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Abstract: Enhancing the accuracy of the battery state of charge (SOC) estimation is essential in de-

veloping more effective, dependable, and convenient electric vehicles. In this paper, a hybrid CNN 

and gated recurrent unit-long short-term memory (CNN-GRU-LSTM) approach, which is a recur-

rent neural network (RNN) based model with an explainable artificial intelligence (EAI) was used 

for the battery SOC estimation, where the cell parameters were explicitly synchronized to the SOC. 

The complexed link between the monitoring signals related to current, voltage, and temperature, 

and the battery SOC, was established using the deep learning (DL) technique. A LG 18650HG2 li-

ion battery dataset was used for training the model so that the battery was subjected to a dynamic 

process. Moreover, the data recorded at ambient temperatures of −10 °C, 0 °C, 10 °C, and 25 °C are 

fed into the method during training. The trained model was subsequently used to estimate the SOC 

instantaneously on the testing datasets. At first, the training process was carried out with all tem-

perature data to estimate the SOC by the trained model at various ambient temperatures. The pro-

posed approach was capable to encapsulate the relationships on time into the network weights and, 

as a result, it produced more stable, accurate, and reliable estimations of the SOC, compared to that 

by some other existing networks. The hybrid model achieved a mean absolute error (MAE) of 0.41% 

to 1.13% for the −10 °C to 25 °C operating temperatures. The EAI was also utilized to explain the 

battery SOC model making certain decisions and to find out the significant features responsible for 

the estimation process. 

Keywords: state of charge (SOC); lithium-ion; battery management system (BMS); electric vehicle 

(EV); deep learning; explainable AI; gated recurrent unit 

 

1. Introduction 

In the realm of modern power technologies, energy storage systems or batteries are 

considered as a major component with a variety of applications traversing from small 

electrical devices to large scale applications e.g., electric vehicles (EVs) [1]. Due to the sig-

nificantly low to zero carbon emissions, low noise, great effectives, and the adaptability 

of EVs in grid administration and interconnection, they are a viable technology for estab-

lishing a sustainable transportation system in the longer term [2–5]. Due to the absence of 

fuel in EVs, the technical structure is much simpler, compared to a vehicle based on an 

internal combustion (IC) engine. Among the different types of battery technologies, lith-

ium-ion batteries are preferred in EVs for high power and energy density, greater 
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reliability, longer lifespan, minimal discharge rate, and improved effectiveness. Moreo-

ver, the cost and capacity of these batteries are being optimized gradually, which eventu-

ally increases their usage in the EV industry. As a primary element in all of the battery 

applications with multiple cells, a battery management system (BMS) is necessary to pro-

vide a reliable operation during its consumption, in the EVs. The BMS is capable of sens-

ing the voltage, current, and temperature of the battery cells to minimize overcharging 

and over discharging scenarios [6]. 

The most significant roles of the BMS include the SOC, State of Health (SoH), and the 

State of Power (SoP) for the assessment of the battery states [7], which enables the users 

to evaluate the battery pack’s remaining charge, predict the battery’s ageing level, and the 

amount of power the battery pack can offer at any given time. The SOC estimation is also 

vital to maintain appropriate functioning of the EV drive systems, as this metric straight-

forwardly measures a vehicle’s available mileage and is required for the battery balancing 

system. The SOC estimation is an undeniable objective as the battery cells endure irregular 

characteristics with repetitive acceleration and braking, in the EVs. As there exists no di-

rect and specific method to quantify the SOC, it is essential to estimate it precisely. Typi-

cally, open circuit voltage-based techniques and coulomb counting (CC), have been used 

to estimate the SOC, but these are widely acknowledged to have certain drawbacks [8]. 

The methods primarily use a chart or quadratic fitting to define the relationship between 

the SOC and the open-circuit voltage (OCV). Nevertheless, they necessitate the battery 

being at rest for more than two hours in order to obtain an accurate SOC value [9]. The 

hybrid approach has been proposed in the literature, to provide a holistic modeling ap-

proach for Li-ion batteries [5] where CC, the linear Kalman filter (LKF), and OCV-based 

methods were combined for accurately estimating the SOC and to ensure a safe battery 

operation within the acceptable SOC limits, prolonging its lifetime. Therefore, the SOC 

estimation tasks have largely been replaced by more advanced methods, for instance, ar-

tificial intelligence (AI) based methods. In the subsequent literature review, the focus has 

been given on the AI based SOC estimation methodologies. 

In recent years, a number of AI algorithms for the SOC estimation have been postu-

lated. These strategies have shown the potential to outperform the traditional methods. 

The methods utilize a unique learning capability of the AI model for training, which is 

able to correlate the interrelationships and patterns among the cell assessment parameters 

(i.e., voltage, current, resistance, and temperature) and the SOC, with the help of a massive 

quantity of data. The AI model is then applicable to an unknown data set to estimate the 

SOC. Feedforward neural network (FNN) models for predicting the SOC, were presented 

by Darbar and Bhattacharya [10], using voltage, current, and temperature measurements 

as the input variables. Once confronted with a variety of driving conditions at varying 

temperatures throughout training and testing, the proposed scheme was adequate in es-

timating the SOC. However, the real-time data layout arrangement for machine learning 

(ML) was still considered a work in progress. Vidal et al. [11] proposed an enhanced back 

propagation neural network (BPNN) that used evaluated voltage, current, and tempera-

ture as the input features to estimate the precise SOC. The BPNN algorithm, however, had 

a slow computation time and was extremely receptive to the preliminary weight [12], alt-

hough it could show gradient dissemination or dropping into a local minimum dilemma. 

To overcome this issue, other authors utilized an artificial fish swarm technique to deter-

mine several optimal BP neural network parameters [13]. Notwithstanding, in the partic-

ular instance of a huge quantity of data, this swarm intelligence optimization algorithm 

significantly increased the computational cost. 

Numerous different AI approaches did not take into account the battery voltage 

modeling, but the SOC was rather explicitly represented as a component of the sampled 

signals. For the SOC estimation, the assorted recurrent neural networks (RNNs) were used 

with reasonable precision. To estimate the SOC, Chemali et al. [14] proposed the exploi-

tation of a long short-term memory (LSTM) network. The voltage, current, and tempera-

ture measurements were supplied actively into an extensive infrastructure, which could 
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discover the delineation between both the input series data and the goal SOC. It predicts 

the SOC appropriately and learns the hyperparameters on its own. Bian et al. [15] em-

ployed a bi-directional LSTM (Bi-LSTM) which presented a shortcoming that, when de-

coding started without sufficient input sequence data, the decoding efficiency suffered 

significantly [16]. Considering the recorded current, voltage, and temperature infor-

mation, another research work [17] employed the gated recurrent unit recurrent neural 

network (GRU-RNN) to estimate the battery SOC. Yang et al. [18] employed the velocity 

derivative to adjust the network’s weights, in order to increase the GRU network model’s 

predictive performance. However, the practical EV operating characteristics for the bat-

teries might vary from these dynamically balanced trajectories, since they could be 

changed for various places, users, and time frames. A network based on certain common 

features might not be adequate to reliably estimate the SOC underneath a variety of real-

world EV contexts. In the domain of AI, it could lead to algorithmic breakdowns. Moreo-

ver, these methods did not offer the aspects on the mapping of input and output. There-

fore, it is necessary to find out the feature which is responsible for the output result of the 

AI model. 

In this research, a hybrid CNN-GRU-LSTM (convolutional neural network-gated re-

current unit-long short-term memory network) model with an explainable AI, has been 

proposed, that can reliably and more accurately estimate the SOC while self-learning the 

network parameters, in order to contribute to the effective battery management for the 

EVs. The novel hybrid lightweight model was employed to minimize the SOC estimation 

error with a shorter processing time and a smaller memory use, due to a smaller number 

of parameters. The explainable AI would help to identify the most important feature from 

all of the input features for an accurate SOC estimation when the SOC data at different 

temperatures were used together and separately. The hybrid model was compared with 

four other models, such as the LSTM, CNN-LSTM, CNN-bi-directional LSTM, and GRU, 

to identify the best performing model. Furthermore, the performance of the hybrid model 

was compared with the state-of-the-art (SOTA) models to contribute to a better health 

management of the EV batteries. 

The rest of the paper is organized as follows. Section 2 provides the materials and 

methods used in this paper to develop the model, while Section 3 discusses the models’ 

architecture. Section 4 presents the full experimental results and analysis. Finally, Section 

5 draws conclusions, based on the findings. 

2. Materials and Methods 

2.1. Description of the Dataset 

Data related to A LG 18650HG2 Li-ion battery [19] using a 3 Ah LG HG2 cell was 

used to train the RNN models. The Li-ion battery was tested in a 0.23 m3 thermal chamber 

and a 75 amp and 5 volt Digitron firing circuit was used as the battery tester. The test was 

conducted at six different ambient temperatures, ranging from −20 °C to 40 °C. A random 

combination of UDDS, HWFET, LA92, and US06, was used in a sequence of eight drive 

cycles (mix 1–8). In a compact electric car, the driving cycle power profile was computed 

for a single LG HG2 cell. Following each test, the battery was charged at a rate of 1C to 4.2 

V with a 50 mA cutoff and a battery temperature of 22 °C or higher. The details of the test 

bench and the data logging system are given in [14]. 

The data of the four ambient temperatures (−10 °C, 0 °C,10 °C, and 25 °C) were chosen 

for this work. Four parameters, including voltage, current, temperature, and ampere-hour 

(Ah), were selected from the dataset to train the RNN models. The dataset was sampled 

to 1 Hz and the SOC was calculated by dividing the Ah data by the capacity of the battery 

cell. Then, two parameters were added to the dataset which were the average voltage and 

the average current determined by the moving window method. The sample data is 

shown in Figure 1. 
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(a) 

 
(b) 

Figure 1. Sample data plot for the measured parameters of the terminal voltage, current, tempera-

ture, and battery capacity (Ah) while (a) discharging and (b) charging the battery at −10 °C. 

2.2. Overall Design of the Study 

The main objective of this work is to propose an optimized deep learning (DL) ap-

proach to estimate the SOC and explain the model with the explainable AI. The initial task 

was to collect and preprocess the data for the model training. Then five DL model archi-

tectures, based on CNN and RNN, were built to estimate the SOC of the EV battery in an 

optimum way. Then, these five models were trained with the training data and verified 

with the test data. A comparison was made among the models and an optimum model 

was selected. The optimum model performs better than the other four models, but does 
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not state that it can be used in a BMS as a battery model. Therefore, the optimum model 

was also compared with the existing state-of-the-art models, and finally explained with 

an explainable AI and the feature importance was calculated using the SHAP library in 

Python. An overview of the workflow is shown in Figure 2. 

 

Figure 2. Overall design of the study for the SOC estimation of the EV battery. 

2.3. Methodologies Used for the SOC Estimation 

The RNN is one kind of artificial neural network (ANN) that is used in the analysis 

of sequential data. Nowadays, the RNN is used in the field of natural language processing 

(NLP), time series forecasting, voice recognition, and so on [20]. Since the SOC of a lith-

ium-ion battery is estimated through the analysis of sequential data, the RNN can also be 

applicable here. Two types of RNN algorithms were used here: the long short-term 

memory (LSTM) and the gated recurrent unit (GRU). One dimensional convolution was 

also used for the feature extraction purpose from the data. 

2.3.1. Long Short-Term Memory (LSTM) 

The LSTM is specifically developed to prevent the problem of long-term dependency 

[20]. It is its default behavior to remember information for long periods of time. In Figure 

3, ck is denoted as the cell memory where k is denoted as time. The LSTM has three gates: 

forget, input, and output. The forget gate decides which information has to be erased from 

the cell memory and is defined by Equation (1) [14]. 

Fk = σ (wf·[hk−1,xk] + bf) (1) 

where, the sigmoid function, which is denoted by σ, is used and this provides the values 

of either 0 or 1. Mainly this sigmoid function decides whether the information in ck−1 has 

to be erased or not. Here, wf, hk−1, xk, and bf, are weight metrics, previous layer hidden state 

vector, input vector, and the bias of the network, respectively. 
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Figure 3. The internal architecture of a LSTM unit containing all of the parameters and gates. 

The input gate keeps the new information in the unit memory ck. The input gate is 

described by Equations (2) and (3). 

ik = σ (wk ·[hk−1,xk] + bk) (2) 

c˜k = tanh(wc ·[hk−1,xk] + bc) (3) 

where the “input gate layer” ik, which is built with a sigmoid layer, chooses which values 

have to be updated first. Following that, a tanh layer generates the c˜k vector of the new 

candidate values that could be added to the state. Now, the outputs of Equations (1)–(3) 

are combined to update the unit memory ck, defined by Equation (4). 

ck = fk ∗ ck−1 + ik ∗ c˜k (4) 

where, ck is the unit memory. Now, the principle of the output gates will be discussed. The 

output has to be provided, based on the cell unit memory ck. First, a sigmoid function is 

used to perform the task related to which part of the unit memory will be used, as the 

output (Equation (5)). 

Ok = σ (wo [hk−1,xk] + bo) (5) 

where bo is the bias. Now, the cell unit memory ck is passed into a tanh function to make 

the values from −1 to 1. Then, it is multiplied by the output of the Equation (4) to obtain 

the output hk (Equation (6)). 

hk = Ok ∗ tanh(ck) (6) 

where hk is the output. The main problem of the past RNN, was that previous inputs faded 

away with time. However, in the LSTM, the cell memory is controlled by the input and 

the forget gates. Thus, a long-term dependency problem is solved [21]. 

2.3.2. Gated Recurrent Unit (GRU) 

Although the accuracy of the LSTM with three gates is very good, it is a complex 

model. Therefore, an updated version of the LSTM has emerged, and this is called the 

gated recurrent unit (GRU), which has an update gate and a reset gate. The reset gate 

controls how to integrate a new input with prior inputs in its memory, while the update 

gate specifies how much of the previous memory should be retained. The long-term de-

pendencies can be explicitly modeled using this gating method. The network learns how 
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its memory should function by learning the settings for its gates. Figure 4 explains the 

whole process in the GRU. 

 

Figure 4. The internal architecture of a GRU containing all of the parameters and gates. 

The reset gate is denoted by ‘r’ and the update gate is denoted by ‘z’. Equations (7)–

(10) represent the whole GRU process [22]. The GRU reduces the complexity of the LSTM 

and works very well with small datasets. 

zk = σ (wz·[hk−1,xk]) (7) 

rk = σ (wr·[hk−1,xk]) (8) 

h͂k = tanh(w [rk ∗ hk−1,xk]) (9) 

hk = (1 − zk) ∗ hk−1 + zk ∗ h͂k (10) 

where rk is the reset gate and zk is the update gate. 

2.3.3. CNN for the Feature Extraction 

A one-dimensional (1D) convolutional layer was used in this work. In a normal two-

dimensional (2D) CNN, the kernels or filters stretch across both the spatial dimensions of 

an image, from left to right and from top to bottom. Moreover, the kernels in 1D-CNN 

layers only stretch in one dimension, which in this case is the temporal dimension. As a 

result, they can extract temporally relevant information [23]. The causal padding was used 

before running the filter. This is a unique sort of padding that mostly uses one-dimen-

sional convolutional layers, that are particularly useful in time series analysis. As the time 

series provides the sequential data, it aids in the addition of zeros at the beginning and 

the prediction of the early time step values. 

2.3.4. Explainable AI Tool 

The explainable AI is a new feature of ML and DL that can explain a ML or DL model. 

In the process of ML or DL, at first, a model is trained with some input features and the 

outputs. Following the training of the model, if the input features are provided, the model 

provides an output result. However, the individual impact of the input features on the 

output is unknown. For example, in this SOC estimation model, if five inputs (voltage, 

current, temperature, average voltage, and average current) are provided, the model 
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provides the SOC of the battery, but the model cannot determine the importance of each 

input feature, which can be explained by the explainable AI. 

The Shapley Additive exPlanations (SHAP) is a library using Python, which is used 

to calculate the feature importance of a model. At first, SHAP takes a trained model, and 

with a sample dataset provided to SHAP, it makes predictions using the obtained dataset 

by shuffling the values in a single column. It calculates how much the loss function suf-

fered from shuffling, using these forecasts and the true target values [24]. The importance 

of the variable just shuffled, is measured by the performance degradation. Then, it restores 

the data to its previous state (undoing the shuffle from step 2). Then, it repeats the step 

with the next column in the dataset, until it has computed the importance of all of the 

columns. 

Lundberg and Lee’s recent work [25] on ML algorithms has created new ways to 

comprehend the model outputs. Based on the average of the geometrical contribution 

across all potential permutations of the features, the Shapley value is determined. The 

following mathematical expression is used for calculating the traditional SHAP value. 

∅𝑗 = ∑  

𝑇⊆𝑁{𝑗}

|𝑇|! (𝑛 − |𝑇| − 1)!

𝑛!
[𝑓(𝑇 ∪ {𝑗}) − 𝑓(𝑇)] (11) 

where Φj stands for the contribution of feature j and N represents all features set. Then, n 

denotes the number of the features in set N, T is the subset of N that contains feature j and 

without knowing the feature values, the base value, or f(N), is the expected result for each 

feature in N. The SHAP value of each feature for a given observation, is added up to esti-

mate the model result for that observation. As a result, the explanation model is defined 

by Equation (12). 

𝑔(𝑧′) = ∅0 + ∑  

𝑀

𝑗=1

∅𝑗𝑧𝑗
′ (12) 

where M is the features number and z′ is the input [26]. 

3. Architecture of the Employed Learning Networks 

A total of five RNN models were employed for the SOC estimation. The models were 

built using TensorFlow, which is an open-source library that uses Python, and that is 

widely used in the field of ML and DL. These models were built, based on five types of 

layers, namely, a one-dimensional convolution layer, a LSTM layer, a bi-directional LSTM 

layer, a GRU layer, and a dense layer. Google Collab was used as the programming envi-

ronment. The voltage, current, battery temperature, average voltage, and the average cur-

rent were used as the input features and the SOC in % was used as the output. Adam was 

used as the optimizer, with the benefit of fixing the learning rate of the model itself [27]. 

An algorithm, regarding the whole process is given in Algorithm 1. 

Algorithm 1: The model building and training method for the SOC estimation 

Inputs 

• Voltage, Current, Temperature, Average Voltage, Average Current 

• Input Shape = (5,1); Which corresponds (Number of Features, Window Size) 

• Here, Number of Features = 5, Window Size = 1 

Output • Five trained models and their performance parameters 

Model 

Building 

• Building a model with just LSTM and dense layers 

• Building a model with the addition of a one-dimensional convolution layer before the LSTM layers 

• Building a model transforming the uni-directional LSTM layers into bi-directional. 

• Building a model with just the GRU and dense layers 

• Building a hybrid model with a one-dimensional convolution, and GRU and LSTM layers 

Model 

Compiling 

• Defining the loss function as Mean Absolute Error (MAE) 

• Defining the optimizer as “Adam”. 
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Training 

and Testing 

Models 

• Training the five models with training data and calculating the training errors. 

• Testing the five models with test data and calculating the test error. (Errors are Mean Absolute Er-

ror, Root Mean Squared Error, and Maximum Error) 

3.1. Learning Network 1: LSTM 

Recurrent neural networks with a unique ability to disingenuously recognize se-

quences over extended periods of time, are known as long short-term memory (LSTM) 

networks. It is the best option for modeling sequential data and is therefore used to un-

derstand the intricate complexities of sentient behavior. The term “cell state” refers to the 

long-term memory. The preceding data is kept in the cells because of their recursive na-

ture. Three LSTM layers with each layer consisting of 512 units, were added to the model. 

Then, a flatten layer was used to make the data three-dimensional to one-dimensional, 

followed by four dense layers, which have 1024, 1024, 512, and 128 units, respectively with 

the activation function “ReLU”. Finally, one dense layer of one unit was incorporated as 

the output layer. The architecture of the LSTM model is presented in Figure 5. 

 

Figure 5. Architecture of the LSTM model. 

3.2. Learning Network 2: CNN-LSTM 

The convolutional neural network (CNN) layers for the extraction of features on the 

input data are merged with the LSTMs, to endorse the sequential prediction in the CNN 

LSTM architecture. The CNN-LSTMs were created for concerns involving the prognostics 

of the visual time series, as well as the implementation of producing explanations from 

the visual patterns. The model architecture of the CNN-LSTM was almost same as the 

LSTM model with the key difference of a one-dimensional convolution layer, before the 

LSTM layers, which was added for the feature extraction purposes (Figure 6). It extracts 

the main features of the data before entering it into the LSTM layers. A total of 128 filters 

were used for the convolution process. 
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Figure 6. Architecture of the CNN-LSTM model. 

3.3. Learning Network 3: CNN-Bi-Directional LSTM 

A bi-directional LSTM, also known as a Bi-LSTM, is a sequential computational 

framework, that consists of two LSTMs, one of which receives the input in forward time 

order, and the other receives the input in backward time order. The CNN-bi-directional 

LSTM architecture is almost the same as the CNN-LSTM model, except for the bi-direc-

tional LSTM layers, instead of the uni-directional LSTM layers, as shown in Figure 7. The 

rest of the architecture is the same. The input runs in two directions in a bi-directional 

LSTM. The input flows in one way, either backward or forwards, with the conventional 

LSTM. However, with the bi-directional LSTM, the information flows in both directions, 

preserving both the future and the past. When jobs requiring sequence to sequence are 

essential, the Bi-LSTM is typically used. 

 

Figure 7. Architecture of the CNN bi-directional-LSTM model. 

3.4. Learning Network 4: GRU 

A gated recurrent unit (GRU) is a component of a particular type of recurrent neural 

network, that is designed to use the interconnection made through a series of nodes, to 

carry out machine learning activities involving memory and grouping, such as speech 

recognition. The main distinction between the GRU and LSTM, is that while the LSTM 

has three gates—input, output, and forget—the GRU only has two gates, update and reset. 

The GRU has fewer gates than the LSTM, making it less complicated. In the GRU model, 

three layers with each layer consisting of 64 units, were added in place of the LSTM layers, 

followed by a flatten layer and three dense layers with 1024, 1024, and 512 units with the 

activation function ”ReLU”. Then, one dense layer with one unit was used as the output 

layer. The complexity of the GRU model is much less than that of the LSTM based models. 

The architecture of the GRU model is shown in Figure 8. 

 

Figure 8. Architecture of the GRU model. 
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3.5. Learning Network 5: Hybrid CNN-GRU-LSTM 

First, an explanation is needed why a CNN-GRU-LSTM hybrid model should be 

built. Although the LSTM is capable to solve the long-term dependency problems of the 

RNN and shows accurate results on large datasets, it needs more parameters and memory, 

in order to be executed, in contrast to the GRU. Hence, a combination of the LSTM and 

the GRU layers can provide the solution to the long-term dependency problem, but at the 

same time be less complex and less time-consuming. 

At first, a one-dimensional convolution layer containing 128 filters was added for the 

feature extraction purpose, followed by a GRU layer of 64 units. Next, a LSTM layer of 64 

units and a flatten layer were incorporated sequentially. Then, two dense layers, which 

have 1024 and 512 units, were added with the activation function “ReLU”. Finally, one 

dense layer of one unit was used as the output layer. The architecture of the CNN-GRU-

LSTM hybrid model is shown in Figure 9. 

 

Figure 9. Architecture of the hybrid CNN-GRU-LSTM model. 

3.6. Summary of the Learning Networks 

The structural comparative analysis of the different learning network models is 

shown in Table 1. According to the number of parameters and layers, the hybrid CNN-

GRU-LSTM is the most lightweight model and the CNN-Bi-LSTM is the heaviest. 

Table 1. Summary of the model characteristics. 

Models 
No. of  

Parameters 

Model Depth (No. 

of Layers) 

No. of CNN 

Layers 
No. of RNN Layers 

No. of Dense (Hid-

den) Layers 

LSTM 9,513,729 7 0 3 4 

CNN-LSTM 9,774,849 8 1 3 4 

CNN Bi-LSTM 22,101,761 8 1 3 (Bi-directional) 4 

GRU 1,729,217 6 0 3 3 

CNN-GRU-LSTM 925,313 5 1 2 2 

4. Quantitative Analysis and Validation of the Learning Networks 

4.1. Performance Valuation Metrices 

The mean absolute error (MAE), defined by Equation (13), was used as the loss func-

tion for training the model. 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑆𝑜𝐶(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)𝑘 − 𝑆𝑜𝐶(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)𝑘|

𝑁

𝑛=1

 (13) 
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where N is the length of the data. Following the training, the models were tested with the 

test data. The root mean squared error (RMSE) defined by Equation (14) and the maxi-

mum error defined by Equation (15) were chosen as the test criteria of the models, as well 

as the MAE. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑆𝑜𝐶(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)𝑘 − 𝑆𝑜𝐶(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)𝑘)2

𝑁

𝑛=1

 (14) 

𝑀𝑎𝑥 𝐸𝑟𝑟𝑜𝑟 =  𝑀𝐴𝑋(|𝑆𝑜𝐶(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)–  𝑆𝑜𝐶(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)|) (15) 

4.2. Training with the Data of the Four Ambient Temperatures Altogether 

In this experimental analysis, the data of all four ambient temperatures (10 °C, 0 °C, 

10 °C, and 25 °C) were used collectively to train the five models with 669,956 training data. 

4.2.1. Training and Test Results of the LSTM Network 

Following 15 epochs, the training mean absolute error (MAE) of the LSTM model 

was 0.93%. It took 55 min and 34 s for the whole training process with a total of 9,513,729 

trainable parameters in the LSTM network. Following the training, the model was tested 

with the test data of the four ambient temperatures, separately, and the results are given 

in Table 2. The average MAE and RMSE of the LSTM model, based on the four ambient 

temperature data, were found as 0.81% and 1.17%, respectively. The remarkable point of 

the results was that no convolution layer was used for the feature extraction. Since the 

MAE was used as a loss function, the main goal of the training process was to reduce the 

MAE. The model performed best at 0 °C temperature where the MAE was only 0.64%, 

compared to the highest MAE of 0.9% at 10 °C. 

Table 2. Test results of the LSTM model. 

Temperature 

(°C) 

Number of 

Test Data 

Required Time 

(s) 
MAE (%) RMSE (%) Max Error (%) 

−10 39,293 4.03 0.79 1.11 4.17 

0 42,530 4.12 0.64 0.89 4.65 

10 44,284 4.26 0.90 1.56 8.43 

25 47,517 5.14 0.87 1.10 4.50 

Average 0.80 1.17 5.44 

The plot of the measured and predicted SOC values of the LSTM model with the test 

data of −10 °C, is given in Figure 10a. Instead of plotting the data for all temperatures, the 

results of −10 °C is plotted as determining the SOC at lower ambient temperatures, is more 

critical than in higher temperatures [14,28]. From the graph, it was found that the model 

worked better with very small errors while charging, but generated more errors during 

the discharging process. Because of the experimental process, it is known that the battery 

was charged at a constant voltage process of 4.2 V. At the beginning of the charging pro-

cess when the battery is empty, the current flow is normally higher. The current flow is 

subsequently decreased with the passage of charging time because the battery becomes 

gradually full of charge. Therefore, the charging process is quite simple, whereas dis-

charging is not, as the battery is not discharged with a constant load, rather with the power 

profile of different drive cycles. When the battery is used in an electric vehicle, the load 

can be changed at almost every moment. Another remarkable phenomenon that happens 

during the discharging process is the regenerative braking, which is normally a charging 

process, where the loss of kinetic energy does not happen while braking, rather the energy 

is again stored in the battery. Therefore, the process of discharging is more complex 
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making it very challenging to predict the accurate SOC while discharging, compared to 

the prediction of the SOC during the charging. This can be demonstrated by very smooth 

lines of the SOC during the charging process, compared to the noisy lines during the dis-

charging process (Figure 10a). The plot of the absolute errors of the LSTM model on test 

data of −10 °C is shown in Figure 10b. The maximum error of the test data at −10 °C 

(4.17%), presented in Table 2, was also evidenced in Figure 10b. The error can be both 

positive and negative. As the optimization of the model was built, based on the mean 

absolute error, the absolute error is plotted for better understanding. 

 
(a) 

 
(b) 

Figure 10. Performance of the LSTM model at −10 °C (a) measured and predicted SOC values and 

(b) absolute errors from the test data. 

4.2.2. Training and Test Results of the CNN-LSTM Network 

The CNN-LSTM network contained 9,774,849 trainable parameters and after 15 

epochs, the training mean absolute error (MAE) was recorded as 0.91%, with 1 h 57 min 

and 24 s required for the whole training process. Adding a convolution layer with 128 

filters, increased the training time by almost 1 h, reduced by 0.02% the training error, and 

increased a total of 261,120 trainable parameters. Following the training, the model was 

tested with the test data of the four ambient temperatures, separately, and the test results 

are shown in Table 3.  
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Table 3. Test results of the CNN-LSTM model. 

Temperature (°C) 
Number of Test 

Data 
Required Time (s) MAE (%) 

RMSE 

(%) 

Max Error 

(%) 

−10 39,293 10.12 0.82 1.23 9.30 

0 42,530 11.04 0.70 1.12 9.28 

10 44,284 12.10 0.89 1.65 8.37 

25 47,517 13.40 0.49 1.00 11.50 

Average 0.73 1.25 9.61 

It was observed that the CNN-LSTM model showed a superior performance at 25 °C 

and a relatively poor performance at 10 °C. The average MAE and RMSE of the CNN-

LSTM model, based on the four ambient temperature data, were 0.73% and 1.25%, respec-

tively. Therefore, from the test result, it was clear that adding a convolution layer reduced 

the total mean absolute error, but the maximum error was increased. The testing time 

increased significantly, compared to the LSTM model because of the convolution layer, 

which extracted the feature from the data, and it is normally a time-consuming process. 

The plot of measured values and predicted values of the CNN-LSTM model on the test 

data at −10 °C is presented in Figure 11a. The graph was also almost identical to the LSTM 

model performance graph with a better performance for the charging time SOC estima-

tion, compared to that during the discharging. The absolute errors of the CNN-LSTM 

model on the test data at −10 °C is plotted in Figure 11b with a maximum error of 9.3%, 

which was higher than that of the LSTM model. It should be noted that only at a fewer 

points, were the error was so high. However, the overall test MAE of all of the temperature 

data of the CNN-LSTM model decreased to 0.73%, compared to 0.81% in the LSTM model. 

Therefore, though adding a convolution layer made the model more complex, the overall 

performance of the CNN-LSTM improved. 

 
(a) 
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(b) 

Figure 11. Performance of the CNN-LSTM model at −10 °C (a) measured and predicted SOC values 

and (b) absolute errors from the test data. 

4.2.3. Training and Test Results of the CNN Bi-Directional-LSTM Network 

During the CNN bi-directional-LSTM (CNN Bi-LSTM) model training, the MAE was 

found to be 0.87%, after running 15 epochs which took almost 3 h 55 min 32 s, which were 

about four and two times higher than the LSTM and CNN-LSTM models, respectively. 

The total number of 22,101,761 trainable parameters in the CNN Bi-LSTM model was 

more than double the previous two models. Adding the number of parameters means 

adding more complexity. Though the MAE was reduced by almost 0.04%, than that of the 

CNN-LSTM model, it required a huge amount of time for training. Therefore, this CNN 

Bi-LSTM model can be used where time and memory complexities are of minor im-

portance, compared to the error. Following the training, the model was tested with the 

test data of the four ambient temperatures (Table 4). 

Table 4. Test results of the CNN bi-directional-LSTM model. 

Temperature 

(°C) 

Number of 

Test Data 

Required Time 

(s) 
MAE (%) RMSE (%) 

Max Error 

(%) 

−10 39,293 20.52 0.64 1.05 5.23 

0 42,530 20.52 0.67 0.97 5.78 

10 44,284 20.29 0.89 1.62 8.00 

25 47,517 21.75 0.55 1.07 9.11 

Average 0.69 1.18 7.03 

The average MAE and RMSE of the CNN Bi-LSTM model, based on the four ambient 

temperature data, were recorded as 0.69% and 1.18%, respectively, which were either sim-

ilar to or better than the previous two models. Though it required more time to calculate 

the SOC, the error was on a satisfactory level. The testing time was almost double that of 

the CNN-LSTM model and four times greater than that of the LSTM model, possibly due 

to the bi-directional layers. In the normal uni-directional LSTM, the data passes in only 

the forward direction, whereas the data passes in both the forward and backward direc-

tions in the bi-directional layers. It was also observed that, similar to the CNN-LSTM 

model, the CNN Bi-LSTM model performed best at 25 °C and worst at 10 °C. 

The plot of the measured values and predicted values of the CNN Bi-LSTM model, 

based on the test data at −10 °C during the charging and discharging, showed a similar 

trend to that of the previous models (Figure 12a). From Figure 12b and Table 4, a 
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maximum error value of 5.23% was found for the CNN Bi-LSTM model on the test data 

at −10 °C, which was in between the previous two models. The overall lower MAE of the 

CNN Bi-LSTM model indicated a sign of a better performance than the previous two mod-

els. 

 
(a) 

 
(b) 

Figure 12. Performance of the CNN bi-directional-LSTM model at −10 °C (a) measured and pre-

dicted SOC values and (b) absolute errors from the test data. 

4.2.4. Training and Test Results of the GRU Network 

For the GRU model, after 15 epochs, a MAE of 0.88% was found, which took almost 

1 h 29 min and 45 s for the training, with a total of 1,729,217 trainable parameters. The 

GRU is a more lightweight model than the LSTM, with a smaller number of parameters 

than the three previous LSTM-based models. Based on the similarity, the GRU model ar-

chitecture was similar to the LSTM model. The main difference identified was that the 

three layers of the LSTM model had 512 units, compared to the 64 units in the GRU model, 

indicating that it is less complex than the LSTM model. The CNN Bi-LSTM showed a very 

good performance in predicting the SOC but with the shortcomings of the complex model, 

a longer calculation time, a high number of parameters, and a larger memory space. There-

fore, the optimization can be carried out using the GRU model instead of the LSTM 
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models, as it achieved almost the same training error as the CNN Bi-LSTM model. The 

test results of the GRU model are presented in Table 5. 

Table 5. Test results of the GRU model. 

Temperature 

(°C) 

Number of Test 

Data 
Required Time (s) MAE (%) 

RMSE 

(%) 

Max Error 

(%) 

−10 39,293 5.15 1.17 1.58 8.34 

0 42,530 5.13 0.76 1.05 7.13 

10 44,284 5.11 1.19 2.00 10.36 

25 47,517 5.71 0.94 1.48 10.12 

Average 1.02 1.53 8.99 

The average MAE and RMSE of the GRU model, based on the four ambient temper-

ature data, were found as 1.02% and 1.53%, respectively. Though a smaller training error 

was found in the GRU model, the test results were poorer than the LSTM models. Some 

sort of over fitting was observed in the test results of the GRU model, but the testing time 

was smaller due to it being a lightweight model. 

From Table 5, the GRU model performed well at 0 °C and the highest errors were 

found at 10 °C. The absolute error results on the test data at −10 °C can be observed in 

Figure 13a. Overall, the GRU model could not predict the SOC as correctly as the LSTM 

based models, but the complexity and testing times of the model were reduced with a 

reduction of the trainable parameters. When the GRU model was compared to a similar 

type, such as the LSTM model, which showed a 0.2% less MAE than the GRU model be-

cause the LSTM model performed better with large datasets. The absolute error graph of 

the GRU model on the test data at −10 °C (Figure 13b) showed that the max error of 8.34% 

was present only at one point, while at other points, all absolute error values were below 

6%. 

 
(a) 
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(b) 

Figure 13. Performance of the GRU model at −10 °C (a) measured and predicted SOC values and (b) 

absolute errors from the test data. 

4.2.5. Training and Test Results of the Hybrid CNN-GRU-LSTM Network 

In order to take advantage of the best functional features of the individual models, a 

hybrid CNN-GRU-LSTM network was proposed. For reaching the optimized point, the 

GRU layer reduced the complexity and the LSTM layer made the necessary steps to obtain 

a better result in the large dataset. Moreover, the CNN layer carried out the feature ex-

traction task very well. 

Upon the completion of 15 epoch runs, a MAE of 0.82% was achieved with the total 

trainable parameters of 925,313 in the hybrid CNN-GRU-LSTM network. It was very light-

weight, compared to the other four models, due to the one GRU layer and the one LSTM 

layer, while the other models have three LSTM or GRU layers. Other LSTM-based models 

had 512 units in every layer, in contrast to the 64 units in the hybrid model. Though it had 

a smaller number of parameters, it showed a better training performance than the other 

four models, with least amount of training time (53 min and 22 s). The MAE and the train-

ing time were both improved in this hybrid model. The test results for the hybrid model 

are given in Table 6. 

Table 6. Test Results of the hybrid CNN-GRU-LSTM model. 

Temperature 

(°C) 

Number of 

Test Data 
Required Time (s) MAE (%) RMSE (%) 

Max Error 

(%) 

−10 39,293 5.15 0.86 1.30 5.70 

0 42,530 5.16 0.61 1.00 4.80 

10 44,284 4.31 0.90 1.62 11.50 

25 47,517 5.01 0.63 1.00 9.80 

Average 0.75 1.23 7.95 

The average MAE and RMSE of the hybrid CNN-GRU-LSTM model, based on the 

four ambient temperature data, were recorded as 0.75% and 1.23%, respectively, which 

were similar to the LSTM based models but better than the GRU model with a smaller 

number of layers and units. The test results and the absolute errors of the hybrid CNN-

GRU-LSTM model on the test data of −10 °C can be observed in Figure 14a and Figure 

14b, respectively. The model performed best at 25 °C and worst at 10 °C. 
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(a) 

 
(b) 

Figure 14. Performance of the hybrid CNN-GRU-LSTM model at −10 °C (a) measured and predicted 

SOC values and (b) absolute errors from the test data. 

4.2.6. Comparative Analysis among the Five Models 

It is highly important to choose an optimized model for the SOC of a lithium-ion 

battery management system, which will be governed by model error, prediction time, and 

number of trainable parameters. A higher error obviously reduces the prediction accu-

racy, which is undesirable. As well, as the SOC is used in the battery energy management 

of an electric vehicle, a longer prediction time to calculate the SOC would slow down the 

BMS response. Furthermore, a higher number of trainable parameters would increase the 

size of the model and hence the memory requirement. 

All of the five models tested in this work, performed quite well, hence it is challeng-

ing to select the best model, as almost every model performed better than the others with 

the test data obtained at any particular temperature. A comparison was made with the 

overall error, prediction time, and number of trainable parameters, and presented in Fig-

ures 15 and 16. 
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Figure 15. MAE and the RMSE of the five RNN models. 

It was clear from the graphs that the CNN Bi-LSTM determined the SOC most cor-

rectly, but its prediction time and number of trainable parameters were the highest among 

the tested models. However, the hybrid CNN-GRU-LSTM showed almost the same errors 

as the CNN-LSTM model, but its prediction time and number of trainable parameters 

were either equal to or smaller than the other models. Therefore, the hybrid model could 

be considered as the optimum one among the five models tested. 

 

Figure 16. Comparison of the models with respect to the processing time and trainable parame-

ters. 
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4.3. Training with the Data of the Four Ambient Temperatures Separately 

It is also important to train the optimum hybrid model with separate temperature 

data, to determine its performance. Following the training with the separate temperature 

data, the training MEAs were found as 0.42%, 0.46%, 0.38%, and 0.35%, for −10 °C, 0 °C,10 

°C, and 25 °C, respectively, where the 0.82% training MAE was found while training with 

all of the temperature data altogether. Therefore, it can be concluded that if the models 

are developed with the data obtained at the different ambient temperatures separately, 

the error can be reduced.  

Following the training, the model was tested with the test data and the results are 

shown in Table 7 and Figure 17. The best performance was obtained for the model devel-

oped with the data at 25 °C. The higher error at 0 °C could be due to an increase in the 

battery’s internal resistance [14]. 

Table 7. The test result when the CNN-GRU-LSTM model is trained using separate temperature 

data. 

Temperature (°C) MAE (%) RMSE (%) Max Error (%) 

−10 0.64 0.97 6.25 

0 1.30 1.50 5.80 

10 0.65 1.10 7.60 

25 0.41 0.61 4.20 

 

Figure 17. MAE and the RMSE of the CNN-GRU-LSTM model in the four different temperatures. 

4.4. Comparative Analysis with the State-of-the-Art (SOTA) Models 

The hybrid CNN-GRU-LSTM model was also compared with other SOTA models, 

reported in the literature, using the performance parameters including the MAE and 

RMSE (Table 8). Chemali et al. [14] proposed a LSTM-RNN model that could predict the 

SOC. However, this LSTM-RNN network had 1000 units in the hidden layer. They found 

their best result while training their model with the fixed temperature data at 25 °C which 

was 0.68% of the MAE. Chemali et al. [28] proposed a deep neural network (DNN) ap-

proach and obtained their best result of a 0.61% MAE at 0 °C. A Panasonic 2.9 Ah 

NCR18650PF battery was used in these two proposals. Du et al. in [29] proposed an ex-

treme learning machine battery model, which can estimate the SOC under a maximum 

error of 1.5%, when the test was performed with a Samsung 2.6 Ah battery. Meng et al. 

[30] proposed an adaptive unscented Kalman filter with a support vector machine to cal-

culate the SOC using a Kokam 70 Ah battery, and achieved the SOC under a 2% MAE. 
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Maheshwari et al. [31] proposed the sunflower optimization algorithm extender Kalman 

filter method and determined the SOC from 0.82% to 1.37%of the MAE on a LG 18650HG2 

3 Ah dataset. 

The hybrid CNN-GRU-LSTM model proposed in this work achieved only a 0.41% 

MAE at a 25 °C ambient temperature, in contrast to the lowest error of a 0.61% MAE at 25 

°C, found in the previous works. At −10 °C and 10 °C ambient temperatures, 0.64%, and 

0.65% MAE errors were found, respectively. At 0 °C temperature, a 0.61% MAE was found 

when the model was trained with the four temperature data altogether. Therefore, with 

the 25 °C temperature data, the model performed best, which reduced by almost 0.2% the 

MAE from the previous work. At −10 °C, 0 °C, and 10 °C, the performance was also better 

than the previous studies and the proposed hybrid model was lightweight and less com-

plex than the others. For instance, even the best performing LSTM-RNN model [14] had 

1000 hidden units in the hidden layers, compared to only 64 hidden units in the hybrid 

model. Therefore, it can be concluded that the proposed hybrid model can outperform the 

SOTA models. 

Table 8. Comparative analysis for the five studies. 

Type of Model 
Temperature 

Data Use 

Ambient 

Temp. (°C) 
MAE (%) 

Lithium-Ion Battery 

Specification 
Reference 

LSTM-RNN 

Together 

0 

10 

25 

2.088 

0.782 

0.774 
Panasonic 2.9 Ah 

NCR18650PF 
[14] 

Fixed 
10 

25 

0.807 

0.68% 

DNN 
Together 

−20 

−10 

0 

10 

25 

0.22 

1.4 

0.9 

1.9 

1.1 

Panasonic 2.9 Ah 

NCR18650PF 
[28] 

Fixed 25 0.61 

Extreme Learning 

Machine 
Together 25 <1.5 MAX Samsung 2.6 Ah [29] 

Adaptive Unscented Kalman 

Filter with Support Vector 

Machine 

Together 25 to 42 <2.0 Kokam 70 Ah [30] 

Sunflower Optimization Al-

gorithm Extended Kalman 

Filter 

N/A 

10 

25 

40 

1.24 

0.82 

1.37 

LG 18650HG2 

3 Ah 
[31] 

Hybrid CNN-GRU-LSTM 

Together 

−10 

0 

10 

25 

0.86 

0.61 

0.90 

0.63 LG18650HG2 

3 Ah 
Current study 

Fixed 

−10 

0 

10 

25 

0.64 

1.30 

0.65 

0.41 

4.5. Explaining the Hybrid CNN-GRU-LSTM Model with the Explainable AI 

4.5.1. Model Trained with the Four Ambient Temperature Data Altogether 

The Python SHAP library was used to determine the feature importance. At first, the 

model that was trained with the data altogether, was tested with SHAP and presented in 
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Figure 18, which revealed that, from the five inputs, the average voltage was the most 

important input feature. The prediction of the SOC depends on the average voltage the 

most and on the nonlinear behavior of the battery voltage. Since the average voltage is the 

average of the voltages (the present voltage and the previous voltage values) of a moving 

window, which is a statistical method to quickly identify the changes in the residual mean 

value and standard deviation [32], it contains a lot of information on the previous condi-

tion of the SOC. It is the main requirement of the RNN, that the previous important input 

and output, should be considered for the present output. Following the average voltage, 

the present voltage is another important input feature. As the average voltage contains 

information about the previous and present states altogether, the instantaneous voltage 

information is also an important feature for the SOC estimation. Furthermore, the average 

current containing the information on the present and previous loads on the battery, is 

also important information for the SOC estimation. As the battery behavior changes with 

the ambient temperature, its importance is shown in the SHAP chart. The instantaneous 

current was shown to be a less important feature, as its impact was very low in the SOC 

estimation. Therefore, the CNN-GRU-LSTM model could detect the input feature im-

portance from the dataset on the SOC estimation more correctly, based on SHAP values. 

 

Figure 18. Feature importance of the hybrid CNN-GRU-LSTM model trained with the four temper-

ature data altogether. 

4.5.2. Models Trained with Separately with the Four Ambient Temperature Data 

The feature importance graph, based on the models trained on the four ambient tem-

peratures separately is shown in Figure 19. The top important features at all four temper-

atures, sequentially, were identified as average voltage, voltage, and average current, 

though the value of the importance (SHAP value) were variable at different temperatures. 

The least important features (current and battery temperature) altered their positions be-

tween 4th and 5th places. If the importance of temperature was observed, it was noticed 

that the most impact was made on the model trained with the data of 10 °C. Therefore, 

the temperature could be placed at the 4th position before the current, in terms of the 

feature importance. However, in the other three models, the position of the feature im-

portance of the temperature was 5th, and current was 4th. The model trained with 25 °C 

data showed temperature as the least important feature. The trained model with 0 °C and 

−10 °C data, the temperature showed some importance as a feature. 

Now, further analysis is required to understand the importance of the input features. 

The models that were trained with the four temperature data altogether, the temperature 

feature importance was high possibly due to the fact that the SOC behavior of the battery 

was constantly changing with the change of temperature. However, when the model was 

trained with the data of the four temperatures separately, the temperature was the least 
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important feature in three circumstances out of four. This could be explained by the fact 

that, when the model was trained with the data of the same ambient temperature, the 

battery behavior was remained constant. 

  
(a) (b) 

  
(c) (d) 

Figure 19. Feature importance of the hybrid CNN-GRU-LSTM model trained with the data of (a) 

−10 °C (b) 0 °C, (c) 10 °C and (d) 25 °C. 

4.6. General Discussion 

The diversity of battery advancements will increase, due to the high demand for EVs, 

and as all types of batteries have distinct electrical and chemical constituents and func-

tionalities, this will create a great deal of instability and provide difficulties for a compre-

hensive SOC estimation. 

The proposed hybrid CNN-GRU-LSTM battery model can estimate the SOC with a 

very little amount of error, which is very helpful for the BMS of EVs because, the SOC is 

very significant and critical information for the BMS and the EV driver. Since the proposed 

battery model is very lightweight, it will consume a very small amount of memory in the 

BMS and the SOC estimation time will be very short, which will help the BMS to respond 

faster. Another feature of this work is the novel hybrid model of the LSTM and GRU lay-

ers, where two RNN layers have been used. The LSTM units are more accurate than the 

GRU in the long dataset, but two LSTM layers would increase the complexity of the 

model. Therefore, one LSTM layer and one GRU layer were used, which ensured both the 

accuracy and lightweightedness of the model. The hybrid CNN-GRU-LSTM model can 

estimate the SOC consuming less memory in the BMS, with the least calculation time and 

the least amount of error, which are the key qualities of an ideal battery model for a BMS. 

The existing studies focused on estimating the SOC but it is still unknown which 

input features are more important in the SOC estimation. The determination of the input 

feature importance is a novel and crucial aspect of this work, as it can add a new dimen-

sion to the development of the BMS. Since, the average voltage and voltage are the most 

important input features, more precision while measuring the battery voltage will 
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enhance the BMS performance. Moreover, since the average voltage was measured using 

the moving window method, an increment of the size of the moving window will boost 

up the accuracy of the SOC. From the description of the dataset, the data (voltage, current, 

and temperature) were collected at the sample rate of 1 Hz. From the input feature im-

portance bar chart, the voltage is a more important input feature than the current and 

temperature. Therefore, the sample rate of the voltage can be increased, while implement-

ing the battery model to the BMS. 

5. Conclusions 

The study proposed a hybrid CNN-GRU-LSTM network to predict the SOC of lith-

ium-ion batteries in the most optimized way. A total of five RNN models (LSTM, CNN-

LSTM, CNN Bi-LSTM, GRU and CNN-GRU-LSTM) were built, trained, and tested to 

identify the optimum model, by comparing the performance parameters, such as the error 

values, prediction time, and number of trainable parameters. The SOC is very important 

and vital information for the BMS and the EV driver, and the proposed model can estimate 

it with a very small amount of error (best result: 0.41% MAE at 25 °C), which is very help-

ful for the BMS of the EVs. Two RNN layers were used in this model’s LSTM and GRU 

layers. In the lengthy dataset, the LSTM units were more accurate than the GRU, but add-

ing two LSTM layers would make the model more complex. Therefore, one LSTM layer 

and one GRU layer were used, guaranteeing the model’s accuracy and portability. The 

hybrid CNN-GRU-LSTM model has the key characteristics of the perfect battery model 

for a BMS as it can estimate the SOC while using less memory (11,170,968 bytes) in the 

BMS, with the least amount of calculation time (0.000113 s/sample), and with the least 

amount of error. 

This hybrid CNN-GRU-LSTM model, demonstrated to be a robust tool for battery 

management systems, as it estimated the SOC correctly, within the shortest amount of 

time and consumed a small amount of memory in the BMS. When all of the temperature 

data (−10 °C, 0 °C, 10 °C, and 25°C) were used together, the MAE ranged between 0.61% 

to 0.90%. Furthermore, the MAE values were with the range of 0.41% to 1.3% when the 

temperature data was used separately. The hybrid model used the least number of input 

parameters (925,313) and consumed the least amount of processing time (training time 

and testing time), when compared to the other models. The explainable AI has identified 

the average voltage as the most influential parameter, in order to accurately estimate the 

SOC. This brings a new dimension to effectively manage the EV battery system. 

The hybrid model reduced the MAE by 0.20% over the existing best battery model, 

with the least number of parameters, which outperforms the existing models. It produced 

a 32.79% better accuracy than the existing models in the literature. The number of units 

was also reduced in this hybrid model, compared to other existing work, as it made the 

hybrid model more lightweight. In future, the most optimum model for determining the 

State of Health (SoH) and State of Energy (SoE) will be proposed. Moreover, the BMS has 

some special requirements for machine learning-based SOC computational methods. For 

example, the BMS should have a powerful CPU/GPU for receiving a fast response. The 

future task would be focused on reducing the computational burdens. 
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