16 research outputs found

    Designing a control system Based on SOC Estimation of BMS for PV-Solar System

    Get PDF
    One of the major challenges for battery energy stowage system is to design a supervisory controller which can yield high energy concentration, reduced self-discharge rate and prolong the battery lifetime. A regulatory PV-Battery Management System (BMS) based State of Charge (SOC) estimation is presented in this paper that optimally addresses the issues. The proposed control algorithm estimates SOC by Backpropagation Neural Network (BPNN) scheme and utilizes the Maximum Power Point Tracking (MPPT) scheme of the solar panels to take decision for charging, discharging or islanding mode of the Lead-Acid battery bank. A case study (SOC estimation) is demonstrated as well to depict the efficiency (Error 0.082%) of the proposed model using real time data. The numerical simulation structured through real-time information concedes that the projected control mechanism is robust and accomplishes several objectives of integrated PV-BMS for instance avoiding overcharging and deep discharging manner under different solar radiations

    An intelligent controlling method for battery lifetime increment using state of charge estimation in PV-battery hybrid system

    Get PDF
    In a photovoltaic (PV)-battery integrated system, the battery undergoes frequent charging and discharging cycles that reduces its operational life and affects its performance considerably. As such, an intelligent power control approach for a PV-battery standalone system is proposed in this paper to improve the reliability of the battery along its operational life. The proposed control strategy works in two regulatory modes: maximum power point tracking (MPPT) mode and battery management system (BMS) mode. The novel controller tracks and harvests the maximum available power from the solar cells under different atmospheric conditions via MPPT scheme. On the other hand, the state of charge (SOC) estimation technique is developed using backpropagation neural network (BPNN) algorithm under BMS mode to manage the operation of the battery storage during charging, discharging, and islanding approaches to prolong the battery lifetime. A case study is demonstrated to confirm the effectiveness of the proposed scheme which shows only 0.082% error for real-world applications. The study discloses that the projected BMS control strategy satisfies the battery-lifetime objective for off-grid PV-battery hybrid systems by avoiding the over-charging and deep-discharging disturbances significantly

    State of Charge Estimation of Lead Acid Battery using Neural Network for Advanced Renewable Energy Systems

    Get PDF
    The Solar Dryer Dome (SDD), an independent energy system equipped with Artificial Intelligence to support the drying process, has been developed. However, inaccurate state-of-charge (SOC) predictions in each battery cell resulted in the vulnerability of the battery to over-charging and over-discharging, which accelerated the battery performance degradation. This research aims to develop an accurate neural network model for predicting the SOC of battery-cell level. The model aims to maintain the battery cell balance under dynamic load applications. It is accompanied by a developed dashboard to monitor and provide crucial information for early maintenance of the battery in the SDD. The results show that the neural network estimates the SOC with the lowest MAE of 0.175, followed by the Random Forest and support vector machine methods with MAE of 0.223 and 0.259, respectively. A dashboard was developed to help farmers monitor batteries efficiently. This research contributes to battery-cell level SOC prediction and the dashboard for battery status monitoring. Doi: 10.28991/ESJ-2023-07-03-02 Full Text: PD

    Experimental and Theoretical Analysis of the Fast Charging Polymer Lithium-Ion Battery Based on Cuckoo Optimization Algorithm (COA)

    Get PDF
    Fast charging of the electric-vehicles is one of the paramount challenges in solar smart cities. This paper investigates intelligent optimization methodology to improvise the existing approaches in order to speed up the charging process whilst reducing the energy consumption without degradation in the light of the outrageous demand for lithium-ion battery in the electric vehicles (EVs). Two fitness functions are combined as the targeted objective function: energy losses (EL) and charging interval time (CIT). An intelligent optimization methodology based on Cuckoo Optimization Algorithm (COA) is implemented to the objective function for improving the charging performance of the lithium-ion battery. COA is applied through two main techniques: The Hierarchical technique (HT) and the Conditional random technique (CRT). The experimental results show that the proposed techniques permit a full charging capacity of the polymer lithium-ion battery (0 to 100% SOC) within 91 mins. Compared with the constant current-constant voltage (CCCV) technique, an improvement in the efficiency of 8% and 14.1% was obtained by the Hierarchical technique (HT) and the Conditional random technique (CRT) respectively, in addition to a reduction in energy losses of 7.783% and 10.408% respectively and a reduction in charging interval time of 18.1% and 22.45% respectively. Experimental and theoretical analyses are performed and are in good agreement on the polymer lithium-ion battery fast charging method

    A Review Of Battery Charging - Discharging Management Controller: A Proposed Conceptual Battery Storage Charging – Discharging Centralized Controller

    Get PDF
    This paper describes the development of a centralized controller to charge or discharge the battery storages that are connected to renewable energy sources. The centralized controller is able to assist, control, and manage the battery storage charging when excessive power is available from renewable energy sources. At the same time, the centralized controller also performs battery storage discharging when the connected load requires a power source, especially when the renewable energy sources are unavailable. Background studies regarding battery storage charging-discharging are presented in the introduction section. Also, generally developed charging discharging methods or techniques were applied at the system level and not specifically to the battery storage system level. Due to the limited study on battery storage system charging discharging, this paper reviews some of the similar studies in order to understand the battery storage charging–discharging characteristics as well as to propose a new conceptual methodology for the proposed centralized controller. The battery storage State-of-Charge (SoC) is used as the criterion to develop the conceptual centralized controller, which is also used as a switching characteristic between charging or discharging when only the battery energy storages are supplying the output power to the connected load. Therefore, this paper mainly focuses on the conceptual methodology as well as explaining the functionality and operationality of the proposed centralized controller. A summarized comparison based on the studied charging– discharging systems with the proposed centralized controller is presented to indicate the validity of the proposed centralized controller

    Toward Enhanced State of Charge Estimation of Lithium-ion Batteries Using Optimized Machine Learning Techniques.

    Full text link
    State of charge (SOC) is a crucial index used in the assessment of electric vehicle (EV) battery storage systems. Thus, SOC estimation of lithium-ion batteries has been widely investigated because of their fast charging, long-life cycle, and high energy density characteristics. However, precise SOC assessment of lithium-ion batteries remains challenging because of their varying characteristics under different working environments. Machine learning techniques have been widely used to design an advanced SOC estimation method without the information of battery chemical reactions, battery models, internal properties, and additional filters. Here, the capacity of optimized machine learning techniques are presented toward enhanced SOC estimation in terms of learning capability, accuracy, generalization performance, and convergence speed. We validate the proposed method through lithium-ion battery experiments, EV drive cycles, temperature, noise, and aging effects. We show that the proposed method outperforms several state-of-the-art approaches in terms of accuracy, adaptability, and robustness under diverse operating conditions

    Seawater Battery-Based Wireless Marine Buoy System with Battery Degradation Prediction and Multiple Power Optimization Capabilities

    Get PDF
    This paper presents a wireless marine buoy system based on the seawater battery (SWB), providing self-powered operation, power-efficient management, and degradation prediction and fault detection. Since conventional open circuit voltage (OCV) methods cannot be applied due to inherent cell characteristics of SWB, the coulomb counting (CC) method is adopted for the state of charge (SOC) monitoring. For the state of health (SOH), a variance-based detection scheme is proposed to provide degradation prediction and fault detection of the SWB. The self-powered operation is augmented by two proposed power optimization schemes such as multiple power management and three-step LED light control. A wireless buoy system prototype is manufactured, and its functional feasibility is experimentally verified, where its location and SOC are periodically monitored in a smartphone-based wireless platform

    State of Charge Estimation for Electric Vehicle Battery Management Systems Using the Hybrid Recurrent Learning Approach with Explainable Artificial Intelligence

    Get PDF
    Enhancing the accuracy of the battery state of charge (SOC) estimation is essential in developing more effective, dependable, and convenient electric vehicles. In this paper, a hybrid CNN and gated recurrent unit-long short-term memory (CNN-GRU-LSTM) approach, which is a recurrent neural network (RNN) based model with an explainable artificial intelligence (EAI) was used for the battery SOC estimation, where the cell parameters were explicitly synchronized to the SOC. The complexed link between the monitoring signals related to current, voltage, and temperature, and the battery SOC, was established using the deep learning (DL) technique. A LG 18650HG2 li-ion battery dataset was used for training the model so that the battery was subjected to a dynamic process. Moreover, the data recorded at ambient temperatures of −10 °C, 0 °C, 10 °C, and 25 °C are fed into the method during training. The trained model was subsequently used to estimate the SOC instantaneously on the testing datasets. At first, the training process was carried out with all temperature data to estimate the SOC by the trained model at various ambient temperatures. The proposed approach was capable to encapsulate the relationships on time into the network weights and, as a result, it produced more stable, accurate, and reliable estimations of the SOC, compared to that by some other existing networks. The hybrid model achieved a mean absolute error (MAE) of 0.41% to 1.13% for the −10 °C to 25 °C operating temperatures. The EAI was also utilized to explain the battery SOC model making certain decisions and to find out the significant features responsible for the estimation process
    corecore