectividad del sistema, se describe un diseño de un circuito cuántico basado en máquinas de vectores de soporte (SVM) para la resolución de problemas de clasificación. Este circuito está especialmente diseñado para los ruidosos procesadores cuánticos de escala intermedia (NISQ) que están disponibles actualmente. Como experimento, el circuito ha sido probado en un computador cuántico real basado en qubits superconductores por IBM como una mejora para el subsistema de minería de texto en la detección de señales débiles. Los resultados obtenidos con el experimento cuántico muestran también conclusiones interesantes y una mejora en el rendimiento de cerca del 20% sobre los sistemas convencionales, pero a su vez confirman que aún se requiere un desarrollo tecnológico continuo para aprovechar al máximo la computación cuántica.[CA] En aquesta tesi doctoral es proposa i avalua un sistema per detectar senyals febles (weak signals) relacionats amb canvis futurs transcendentals. Si bé la majoria de solucions conegudes es basen en l'ús de dades estructurades, el sistema proposat detecta quantitativament aquests senyals utilitzant informació heterogènia i no estructurada de fonts científiques, periodístiques i de xarxes socials. La predicció de noves tendències en un medi té moltes aplicacions. Per exemple, empreses i startups s'enfronten a canvis constants als seus mercats que són molt difícils de predir. Per això, el desenvolupament de sistemes per detectar automàticament canvis futurs significatius en una etapa primerenca és rellevant perquè les organitzacions prenguen decisions encertades a temps. Aquest treball ha estat dissenyat per obtenir senyals febles del futur a qualsevol camp depenent únicament del conjunt de dades d'entrada de documents. S'hi apliquen tècniques de mineria de textos i processament del llenguatge natural per processar tots aquests documents. Com a resultat, s'obté un mapa amb un rànquing de termes, un llistat de paraules clau classificades automàticament i un llistat d'expressions formades per múltiples paraules. El sistema complet s'ha provat en quatre sectors diferents: panells solars, intel·ligència artificial, sensors remots i imatges mèdiques. Aquest treball ha obtingut resultats prometedors, avaluats amb dues metodologies diferents. Com a resultat, el sistema ha estat capaç de detectar de manera satisfactòria noves tendències en etapes molt primerenques que s'han tornat cada cop més importants actualment. La computació quàntica és un paradigma nou per a una multitud d'aplicacions informàtiques. En aquesta tesi doctoral també es presenta un estudi de les tecnologies disponibles actualment per a la implementació física de qubits i portes quàntiques, establint-ne els principals avantatges i desavantatges, i els marcs disponibles per a la programació i implementació de circuits quàntics. Per tal de millorar l'efectivitat del sistema, es descriu un disseny d'un circuit quàntic basat en màquines de vectors de suport (SVM) per resoldre problemes de classificació. Aquest circuit està dissenyat especialment per als sorollosos processadors quàntics d'escala intermèdia (NISQ) que estan disponibles actualment. Com a experiment, el circuit ha estat provat en un ordinador quàntic real basat en qubits superconductors per IBM com una millora per al subsistema de mineria de text. Els resultats obtinguts amb l'experiment quàntic també mostren conclusions interessants i una millora en el rendiment de prop del 20% sobre els sistemes convencionals, però a la vegada confirmen que encara es requereix un desenvolupament tecnològic continu per aprofitar al màxim la computació quàntica.[EN] In this doctoral thesis, a system to detect weak signals related to future transcendental changes is proposed and tested. While most known solutions are based on the use of structured data, the proposed system quantitatively detects these signals using heterogeneous and unstructured information from scientific, journalistic, and social sources. Predicting new trends in an environment has many applications. For instance, companies and startups face constant changes in their markets that are very difficult to predict. For this reason, developing systems to automatically detect significant future changes at an early stage is relevant for any organization to make right decisions on time. This work has been designed to obtain weak signals of the future in any field depending only on the input dataset of documents. Text mining and natural language processing techniques are applied to process all these documents. As a result, a map of ranked terms, a list of automatically classified keywords and a list of multi-word expressions are obtained. The overall system has been tested in four different sectors: solar panels, artificial intelligence, remote sensing, and medical imaging. This work has obtained promising results that have been evaluated with two different methodologies. As a result, the system was able to successfully detect new trends at a very early stage that have become more and more important today. Quantum computing is a new paradigm for a multitude of computing applications. This doctoral thesis also presents a study of the technologies that are currently available for the physical implementation of qubits and quantum gates, establishing their main advantages and disadvantages and the available frameworks for programming and implementing quantum circuits. In order to improve the effectiveness of the system, a design of a quantum circuit based on support vector machines (SVMs) is described for the resolution of classification problems. This circuit is specially designed for the noisy intermediate-scale quantum (NISQ) computers that are currently available. As an experiment, the circuit has been tested on a real quantum computer based on superconducting qubits by IBM as an improvement for the text mining subsystem in the detection of weak signals. The results obtained with the quantum experiment show interesting outcomes with an improvement of close to 20% better performance than conventional systems, but also confirm that ongoing technological development is still required to take full advantage of quantum computing.Griol Barres, I. (2022). Modelling of a System for the Detection of Weak Signals Through Text Mining and NLP. Proposal of Improvement by a Quantum Variational Circuit [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/183029TESISCompendi
    corecore