3 research outputs found

    Neural learning enhanced variable admittance control for human-robot collaboration

    Get PDF
    © 2013 IEEE. In this paper, we propose a novel strategy for human-robot impedance mapping to realize an effective execution of human-robot collaboration. The endpoint stiffness of the human arm impedance is estimated according to the configurations of the human arm and the muscle activation levels of the upper arm. Inspired by the human adaptability in collaboration, a smooth stiffness mapping between the human arm endpoint and the robot arm joint is developed to inherit the human arm characteristics. The estimation of stiffness term is generalized to full impedance by additionally considering the damping and mass terms. Once the human arm impedance estimation is completed, a Linear Quadratic Regulator is employed for the calculation of the corresponding robot arm admittance model to match the estimated impedance parameters of the human arm. Under the variable admittance control, robot arm is governed to be complaint to the human arm impedance and the interaction force exerted by the human arm endpoint, thus the relatively optimal collaboration can be achieved. The radial basis function neural network is employed to compensate for the unknown dynamics to guarantee the performance of the controller. Comparative experiments have been conducted to verify the validity of the proposed technique

    Model-based and Model-Free Robot Control : A Review

    Get PDF
    Robot control is one of the key aspects of robotics research. Models are essential tools in robotics, such as the robot’s own body dynamics and kinematics models, actuator/motor models, and the models of external controllable objects. In this paper, we review the latest advances in model-based and model-free ap-proaches with a strong focus on robot control. Based on the designed search strategy, several prevailing control approaches are classified and discussed ac-cording to their control strategies. An insight into the gripper control is also explored. Then the research problems and applicability of the control methods are discussed by investigating their merits and demerits. Based on the discussion, we summarize the challenges and future research trends of robot control

    Recent advances in robot-assisted echography: Combining perception, control and cognition

    Get PDF
    Echography imaging is an important technique frequently used in medical diagnostics due to low-cost, non-ionising characteristics, and pragmatic convenience. Due to the shortage of skilful technicians and injuries of physicians sustained from diagnosing several patients, robot-assisted echography (RAE) system is gaining great attention in recent decades. A thorough study of the recent research advances in the field of perception, control and cognition techniques used in RAE systems is presented in this study. This survey introduces the representative system structure, applications and projects, and products. Challenges and key technological issues faced by the traditional RAE system and how the current artificial intelligence and cobots attempt to overcome these issues are summarised. Furthermore, significant future research directions in this field have been identified by this study as cognitive computing, operational skills transfer, and commercially feasible system design
    corecore