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ABSTRACT This paper presents a wireless marine buoy system based on the seawater battery (SWB), pro-
viding self-powered operation, power-efficient management, and degradation prediction and fault detection.
Since conventional open circuit voltage (OCV) methods cannot be applied due to inherent cell characteristics
of SWB, the coulomb counting (CC) method is adopted for the state of charge (SOC) monitoring. For the
state of health (SOH), a variance-based detection scheme is proposed to provide degradation prediction and
fault detection of the SWB. The self-powered operation is augmented by two proposed power optimization
schemes such as multiple power management and three-step LED light control. A wireless buoy system
prototype is manufactured, and its functional feasibility is experimentally verified, where its location and
SOC are periodically monitored in a smartphone-based wireless platform.

INDEX TERMS Buoy system, seawater battery, coulomb counting, self-powered, degradation prediction,
fault detection, multiple power optimization, state of charge, variance-based detection.

I. INTRODUCTION

Recent demand for eco-friendly energy sources has been
rapidly increasing [1]-[3] while the Lithium-ion bat-
tery (LIB) has been widely used thanks to high energy
density and long-life span [4]-[6]. However, if the LIB is
exposed to seawater or corroded by immersion, its cobalt tox-
icity causes serious environmental pollution problems [7].
Therefore, the seawater battery (SWB) is attracted as one of
alternative to minimize the pollution problems, especially in
marine environment applications [8]-[11]. Since it is com-
posed of the sodium, which is abundant in ocean environ-
ments, the SWB can be a promising candidate to replace
the high-cost LIB [8]. Also, via two main reactions of the
oxygen evolution reaction (OER) upon charging and the
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oxygen reduction reaction (ORR) upon discharging, the
SWB would be eco-friendly, which does not generate toxic
materials [9]. Since the SWB operates with its cells sub-
merged in the sea, it avoids the danger of being explode,
and also has less affected by the temperature which is
one of significant variables for battery management system
(BMS) [10]. Besides, it has stable capacity that the coulom-
bic efficiency is 98% during 600 cycles and more than 80%
of energy efficiency [11].

Accordingly, there have been some attempts to apply
the SWB to marine applications [12]-[15]. Marine appli-
cation devices based on the SWB cells include the power
plants [12], [13], the energy storage system (ESS) for
boats [14], and the buoy for coastal positioning which is
self-powered with other harvesting devices like the photo-
voltaic (PV) [15]. Especially, the buoy application is inter-
ested in its usage time [16], but there are still some issues to
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be resolved in these previous works. Firstly, it requires proper
methods to support the state of charge (SOC) estimation
function [17]-[21]. The SWB cell voltage during operations
changes in proportion to the amount of charge or discharge
since Na+ ions of seawater move to the inside of the anode
to form Na metal during the charging process [17]. However,
even if the amount of charge increases, only the amount of
Na metal increases and the state of the material does not
change [18]. Since it is driven in infinite seawater, the cell
voltage is not affected [19]. Consequently, the SWB cells
shows that the open circuit voltage (OCV) finally regress to
constant cell voltage after its charge or discharge operations
are done [20]. Because of these inherent SWB cell charac-
teristics, conventional OCV-based SOC estimation methods
would be not available [21]. Secondly, protection techniques
are necessary to maintain stable battery state by preventing
overcharge and undercharge as in the LIB [2], [22]. For
the SWB operation through ORR or OER reactions, it is
necessary to suppress unnecessary reactions by using a kind
of cutoff voltage [23], [17].

Thirdly, for lifetime or optimal replacement time estima-
tions, the degradation progress in the SWB cell needs to be
informed. The carbon-based current collector is decomposed
into gases such as CO; during the electrochemical reaction
process. Also, discharge by-products may block the surface,
reducing the reaction area which results in the degradation of
the SWB [24]. In the case of LIB, there are several methods
for measuring the degradation of the battery [25]-[31]. For
the state of health (SOH) in the LIB, the present capacity
based on the total discharge amount of the first cycle is com-
pared, using the coulomb counting (CC)-based method [25]
or model parameters as the relationship between SOH and
OCYV through laboratory tests [26], [27]. The Kalman filter
method which can consider the various parameters of battery
is proposed in [28]. As a data-driven approach such as the
fuzzy logic, complex and nonlinear SOH is identified through
a fuzzy rule set [29]. The artificial neural network (ANN)
can process large amounts of data and variables accurately
for the SOH estimation [30]. Additional other real data-based
inconsistency evaluation methods [31] are also introduced
previously for the LIB. However, many OCV-based SOH
estimation methods cannot be applied due to the constant
OCV regression characteristic of the SWB. In addition,
the SWB is relatively recently developed compared to LIB,
those data-based SOH estimation works for the SWB are
rarely reported. Lastly, under marine environments, the buoy
needs to be self-powered with harvesting devices such as
PV [32], wind [33] and wave harvester [34] for long-lasting
system operation. Also, intelligent power management tech-
niques are required, since the buoy lightening causes large
power consumption. Energy-efficient operation methods of
LED lighting have been proposed in [35]-[37]. They include
distributed lighting control with light sensing [35], regulating
between artificial light and daylight. Additionally, the sys-
tem meets the desired amount of light with minimal energy
consumption in [36], and the optimal lighting decision
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algorithm and lighting control algorithm are proposed in [37]
in order to satisfy both user needs as well as energy saving.
However, these researches have been implemented mostly for
indoor applications where they requires a bundle of cables to
control the system, requiring more costs for installation and
maintenance.

This paper proposes an eco-friendly wireless marine
buoy system based on the SWB, implementing its
performance degradation prediction and multiple power opti-
mization. A proposed hybrid approach of OCV and CC,
called variance-based detection scheme, prevents the SWB
from functional hazards, providing capabilities of SOC
and SOH. Two proposed power schemes of multiple power
management and SWB save mode maximizes the sys-
tem operating time for the self-powered operation. The
buoy system information on battery status and geometric
position are wirelessly transmitted to a long-term evolu-
tion (LTE) server. Its mobile service platform is designed
to display periodically monitored real-time information
of the intelligent marine buoys, allowing comfortable
maintenance.

This paper is organized as follows. The proposed intelli-
gent SWB-based buoy architecture is presented in Section II,
and its system implementations are detailed in Section III.
The experimental results are shown in Section IV, and the
conclusion is drawn in Section V.

Il. SWB-BASED BUOY SYSTEM ARCHITECTURE

Fig. 1 shows the proposed intelligent SWB-based wireless
buoy system. In Fig. 1(a), the proposed system diagram
is composed of multiple power sources, a microcontroller
unit (MCU), a power delivery circuit, LED array, and wire-
less communication circuits. For multiple power sourcing,
the PV provides a self-powered energy source, and the SWB
works as primary energy storage. A power delivery circuit
together with the MCU predicts CC-based SWB performance
degradation, which also provides SWB fault detection. For
further power optimization capability, the three-step LED
light control and the UPS function are included. Its wireless
communication periodically delivers its geometrical buoy
location and CCSOC information of the SWB to a system
server. Fig. 1(b) shows a conceptual diagram of the proposed
buoy system, where it takes the form of a cylindrical structure,
both the PV and the LEDs are located at its top side. The
upper central part has the main circuit module that provides
the CC-based SWB degradation prediction and fault detec-
tion, the multiple power-source optimization, and the wireless
communication. The SWB is placed at the bottom of the
buoy. Fig. 1(c) shows its manufactured system prototype, the
PV on its top part is coated with dome-shaped transparent
seal to achieve maximum condensing function for the same
insolation. The main circuit module and the UPS in the
upper central part are protected from the sea water while the
SWB in the bottom part is designed to be submerged into
the sea water.
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FIGURE 1. Proposed SWB-based wireless buoy system: (a) system
diagram, (b) conceptual diagram, and (c) prototype photograph.

Fig. 2 shows a functional block diagram of the proposed
buoy system, which is controlled by multiple power-source
management circuit. Its power delivery operations are mainly
divided into two paths. The red-colored (Path 1) charges
the SWB with the PV, and turns on the LED by discharg-
ing the SWB. The blue-colored (Path 2) is composed of a
charging path from the PV to the UPS, and a discharging path
from the UPS to the LED. In addition, there is another path
through an auxiliary switch to receive the discharged energy
selectively from the SWB or the UPS. The MCU has five
data of Vpy, Vups, Vsws, Qcharge+» and Qcharge— t0 manage
the overall buoy system. Fig. 3 shows the operational flow
chart of the proposed buoy system. After going through initial
power-up sequence, the following operations are classified
into two major processing algorithms of the SWB degradation
prediction and the CCSOC-based multiple power optimiza-
tions. Firstly, the buoy system starts the coulomb counting
operation, and it extracts the CCSOC of the SWB, periodi-
cally monitoring its battery voltage. Charging or discharging
data from a CC sensing circuit are accumulated, and also its
instant battery voltage is measured with an internal analog-
to-digital converter (ADC) in the MCU. The variance of
the battery voltage swing under charge/discharge time and
amount conditions tends to become bigger as the SWB’s per-
formance aging proceeds. Based on the variance of the battery
voltage swing range under iterative charge/discharge opera-
tions, the performance degradation amount or aging stages
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FIGURE 2. Functional block diagram of proposed buoy system.
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FIGURE 3. Operational flow chart of proposed buoy system.

of the SWB are estimated. If the estimated degradation is
bigger than a first critical value of Degradation o, the SWB
is considered as under abnormal state. If it is further bigger
than a second critical value of Degradation Ty, the SWB is
regarded as under fault state. Real-time information on the
SWB’s CCSOC is utilized for the battery safety protection.
The overcharge protection function is performed before the
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CCSOC exceeds a charging capacity limit. The undercharge
protection is performed before the CCSOC falls below a
discharging limit which might cause damage in the SWB.
Additionally, this buoy system is designed to perform mul-
tiple power optimizations for its sustainable or self-powered
operation capability. It operates in the SWB save mode
when the CCSOC of the SWB falls below a certain level
(Qsws.TH1)- The SWB save mode aims to reduce power con-
sumption by controlling the lighting LED which contributes
to major power-consuming factor in the overall buoy system.
It maximizes the usage time from the residual SWB energy by
using three control methods of LED number control, pulse-
width modulation (PWM) control, and pulse-frequency mod-
ulation (PFM) control. When the CCSOC of the SWB is close
to zero (QswB.TH0), the buoy system is designed to proceed
into the UPS mode for further extended system operation.

llIl. SWB-BASED BUOY SYSTEM IMPLEMENTATION

A. DEGRADATION PREDICTION & FAULT DETECTION

Fig. 4 presents the operational principle of the proposed
variance-based scheme for SWB degradation prediction and
fault detection. The SWB’s operational status is monitored,
and also it is protected from major functional risks of over-
charge and undercharge, which provide a way to predict the
SWB performance degradation. The proposed buoy system
obtains the SOC of the SWB by including two current sensing
circuits which are designed to measure current flows at both
input and output interfaces of the SWB. They continuously
measure two kinds of current flows that are charged into
the SWB and discharged from it respectively.

T
Qcharge = / Icharge * Icharge (D
0

T
Qdischarge = / Liischarge * tdischarge (2)
0

Equation (1) and (2) represent two accumulated charge
quantities calculated from the charged current and the dis-
charged current in the SWB, where Ichage and lgischarge are
measured charge/discharge currents, teharge and tgischarge are
their charge/discharge times, and T represents a time period
for the SWB operation. Measured current amount is con-
verted into a voltage through a small resistance (Rgepse) inside
the current-sensing circuit. It is sampled and converted to a
digital data by the ADC inside the MCU, and then further
processed to estimate the CCSOC information of the SWB.

m
Q:’harge = Z Icharge [1] * Rgense * Lsample 3)
n=1

m
Qzlischargg = Z Idischarge [n] * Rsense * tsample (4)

n=1
Equation (3) and (4) are obtained by multiplying the
accumulated charge data by Rgense, Where Icharge[n] and
Ljischarge [n] represent discrete current data to be sampled by
the ADC. tample means the calculation period. n is the number
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FIGURE 4. Operational principle of SWB degeneration prediction and
fault detection: (a) block diagram and (b) operational waveforms.

of calculation trials and m is the total number of calculations.
Then, the MCU calculates the effective charge amount inside
the SWB, and then the CCSOC information is obtained as
follows:

Q/charge - Q/discharge ©)
1
Qbattery = leattery * R— (6)

sense

’
0 battery =

Besides this CCSOC information, the cell voltage of the
SWB (Vswg) is additionally measured for the proposed
hybrid estimation of degradation prediction and fault detec-
tion. As shown in Fig. 4(b), the swing amplitude of Vgwp
when it is periodically charged or discharged with the same
total amount of charge varies as the aging process pro-
ceeds [38]. The aging process in the SWB is supposed to
cause the increment of Vgwpg’s variance amplitude even with
the same change of CCSOC. Therefore, this hybrid moni-
toring of the Vgwpg’s variance together with the CCSOC is
supposed to estimate the performance degradation degree of
the SWB. This SWB degradation estimation is utilized to rec-
ognize three degradation progress states of normal, abnormal,
and fault.

AV
Degradation jy,e, = SWB
AQ.eﬁ‘ective—charge.SWB
_ Vswgn] — Vswp [n —1] )
Qcharge [n] — Qcharge [n—1]
AV
Degradation jjscpgrge = SWB

A Q.eﬂective—discharge.s WB
_ Vswa [n] — Vswa [n — 1]
Qdischarge [n] — Qdischarge [n—1]

®)
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The degradation is estimated as the Vgwp variance normal-
ized by the effective amount of charge or discharge, where
AQ.effective—chargeSWB and AQ,efﬂ:ctive—discharge.SWB represent
the effective charge and discharge amounts, and AVgwp
means the swing amplitude or variance of the Vswg. Then,
these instant measurements are periodically averaged as
follows:

N .
Degradation g,
Degradeave,charge = Z N ©
n=1
N Degradation giscpqrge
Degradeave.discharge = Z N (1o
n=1

Fig. 5 shows detailed implementation flow chart of
SOC monitoring, battery degradation prediction, and fault
detection. While the buoy system monitors the SOC of
the SWB, if the CCSOC is less than CCSOC pin, the under-
charge protection (UCP) is activated. When the CCSOC is
greater than CCSOC p,4x, the overcharge protection (OCP)
is turned on to disconnect the PV cell from the SWB. The
normal operation corresponds to the state when the CCSOC
is kept between CCSOC i and CCSOC ax. To remove the
accumulation error and perform hydrogen evolution reac-
tion (HER) along with the ORR reaction, the CCSOC is
resetted when the Vswp goes below the Vrgser th. The total
capacity is adaptively adjusted by replacing CCSOC.max by
subtracting the present CCSOC from original CCSOC.max
data. The LED lighting is activated if Vpy is less than
VpyrH for some period, where the PV cell is utilized to
work as an illumination sensor. In the meanwhile, the pro-
posed variance-based degradation prediction algorithm is
performed to monitor the aging progress of the SWB. The
average degradation (Degrade.ave) is compared with two
critical values of Degradation o and Degradation Ty, and
then three degradation states of normal, abnormal, and fault
are determined. In case of the fault state, the UPS works as
the power source of the buoy system instead of the SWB, and
its wireless application platform notifies to the user that the
SWB needs to be replaced.

B. MULTIPLE POWER OPTIMIZATION CAPABILITIES

The proposed buoy system utilizes the CCSOC method to
manage the SWB and adopts multiple power optimization
schemes to achieve its sustainable self-powered operation.
While the SWB drives the system in the normal mode,
both save and UPS modes are selectively activated depend-
ing on the CCSOC level. When the CCSOC is less than
a certain level, the save mode would expand the operation
time by adjusting the LED lighting. If the CCSOC becomes
less than CCSOC nin, the UPS mode is activated, that is,
the SWB is replaced with the UPS. As shown in Fig. 6,
the power delivery path consists of four major blocks, where
Block (1)-(4) represent a PV to SWB circuit, a SWB to LED
circuit, a PV to UPS circuit, and a DC-DC converter for the
MCU. Additional auxiliary switches are used to deliver the
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FIGURE 6. Power delivery configurations (a) in normal and save modes
and (b) in UPS mode.

energy from either the SWB or the UPS. The MCU receives
five control data of Vpy, Vups, VswB, Qcharge+> and Qcharge- -
Based on these data, the LED lighting is adjusted adap-
tively, and the system operation mode is properly optimized.
Fig. 6(a) shows the normal-mode operation with SWB-based
power delivery that every power is provided by the SWB.
Fig. 6(b) shows the UPS-mode operation where the power
delivery path is switched to the UPS, instead of the SWB.
Fig. 7 presents the concept of the three-step LED lighting
control in the SWB save mode, which corresponds to LED
array control, LED PWM control, and LED PFM control.
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If the CCSOC of the SWB is slightly lower than the normal
state (QswB.TH3), the LED array control reduces the number
of LED lights. Then, the power consumption is saved by
the reduced number of LEDs while control period and duty
are unchanged. When the CCSOC goes under the Qsws TH?2,
their control duty is reduced by the LED PWM control while
their lighting period is kept constant. However, in order to
recognize the light of the LED, a minimal on-duty is required,
which gives a limit for reducing the on-time duty below a
certain level. Therefore, if the CCSOC of the SWB is less
than Qswg.TH1, the LED lighting period is controlled by the
LED PFM control for further power saving. Fig 8 shows the
operational flow chart of CCSOC-based multiple power opti-
mization schemes. Since the CCSOC information determines
detailed operating conditions, the threshold CCSOC values
for their decisions are set inside the algorithm. Depending
on real-time CCSOC monitoring results, the operation mode
and the LED light control are adaptively optimized. After
this power optimization process, the system loops back to the
SWB degradation prediction algorithm.
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FIGURE 8. Flow chart of CCSOC-based multiple power optimizations.

IV. EXPERIMENTAL RESULTS

A. BUOY SYSTEM PROTOTYPE

Fig. 9 shows a prototype implementation of the SWB-based
marine buoy system which consists of the SWB, the PV cell,
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and their control circuit module. The circuit module is com-
posed of a SWB management system (SBMS) and a wireless
application module. The SBMS includes a power delivery
circuit and a SWB algorithm controller. Additionally, an LED
array is installed at the center of the buoy. The wire-
less application module provide two functions of global
positioning system (GPS) and LTE communication, whose
antenna is installed near the wireless application module.
Since SWB cells are used as being immersed under the
sea, they are located at the bottom of the buoy. In the
SBMS, a SWB management algorithm for the CCSOC is
implemented with an ARM-based MCU (STM32L4) and an
operational amplifier (INA210) for current-shunt monitoring,
where the ADC inside the MCU is utilized at 20-ms sampling
period. Additionally, a DC-DC converter (TPS63030) and
switches of MOSFET (IRF7507) and BJT (BC817K-25R)
types are included for power management and LED light con-
trol. In addition, a 4700-uF capacitor is included to provide
stable power transition during self-powered buoy operation
when the power source is changed from UPS to the SWB.
This large capacitor guarantees the operation of the MCU
for the transitional period, allowing that the CCSOC data
are stably stored in flash memory in the MCU. The wire-
less application module consists of a GPS module and an
LTE cellular modem. Since its instant power consumption
is relatively large, the UPS is utilized for its power source
instead of the SWB. The battery status data including Vsws,
Vups, CCSOC and the degree of performance degradation are
wirelessly transmitted to a server every six hours.

The SWB consists of three components, that is, an anode
in a non-aqueous electrolyte, the seawater with a cathode
current collector, and a solid electrolyte. The anode plays a
significant role in determining SWB energy capacity since
it stores Na+ ions which are harvested from the seawater in
the charging process. The seawater infinitely supplies Na+
ions for anodic reactions during the charging process, and its
dissolved oxygen works as an oxidant during the discharging.
With sufficient Na+ ions and dissolved oxygen, the seawater

104109



IEEE Access

J. Cho et al.: SWB-Based Wireless Marine Buoy System

acts as the sole active cathode material. Lastly, the solid
electrolyte separates two electrodes by positioning between
them. Only Na™ ions are transported and returned through
the solid electrolyte during charging or discharging processes.
In this work, three 450-mAh SWB cells were used in parallel.
Itis designed to provide the current up to 150 mA and the total
capacity of 1,350 mAh. The PV cell units are used as a series
and parallel connection. The PV cell is designed to generate
4.0 V using a series connection. In a parallel connection,
the current up to 150 mA can be charged to the SWB under
the best weather condition.

Fig. 10 shows the measurement setup of the SWB with the
BMS and charger. The voltage profile of the SWB is recorded
via a Data Logger (GL2000) and the coulomb counting is
proceeded with a charger (VSP-300) and monitored through
a MCU Keil program. Fig. 11 shows two typical charge
and discharge profiles of the SWB with 100-mAh capacity.
As inherent characteristics of the SWB, the OCV of the SWB
tends to return to a constant voltage which is not dependent
on the SOC. Fig. 11(a) shows its measured waveform, where
the SWB was charged with constant 30-mA current and then
charging operation was stopped at the full charge condition.
Until T, which is around 15 hours, the Vgwp increased
during the process of charging. However, after fully charged,
the Vswp returned to around 3.2 V again. Fig. 11(b) shows
another measured waveform, where the SWB was discharged
with the same 30-mA current for the same time. As the SWB
becomes discharged, the Vswp decreases until 75, which
is close to T7, but the OCV returned to 3.2 V when the
discharging was stopped. As a result, since the regression
to a stable OCV took very long time, it was difficult to
estimate SOC through the OCV. Even if the Vgwp was mea-
sured in real time, accurate SOC estimation was impossible.
Because of these inherent characteristics, the CCSOC esti-
mation was necessary to perform reliable SOC estimation for
the SWB.

FIGURE 10. Measurement setup of the SWB with the BMS and charger.
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FIGURE 11. Charge/discharge profile of SWB during a one cycle:
(a) charging profile of SWBs, (b) discharging profile of SWB.

B. SWB DEGRADATION PREDICTION

Fig. 12 shows measurement results of Vgwp and SOC with
100-mAh SWB during the CCSOC estimation. Fig. 12(a)
shows measured waveforms of Vgwp and SOC at periodic
balanced charging/discharging conditions. In this periodic
process, constant current charging was proceeded with the
30-mA current until the CCSOC of SWB reached to 100 %,
starting from 10 %. And the discharging was started when
the SWB was fully charged. The total capacity of the SWB
in this experiment was 100 mAh. Fig. 12(b) shows measured
waveforms of Vswp and SOC at periodic unbalanced charg-
ing/discharging condition with the SWB charging process.
The charging proceeded with 30-mA current for 3 hours and
the discharging proceeded with 24-mA current for 3 hours.
After every cycle of charging and discharging, the average
SOC increased closely to 100 %. During this experiment,
Vsws and SOC data were monitored by the CCSOC estima-
tion until the full-charge condition. As shown in Fig 12, when
sufficient rest time after charging or discharging processes
was not guaranteed, the Vgwp was not returned to a certain
level. And, the saturated OCV was not clearly proportional
to the SOC. However, although the Vgwpg is independent of
the SOC, the slope of Vgwp can be a major indicator of the
SWB performance degradation. The degree of the perfor-
mance degradation can be evaluated through how much the
VSWB has changed with respect to actual charging amount.
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FIGURE 12. Measured cell voltage and SOC of SWBs based on the CCSOC
estimation (a) at periodic balanced charging/discharging condition and

(b) at periodic unbalanced charge/discharge condition with SWB charging
process.

The indicator also can be used as estimating the degradation
degree in real time even when charging and discharging
amounts are not constant.

Fig. 13 shows measurement results of performance degra-
dation prediction and fault detection based on the CCSOC.
To obtain extreme profiles of the degradation, the experiment
was performed with 10-mA constant charging and discharg-
ing condition. The SWB was 50-mAh capacity with initial
normal state. In Fig. 12(a), the measured Vswp and the
degradation degree are shown. The Vswp was periodically
monitored by the MCU with every 20 ms. The lower figure on
the degradation was rescaled to effectively represent the SWB
state in the y-axis of the graph.

Degrade,

————2 %100 (11)
Degradationy,,,

DegradationMax = VRange.Max/Qbattery.Max (12)

Degradation

In equation (11), Degradation is a percentage value of
Degrade 5y over Degradationy,,. The Degrade aye is substi-
tuted as Degrade ave.charge OF Degrade ave discharge depending
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FIGURE 13. Measurement results of based SWB performance degradation
prediction and fault detection based on the CCSOC estimation:

(a) Measured cell voltage and degradation figure, (b) Photo of

the SWB in fault state.

on the operating condition of charge or discharge. Equa-
tion (12) shows a coefficient to represent the maximum
value of the degradation, where VRange max 1s the maximum
allowable voltage range of the circuit and the SWB, and
Obattery.Max 1 the maximum capacity of the SWB. Through
long-term experiments, the SWB which was initially in the
normal state went to the degradation state. Around 7, which
is 340 hours, the degradation crossed the first critical value
of Degradationyy (, which means that the status of the SWB
was changed to the abnormal state. Around 7, which is
640 hours, the figure of degradation crossed the second criti-
cal value of Degradationry ;, which means that the status of
the SWB was changed to the fault state. During this experi-
ment, overall status of the SWB was periodically transmitted
to an LTE server through the wireless application module.
Especially, when the fault state was detected, it aroused
the warning message that the SWB needs to be replaced.
Fig. 12(b) shows the photo of the swollen SWB. As the
degradation got worse, the SWB became swelled. For stable
operation, the SWB required more charging voltage, lower
discharging voltage, which leaded to low battery efficiency.

C. MULTIPLE POWER OPTIMIZATION

Fig. 14(a) shows a measured pie chart on the lifetime of
the SWB in the save mode and the UPS mode. The sys-
tem operates in the normal mode under the total CCSOC
condition from 100 % to 50 %. The number of lighting
LEDs was eight, the lighting period was 1 s, and the lighting
on-duty was 0.2 s. If the CCSOC becomes below 50 %,
the system operation changes to the SWB save mode.
The SWB save mode operated as a kind of power-saving
mode by applying the three-step LED control depending
on the CCSOC condition. In the CCSOC condition from
40 % to 50 %, the system operates as step 1, which acti-
vates the LED array control. In this case, the number of
lighting LEDs is reduced to four, the lighting period and
the lighting on-duty are kept as the same. In the CCSOC
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FIGURE 14. Measured SWB lifetime in SWB save mode and UPS
technique: (a) SWB save mode and UPS technique operation depending
on CCSOC, (b) comparison of SWB lifetime in normal mode, SWB save
mode, and UPS technique.

between 25 % and 40 %, the system operates as step 2, which
uses the LED array control and the LED PWM control. The
lighting on-duty is changed from 0.2 s to 0.1 s, and others
were kept as the same. Next, in step 3 which corresponds
to the CCSOC from 5 % to 25 %, the system utilizes the
LED array control, the LED PWM control, and the LED
PFM control. In the step 3, the lighting period is modulated
from 1 s to 2 s. Nevertheless, when the CCSOC dropped under
the 5 %, the UPS substitute the SWB to prevent from being
overcharged.

Fig. 14(b) shows the comparison of the SWB lifetimes in
the normal mode, the SWB save mode, and the UPS mode,
where all experiments were conducted under the same SWB
conditions. The initial condition of the SWBs was equally
full charged. The capacity of the SWB used in the experi-
ment was 1350 mAh and the stable current range was less
than 150 mA. The maximum power was 600 mW. For the nor-
mal mode, the SWB save mode, and the SWB save mode with
UPS mode, the operation time corresponded to 73.3 hours,
148.7 hours, and 243.7 hours respectively. The proposed
three-step LED control saved the energy of the SWB and
extended the usage time further with the UPS technique.
Consequently, the system with the SWB save mode and the
UPS mode was operated longer as much as 170.4 hours than
the normal mode.

D. WIRELESS PLATFORM

Fig. 15 shows the mobile platform for battery status and loca-
tion data monitoring of the proposed wireless buoy system
prototype. Fig. 15(a) shows the battery status monitored by
the LTE, where Vsws, Vups, SOC status, degradation degree
were periodically updated. Especially, the SWB status graphs
including the SOC and the performance degradation were
refreshed every 6 hours. Since the power consumption of the
GPS and the LTE was relatively large, the wireless application
module operated for a short time over a long period and
worked as a standby mode for the rest of time. Fig. 15(b)
shows a photo of the GPS operation that was implemented
at a nearby ocean, where the buoy geometric information
was available on the smartphone. Table 1 represents the
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FIGURE 15. Mobile application platform of battery status and location
data monitoring of wireless buoy system: (a) battery status monitoring
using LTE and (b) buoy location monitoring using GPS.

TABLE 1. Performance summary and comparison with other recent work.

This work [25] [26] [27] [28] [29] [30]
Batttery SWB LIB LIB LIB LIB LIB LIB
Variance-
SOH Estimation ocv cc cc
based cc ocv ocv .
Method detection (KF) (Fuzzy logic) ~ (ANNs)
Over/Under
Charge YES YES YES No YES No YES
Protection
Over/Under
Voltage YES No No YES No No No
Protection
SOC monitoring YES YES YES YES YES YES YES
Degrdaflon./SOH YES YES YES YES YES YES No
monitoring
Real time (SOH)| YES No No No YES YES No
Mode ‘Of Online/Offline  Online Online offline online online online
operation
v
Estimated Error|  <2.5% <goy  veimmost <% <9.2% <0.5%
of the cases

performance summary of the proposed work compared with
other recent works.

V. CONCLUSION

This paper presented the intelligent SWB-based wireless
marine buoy system, where its battery degradation pre-
diction and multiple power optimization were proposed
and functionally verified. The performance degradation
prediction scheme of the SWB was proposed based on
the variance-based detection method, which protected the
SWB from functional risks of overcharge and undercharge.
Based on the proposed SOC and SOH method, PV-based
self-powered operation was optimized through two proposed
power schemes of multiple power management and three-step
LED control. Its wireless buoy prototype was designed to
deliver buoy information on battery status and geometric
location to the LTE server, implementing a mobile service
platform for periodic real-time monitoring of the intelligent
marine buoys.
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