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ABSTRACT In this paper, we propose a novel strategy for human-robot impedance mapping to realize an
effective execution of human-robot collaboration. The endpoint stiffness of the human arm impedance is
estimated according to the configurations of the human arm and the muscle activation levels of the upper
arm. Inspired by the human adaptability in collaboration, a smooth stiffness mapping between the human
arm endpoint and the robot arm joint is developed to inherit the human arm characteristics. The estimation
of stiffness term is generalized to full impedance by additionally considering the damping and mass terms.
Once the human arm impedance estimation is completed, a Linear Quadratic Regulator is employed for the
calculation of the corresponding robot arm admittance model to match the estimated impedance parameters
of the human arm. Under the variable admittance control, robot arm is governed to be complaint to the
human arm impedance and the interaction force exerted by the human arm endpoint, thus the relatively
optimal collaboration can be achieved. The radial basis function neural network is employed to compensate
for the unknown dynamics to guarantee the performance of the controller. Comparative experiments have
been conducted to verify the validity of the proposed technique.

INDEX TERMS Impedance estimated model, variable admittance control, physical human-robot collabo-
ration, neural networks.

I. INTRODUCTION
Robot is expected to compliantly perform a lot of complicated
tasks. To some extent, robots liberate humans from the mind-
numbingly repetitive work routines. During the last decades,
robots have become a significant part of factory production,
assisting in repetitive and dangerous operations. In some
cases, tasks are either too complex to automate or too heavy
to manipulate manually. It is difficult to address this problem
by humans working alone or by automated robots, which
raises the demand for human-robot collaboration. In recent
years, robots gradually participate in the daily life of humans
and the collaboration between human and robot has attracted
more and more attention in recent works, for the purpose of
improving the safety and the reliability of the robot systems.
Paper [1] presents a novel approach to estimate the motion
intention of the operator and the unknown robot dynamics.

The associate editor coordinating the review of this manuscript and

approving it for publication was Seyedali Mirjalili .

Paper [2] focuses on alerting and reducing the static joint
torque overloading of a human partner. Thework [3] designed
a boundary controller with input backlash based on the
infinite-dimensional dynamic model to achieve the flexible
control aims. A major feature of human-robot collaboration
is the ability to maintain flexibility. On one hand, the operator
can properly reduce stress and fatigue with the help of robots,
and to some extent enhance operator’s capabilities. On the
other hand, the operator can provide information and transfer
skills to the robot, also playing the role of a supervisor of the
robot. With the involvement of the human operator, the flexi-
bility of the process increases, which is benefit to accomplish
a number of tasks [4], [5].

The ideal collaboration between humans and robots is that
there is no separation and no guardrail. Therefore, a safer
and more effective control strategy is needed for optimal
human-robot collaboration (HRC). Impedance control [6],
[7], hybrid force/position control [8] and iterative learning
control [9] are the most discussed control approaches in
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HRC systems. Hybrid force/position control is based on
partitioning the control problem into position constraints
along the normals of a generalized surface and force con-
straints along the tangents [10]. Iterative learning control is
widely used to suppress vibrations, track target trajectories,
and reject time-varying disturbances [11]. Compared with
hybrid force/position control and iterative learning control,
impedance control is adaptable to the transition between
free motion and constrained motion, and it shows satisfied
tracking capability when the external constraints are known.
There are two possible forms of impedance control, one is
impedance control based on robot endpoint position control,
i.e., admittance control, and the other is impedance control
based on torque control in joint space [12].

Admittance control is an alternative method of impedance
control, when external forces exerted by the operator are
measured as input and positions are taken as feedback to
the operator. In [13], a neuroadaptive admittance controller
is designed and makes the robot to behave like a prescribed
admittance model. Research [14] presents a variable admit-
tance control approach based on the inference of human
intentions. In the scenarios of human-robot collaboration,
in order to obtain an admittance model of robot, the esti-
mation of impedance parameters of the human should be
considered [15]. Research [15] presents a thought of the map-
ping between unknown environment dynamics and the robot
admittance model. The acquisition process of the impedance
parameters can be found in [16], [17]. Reference [17] denotes
that the robot arm damping term is regarded as be propor-
tional to the human arm stiffness item. References [16], [17]
show that adjusting the admittance model parameters of the
robot arm based on the impedance parameters of the human
arm is a effective approach to enhance the performance of
human-robot collaboration.

There are many ways to obtain information from the
human-robot collaboration process, such as visual feed-
back [18], [19], bio-signals [20]–[22], language com-
mands [23]. Using a force sensor on the robot to detect the
objective of the operator to control the collaboration force
has been explored in many applications [24], [25]. In some
situations, the high-level information feedback could be pre-
vented in a complex task. Electromyography (EMG) signals
have been widely used to obtain the human intentions in
human-robot collaboration tasks [26], [27]. The EMG signals
extracted from the Biceps and Triceps are adopted to estimate
and regulate the human impedance profiles [28].

Since the desired position is the output of the admittance
control model, the performance of the human-robot collabo-
ration also counts on the accuracy of the trajectory controller
that contains the dynamics of the robot system. It’s well
known that a model-based controller can perform satisfy-
ing enough with an accurate model of the robot. However,
the accurate model is difficult to be obtained due to the
uncertainties [29]. In [30], a neural network control method is
presented to compensate for the unknown dynamics. Radial
basis function neural network (RBFNN) is adopted by [29] to

compensate for the system uncertainties. Radial basis func-
tion neural network has a relevantly small number of pairs
of weights and thresholds to modify, and therefore training
faster [31].

In this paper we propose a neural learning enhanced vari-
able admittance control technique for human-robot collabo-
ration. As mentioned above, the impedance parameters (i.e.,
stiffness, damping and mass) of the human arm need to be
identified in order to obtain the desired admittance model of
the robot arm. The human arm endpoint stiffness is estimated
using the approach proposed in [32]. And we propose a stiff-
ness mapping strategy between the human arm and the robot
arm in order to achieve a more coordinated human-robot col-
laboration according to the estimated stiffness. Based on the
stiffness estimation of the human arm, this paper considers
all the impedance parameters to make the impedance esti-
mation model completed. The off-line experimental results
of the stiffness estimation process are used to estimate the
damping term of the human arm impedance model. And the
mass term is regarded as a constant near a predetermined
range [28]. Since the human arm impedance parameters
are fully obtained, a Linear Quadratic Regulator (LQR) is
employed to obtain the required robot arm admittance model
matching to the impedance parameters of the human arm [33].
The Riccati equation is solved to obtain the estimates of
the parameters of the robot arm admittance model [34].
Once the admittance model of the robot arm is obtained,
the expected relationship between the interaction force and
displacement of the robot arm end-effector can be obtained.
As the desired trajectory of the robot arm end-effector is
obtained based on the admittance model, the robotics inverse
kinematics (IK) is employed to calculate the desired joint
angles. Since the uncertainties of dynamic parameters of the
robot arm always exist, we designed a NN-based controller
to enhance the performance of the human-robot collaboration
in order to compensate for the effect caused by the dynamic
environments.

The chosen task of robot collaborating with human to
saw a wood can be a suitable way to verify the proposed
method, which required a good coordination between the
robot arm and the human arm. The stiffnessmapping, the con-
trol of interaction force between robot arm end-effector and
human arm endpoint and the accurate tracking of the desired
positions are the key points to obtain a relatively optimal
human-robot collaboration. The preliminary results of the
study were presents at 2017 IEEE International Conference
on Automation Science and Engineering [35] and this paper
aims to supplement and enhance the method and present
results of different experimental scenarios to enhance the
persuasiveness.

The main contribution of this paper can be summarized
as follows: 1)This paper proposes a novel framework for
human-robot interaction, i.e, a human-robot impedance map-
ping strategy and variable admittance control based on the
estimated human arm impedance parameters. 2)AnNN-based
controller is adopted to enhance the tracking performance
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FIGURE 1. The overview of human-robot collaboration for the sawing
task.

under the variable admittance control for human-robot
collaboration.

The remainder of the paper is organized as follows.
In section II, the acquisition of human arm impedance
parameters and the stiffness mapping method are presented.
In section III, the matching robot arm admittance model is
obtained. In section IV, the NN-based controller is designed.
In section V, the proposed technique is verified by experi-
ments. Section VI concludes this paper.

II. IDENTIFICATION OF HUMAN ARM
IMPEDANCE PARAMETERS
The proposed structure is shown in Fig. 1. The human arm
configurations data and the raw electromyography signals are
extracted from the Myo armbands. And the interaction force
is detected by a force sensor attached at the robot arm end-
effector. And these data mentioned above are applied to the
manipulator’s controller after processing.

A. PRINCIPLE OF HUMAN ARM IMPEDANCE MODEL
Without loss of generality, the dynamic model of the human
arm impedance can be described as follows:

MH ẍh + DH ẋh + KHxh = F (1)

where xh, ẋh, ẍh denotes the human arm endpoint position,
velocity and acceleration, MH , DH and KH represent the
human arm mass, damping and stiffness terms. F denotes the
interaction force.

The mass termMH of human arm is regarded as a constant
in the following description by ignoring the negligible effect
of the muscle mass distribution on MH in a certain range of
a predetermined arm configuration [28]. A dimensionality-
reduction estimation method of the human arm stiffness is
utilized to estimate KH in (1) [32].

KH (p, q) = J+TH (q)[v(p)KJ − G(q)]J
+

H (q) (2)

where p is the co-activation index of upper arm muscles, q
is the joint angle of human arm, JH (q) is the human arm
Jacobian matrix, v(p) is a muscle-activation-dependent index,
KJ is regarded as a constant matrix representing the human

FIGURE 2. The human arm D-H model. (modified from [36]).

arm minimal joint stiffness. G(q) = ∂JTH (q)F
∂q , denotes the

influence of the interaction forces on the stiffness transfor-
mation. In this representation, it is clear that the stiffness term
would vary with different muscle activation levels and human
arm configurations. In addition, the processing of damping
matrix DH is introduced in the next subsection.

B. ESTIMATION OF STIFFNESS MATRIX
According to [36], the human arm configurations can be
determined by three parameters of a triangle model, i.e., the
direction of human arm plane, the direction of upper arm, and
the angle between forearm and upper arm.

As shown in Fig. 2, a representative human arm Denavit-
Hartenberg (D-H) model [37] is modified to denote the
simplified human arm kinematics. The base coordinate is
located at the shoulder. Direction x0 and z0 represent the
axis of the frame, horizontal right and horizontal upwards.
Lua and Lfa represent the lengths of the upper arm and fore-
arm. The angles of the first four joints, i.e., three shoulder
joints and a single elbow joint can be calculated through IK
algorithm [36].

Generally, we need to track the joint angles of the human
arm to calculate the Jacobian matrix JH . The real-time track-
ing of human arm joint angles can be achieved by transform-
ing quaternions obtained by gyroscopes of Myo armbands to
joint angles in a triangle model mention above. Therefore,
the Jacobian matrix JH of the human arm can be obtained
according to the human arm D-H model shown in Fig. 2.

In order to identify the minimal joint stiffness matrix KJ ,
multiple identification experiments are conducted with the
classic perturbation method under different arm configu-
rations and muscle activation levels (see [35] for details).
The restoring force is measured by the force sensor and the
dynamic relationship between the endpoint displacement of
human arm and the recorded force is described as below [32],

F =

FxcFyc
Fzc

 =
Lxx Lxy Lxz
Lyx Lyy Lyz
Lzx Lzy Lzz

4Xc4Yc
4Zc

 (3)

where Fxc , Fyc and Fzc denote the human arm endpoint inter-
action force and 4Xc, 4Yc and 4Zc denote the displacement
of the endpoint. And we employed a second-order linear
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FIGURE 3. The envelope extracted from EMG signals using the proposed
method.

model to identify the transfer function Lij,

Lij = MHijs2 + DHijs+ KHij, s = 2π f
√
−1 (4)

The parameters MH , DH and KH of the transformation
function L are identified using the least squares method.
Consequently, all the stiffness matrices KH identified by (4)
using the minimum co-activation level experimental results
are utilized to obtained the KJ by minimizing the Frobenius
norm below,

‖ KJ − JTH (q)KH (p, q)JH (q)− G(q) ‖ (5)

In addition, the co-activation index p of upper arm mus-
cles is obtained through the following method. As shown
in Fig. 3, the envelope is extracted from the EMG signals
using a moving average process and a low-pass filter. We use
only two channels close to the Triceps and Biceps for con-
venience. Therefore, the equation below is used to indicate
co-activation level p of the upper arm muscles,

p(sp) =
1
Ws

(
Ws−1∑
sp=1

AB(t − sp)+
Ws−1∑
sp=1

AT (t − sp)) (6)

whereWs is a predetermined window size, AB and AT are the
amplitude of p, sp and t represent the current sample point
and sampling time.

Furthermore, the restoring force and the human arm end-
point displacement recorded from experiments with medium
and high co-activation levels are employed to calculate the
constant parameters of v(p) in (8), i.e., χ1 and χ2, by mini-
mizing the Frobenius norm in (7).

‖ v(p)KJ − JTH (q)KH (p, q)JH (q)− G(q) ‖ (7)

v(p) = −
χ1[e−χ2p − 1]
e−χ2p + 1

+ 1 (8)

Therefore, the human arm endpoint stiffness matrix KH
is calculated on-line using (2) as the human arm Jacobian
matrix JH , the muscle-activation-dependent index v(p) and
the minimal joint stiffness matrix KJ are obtained.

Utilizing (3) and (4), all the damping matrices DH of the
minimum-activity, mid-activity and high-activity level trails
can be obtained. Based on the analysis of the off-line exper-
imental results of the damping matrices, it can be observed

that the variation of the damping value is not obvious within
a certain range of the muscle activation level centered at
each level. Corresponding to different muscle-activation-
dependent index v(p) in each arm configuration, we consider
that the continuous numerical curve of the damping term
can be discretized into variable constant matrices based on
analysis and observation of the off-line experiment results.
Therefore, a look-up table among the damping matrices, arm
configurations, and the muscle activation levels in a certain
range according to the off-line experimental results can be
established. In the human-robot sawing scenario, the human
arm configuration can be kept to only change in a small range
while the muscle activation level is required to change in a
wide range. Therefore, the look-up table can only consider the
corresponding relations between the muscle activation levels
and the obtained damping matrices.

C. STIFFNESS MAPPING BETWEEN HUMAN
AND ROBOT ARM
Generally, the interaction force F transform to torque τc for
control in joint space according to τ = JTr F . Therefore,
the stiffness in joint space of the cooperative robot arm can be
derived from the human arm endpoint stiffness in Cartesian
space according to the equation below [26],

K q
r ≈ JTr KHJr (9)

where K q
r denotes the mapping joint stiffness of robot arm,

and Jr is the robot arm Jacobian matrix. The symbol of
approximate equal means that the joint stiffness of robot arm
is mapping from the endpoint stiffness of human arm, not
exactly mapping from the endpoint stiffness of robot arm.

For the purpose of realizing a human-robot collaboration
with master-slave conversion, stiffness mapping between the
human arm and the robot arm should be adjusted. The stiff-
ness mapping strategy is adjusted as below,

K q
r ≈ K a

r − J
T
r KHJr (10)

where K a
r is a constant stiffness matrix for adjustment. With

the help of the time-varying human arm endpoint stiffness and
the adjustment factor, the mapping robot arm joint stiffness
can be obtained. In addition, for the stability of the robot arm,
limitation range of the robot arm joint stiffness are presented
as Kmin ≤ K q

r ≤ Kmax . Kmax and Kmin are the maximum
stiffness and the minimum stiffness of the given range of the
robot arm.

We employ a PD controller with variable gains to drive
the robot arm cooperating with the human arm under a good
tracking performance,

τr = D(q̇d − q̇)+ K q
r (qd − q) (11)

where τr is the control input of the robot arm, qd and q
represent the desired robot arm joint position and actual joint
position. D = ksK

q
r , with a properly chosen scale factor ks,

ks = [ks1 , ks2 , ks3 , . . . , ksn ], n represents the robot arm DOFs.
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III. VARIABLE ADMITTANCE CONTROL MODEL
Generally, a typical dynamic equation of robot end-effector
which is realized by admittance control is described as below:

F = Ir ẍ + Dr ẋ + Kr (x − x0) (12)

where F denotes the interaction force, x, ẋ and ẍ denote
the robot arm position velocity and acceleration, x0 is the
initial position of the robot arm end-effector, Ir , Dr and Kr
are desired virtual inertia, damping and stiffness matrices,
respectively. In practical implementations, (12) is modified
as a more simplified model retaining stiffness and damping,

F = Dr ẋ + Kr (x − x0) (13)

Considering a general time-invariant linear system as
below,

ζ̇ = Xζ (t)+ Yu(t) (14)

where ζ represents the robot arm state, u(t) is the system input
at t time, X and Y are defined as known matrices. In addition,
the robot arm state ζ is defined as below,

ζ =
[
ẋT xT δT

]T (15)

where δ denotes the state of a linear system to generate
the reference task goal, xf , which provides the feasibility to
implement the optimized trajectory tracking. In particular,
this linear system is described below,{

δ̇ = U − δ
xf = V δ

(16)

whereU and V are known matrices needed to be determined.
Considering the human arm state (1), the matrix X and Y
are defined as below in order to match the corresponding
impedance parameters of human arm,

X =

−M−1H DH −M−1H KH 0
In 0 0
0 0 U

 Y =

−M−1H
0
0

 (17)

The mass, damping and stiffness of the human arm are all
included in the matrices X and Y, which are then used to
solve the desired admittance model. Furthermore, a LQR is
employed to minimize the cost function below [33], [34]

C =
∫
∞

0
[ẋTQ1ẋ+(x−xf )TQ2(x−xf )+uTRu]dt (18)

whereR,Q2 andQ1 represents the input of the system, the tra-
jectory tracking error, and the velocity weighting matrices.

Based on the equation (15), (16) and (18), the cost function
(18) can be rewritten as below,

C =
∫
∞

0
[ζ̇ TQζ̇ + uTRu]dt (19)

where

Q =

Q1 0 0
0 Q2 −Q2V
0 −V TQ2 V TQ2V

 .

The essence of the LQR is to obtain an optimal feedback of
the system to minimize the cost function (19). According to
this, the system input of the robot arm is defined as follows,

u = −Kf ζ (20)

where Kf is a state feedback gain matrix.
Using the interaction force F as the input u defined

in (20). To understand (20) in the sense of admittance control,
we assume that the optimal control has been achieved, and the
desired admittance model is described as

F = −Kf ζ = −R−1BTPζ

= −R−1P11ẋ − R−1P12x − R−1P13(V TV )−1xf (21)

where P11, P12 and P13 denote the three submatrices in the
first row of thematrixP, which is the solution of the following
equation:

PX + XTP− PYR−1Y TP+ Q = 0 (22)

According to themeasured interaction force and a predeter-
mined reference task goal, the desired trajectory and velocity
of the robot arm end-effector can be calculated. And we can
utilize the robotic IK algorithm to obtain the desired robot
arm joint trajectory qd .

IV. ADAPTIVE NEURAL NETWORK CONTROLLER
In order to enhance the tracking performance, we employed
a neural network based controller to combine with the PD
controller. The control torque generated by the NN-based
controller is utilized to compensate for the dynamics uncer-
tainties. The compensate torque τc is add to the control input
τr to track the desired joint trajectory qd obtained from the
admittance control model.
Generally, the robot arm dynamics can be described as

below,

Mr (q)q̈+ Cr (q, q̇)q̇+ Gr (q) = τ − τext (23)

whereMr denotes the inertia matrix,Cr is the Coriolis matrix,
Gr represents the gravity term, τ = τc + τr denotes the
required torque for controlling and τext denotes the external
torque caused by payloads. q̈, q̇, q denote the acceleration,
velocity and position of the joint, respectively.

A. DESCRIPTION OF RADIAL BASIS FUNCTION
NEURAL NETWORK
RBFNN have been proven to be capable of approximating
any continuous function η(ε) : Rm → R in a number of
researches,

η(ε) = W TE(ε)+ %η, ∀ε∈�ε (24)

where ε ∈ �ε ⊂ Rm denotes the input factor, W =

[ω1, ω2, . . . , ωn]T∈Rn is the constant NNweight vector, %η is
the approximation error, E(ε) = [e1(ε), e2(ε), . . . , en(ε)]T ∈
Rn is the basis function and Gaussian functions are employed
to defined ei(ε) as below,

ei(ε) = exp[
(ε − νi)T (ε − νi)

−ψ2
i

], i = 1, 2, 3, . . . , n (25)
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where νi = [νi1, νi2, . . . , νim] ∈ Rm denotes the note centers
of Gaussian functions and ψi denotes the variance. In addi-
tion, we define the ideal weight vector as below

W = arg min{sup|η(ε)−W
′TE(ε)|}, η∈�η, W ′∈Rn (26)

Generally, the approximation error %η can be reduced arbi-
trarily small under this process.

B. ADAPTIVE CONTROLLER WITH NEURAL-LEARNING
The adaptive controller is designed to control the robot arm
joint trajectory. Some definitions are defined as eq = q− qd ,
s = ėq + 3eq, v = q̇d − 3eq, q and qd are the robot
arm actual and desired joint position, respectively, 3 =

diag(ks1 , ks2 , ks3 , .., ksn ), ksn represent the scale factor. Based
on equation (23), we have

Mr ṡ+Mr v̇+ Crs+ Crv+ Gr = τ − τext (27)

According to (27), the required torque is designed as below

τ = M̂r v̇+ Ĉrv+ Ĝr + f̂ + τext − K q
r s (28)

where M̂r , Ĉr , Ĝr , f̂ denote the estimated matrices of the
robot arm inertia matrix, Coriolis matrix and gravity terms,
and f = %Mr v̇ + %Cr v + %Gr . As we can see, the designed
required torque τ consist of τc, τr = −K

q
r s and τext .

Based on (27) and (28), the robot arm close-loop dynamics
can be obtained as below,

Mr ṡ+ Crs+ K q
r s− f̂ = −(Mr − M̂r )v̇

−(Cr − Ĉr )v− (Gr − Ĝr ) (29)

The RBFNN is employed to the approximation ofMr , Cr ,
Gr and f , and we obtain

Mr = W T
Mr
EMr + %Mr ,Cr = W T

CrECr + %Cr
Gr = W T

GrEGr + %Gr , f = W T
f Ef + %f (30)

where WMr = [WMr ij], WCr = [WCr ij], WGr = diag(WGr i)
and Wf = diag(Wfr i) denote the ideal NN weight matrices.
And WMr ij ∈ Rn, WCr ij ∈ R2n, WGr i ∈ Rn and Wfr i ∈

Rn, i, j = 1, 2, 3, . . . , n, are defined as the weight matrices
defined in (26). The basis function EMr , ECr , EGr and Ef are
designed as below,

EMr (q) = diag(Eq,Eq, . . . ,Eq)

ECr (q, q̇) = diag
([
Eq
Eq̇

]
, . . . ,

[
Eq
Eq̇

])
EGr = [ETq , . . . ,E

T
q ]

T

Ef (q, q̇, v, v̇) = [ẼT , . . . , ẼT ]T (31)

where Eq = [e1, e2, . . . , en]T ∈ Rn, Eq̇ =

[e1(q̇), e2(q̇), . . . , en(q̇)]T ∈ Rn, Ẽ = [ETq ,E
T
q̇ ,E

T
v ,E

T
v̇ ]

T
∈

R4n, and Ev = [e1(v), e2(v), . . . , en(v)]T ∈ Rn, Ev̇ =
[e1(v̇), e2(v̇), . . . , en(v̇)]T ∈ Rn. The NN-based estimates
can be written as below, M̂r = Ŵ T

Mr
EMr , Ĉr = Ŵ T

CrECr ,
Ĝr = Ŵ T

GrEGr and f̂r = Ŵ T
fr Efr . Therefore, the (29) is

rewritten as below,

Mr ṡ+ Crs+ K q
r s = −W̃

T
Mr
EMr v̇− W̃

T
CrECr v

−W̃ T
GrEGr − W̃

T
f Ef − %f (32)

The following Lyapunov function is adopted,

V =
1
2
sTMrs+

1
2
tr(W̃ T

Mr
QMr W̃Mr + W̃

T
CrQCr W̃Cr

+W̃ T
GrQGr W̃Gr + W̃

T
f Qf W̃f ) (33)

where QMr , QCr , QGr , Qf are positive definite weight matri-
ces. tr(•) means the trace of the matrix. W̃(·) = W(·) − Ŵ(·),
the (33) can be further derived as below,

V̇ = −sTK q
r s− s

T%f − tr[W̃ T
Mr

(ZMr v̇s
T
+ QMr

˙̂WMr )]

−tr[W̃ T
Cr (ZCr vs

T
+ QCr

˙̂WCr )]

−tr[W̃ T
Gr (ZGr s

T
+ QGr

˙̂WGr )]

−tr[W̃ T
f (Zf s

T
+ Qf ˙̂W f )] (34)

Therefore, the neural learning updating law is designed as:

˙̂WMr = −Q
−1
Mr

(EMr v̇s
T
+ βMr ŴMr )

˙̂WCr = −Q
−1
Cr (ECr v̇s

T
+ βCr ŴCr )

˙̂WGr = −Q
−1
Gr (EGr v̇s

T
+ βGr ŴGr )

˙̂W f = −Q
−1
f (Ef v̇sT + βf Ŵf ) (35)

where βMr , βCr , βGr and βf are positive parameters needed
to be designed. By substituting (35) into (34), we have

V̇ = −sTK q
r s− s

T%f + tr[βMr W̃
T
Mr
ŴMr ]

+tr[βCr W̃
T
Cr ŴCr ]+tr[βGr W̃

T
Gr ŴGr ]+tr[βf W̃

T
f Ŵf ]

(36)

According to [29], we can have a result that

V̇ ≤ −(K q
r −

1
2
)‖s‖2 + ϒ −

βMr

2
‖W̃Mr ‖

2
F

−
βCr

2
‖W̃Cr ‖

2
F −

βGr

2
‖W̃Gr ‖

2
F −

βf

2
‖W̃f ‖

2
F (37)

where ϒ = βMr
2 ‖WMr ‖

2
F +

βCr
2 ‖WCr ‖

2
F +

βGr
2 ‖WGr ‖

2
F +

βf
2 ‖Wf ‖

2
F +

1
2κ

2, and κ denotes the upper limit of ‖βf ‖.
In addition, the W̃Mr , W̃Cr , W̃Gr , W̃f and s satisfy the

following inequality,

ϒ ≤ (K q
r −

1
2
)‖s‖2 +

βMr

2
‖W̃Mr ‖

2
F +

βCr

2
‖W̃Cr ‖

2
F

+
βGr

2
‖W̃Gr ‖

2
F +

βf

2
‖W̃f ‖

2
F (38)

Substituting (38) into (37), we can make a conclusion that the
robot arm system is proven to be stable as the V̇ is a negative
definite matrix V̇ ≤ 0 and when t tends to infinity, s asymp-
totically approaches 0, i.e., q asymptotically approaches qd ,
the tracking error tends to be satisfied.

V. EXPERIMENTS
In this section, the proposed method is verified through the
following three steps.
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FIGURE 4. The joint angles tracking errors of the controller without
neural learning.

A. TEST OF THE ADAPTIVE CONTROLLER WITH
NEURAL NETWORK
The first experiment mainly focus on the tracking perfor-
mance of the proposed controller which aims to compensate
the unknown dynamics and uncertain payloads. We mainly
focus on three joints of the Baxter robot left arm, i.e., one
joint of the shoulder S1, one joint of the elbow E1 and
one joint of the wrist W1. The left arm is controlled to
track a pre-determined back and forth trajectory as x(t) =
0.1sin(π t/3)+ 0.7, y(t) = 0.25 and z(t) = 0.3.
And the orientation of the robot arm is fixed as

[x, y, z,w] = [1.29, 0.07,−1.26,−0.06]. In addition,
the joint trajectory obtained with the help of the robot
inverse kinematics is employed as the input of the controller.
We employ n = 37 neural network nodes for M̂r (q) and
Ĝr (q), 2n = 2 × 37 nodes for Ĉr (q, q̇), 4n = 4 × 37

nodes for f̂ (q, q̇, v, v̇). The weight matrices are initialized as
M̂r (0) = 0 ∈ Rcn×c, Ĉr (0) = 0 ∈ R2cn×c, Ĝr (0) = 0 ∈ Rcn×c

and f̂r (0) = 0 ∈ R4cn×c, where c = 3 denotes the amount
of the controlled joints. In order to avoid the impact of PD
controller on validation of the effectiveness of the adaptive
controller with NN, the parameters of the PD controller are
set as K q

r = [40.0, 45.0, 45.0, 60.0, 18.0, 8.0, 6.0] and ks =
[4.44, 9.0, 5.625, 3.75, 9.0, 5.33, 7.5].
A set of comparative experiments is implemented to verify the
effectiveness of the proposed method. Firstly, a tracking task
without neural learning is conducted. The robot arm tracking
error is shown in Fig. 4. According to the tracking results,
we can see that the tracking error of S1, E1 andW1 is around
0 ∼ 0.1 rad, 0 ∼ 0.1 rad and −0.1 ∼ 0 rad.
Comparatively, a tracking task with neural learning is con-

ducted. The tracking errors of the joint angles are shown
in Fig. 5. It can be observed that the tracking error is as large
as the experimental result shown in Fig. 4 in the beginning
and then become smaller and converge to the vicinity of zero.
The overall error is around−0.05 ∼ 0.05 rad. As we can see,
the tracking performance with neural learning is satisfying
and it is better than the performance of the controller without
neural learning. For the purpose of understanding the effect
of neural learning process, the change of the compensation
torque is shown in Fig. 6.

B. TEST OF VARIABLE ADMITTANCE CONTROL
The test of fixed admittance control and the test of variable
admittance control are conducted in this subsection under the
left arm of the Baxter robot.

FIGURE 5. The joint angles tracking errors of the controller with neural
learning.

FIGURE 6. Compensation torque τN generated by the neural learning.

In the first test, the performance of robot arm end-effector
with different fixed admittance parameters (High/Low stiff-
ness and damping) in y axis is under consideration. The
stiffness and damping terms of the admittance model are
set as Kr = 200N/m, Dr = 10N/m and then they turn to
Kr = 50N/m, Dr = 5N/m at 5s. Two groups of stiffness
and damping terms mention above are set according to the
stable range of the robot arm, reflecting the relatively high
stiffness and relatively low stiffness, respectively. The robot
arm trajectory is set as 0.7m→ 0.3m in x axis. The external
force F ≈ 13N is applied in the process mentioned above
at about 1.5s and 6.5s in y axis and it is kept for about a
half second. The experiment results are shown in Fig. 7.

According to the experimental results, the influences of
admittance parameters on responses of the robot arm to dis-
turbances are reflected intuitively. At the first stage, with the
high stiffness and damping, the robot arm endpoint position is
dropped to 0.53mwhen the external force applied. At the sec-
ond stage, with the low stiffness and damping, the robot arm
endpoint position is dropped to 0.398m when the external
force applied. The robot arm with high stiffness and damping
is less affected, and we can also see that the trajectory of
axis Y suffered less interference. In this case, giving the
end-effector of the robot arm high stiffness and damping in
directions without movement in a human-robot collaboration
task can strengthen the stability and enhance the performance.

In the second test, the performance of robot arm end-
effector with variable admittance parameters in x ′(y′) axis is
under consideration. A comparative test which simulate the
pulling back process is conducted to verify the validity of
the variable admittance control method. The scenario of this
experiment is that the operator brakes suddenly with high
endpoint stiffness and damping in the process of the saw
pulling back. And we track the interaction force and position
to verify the proposed method. The robot arm trajectory
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FIGURE 7. The external force applied in y axis and the position of the
robot arm end-effector.

FIGURE 8. The interaction force in x axis and the position of the
end-effector with fixed high admittance parameters.

FIGURE 9. The interaction force in x axis and the position of the
end-effector with variable admittance parameters.

targets are set as 0.76m to 0.65m in x axis and 0.62m to 0.48m
in y axis. Thus the initial position x ′0 is set as 0.98m and the
trajectory task goal is 0.98m to 0.81m. The robot arm refer-
ence trajectory is determined by (16) with U = 1 and V =
0.81. Therefore, the reference endpoint trajectory is xf =
0.81+ 0.18e−t and its goal position is xf = 0.81m(t →∞).

The experimental results are shown in Fig. 8 and Fig. 9.
Fig. 8 shows the interaction force and endpoint trajectory of
the robot arm with fixed high admittance parameters. We can
see that the operator brakes suddenly at about 5s and the
interaction force changes from 5N to −10N and it bounces
back to about 15N . It is obvious that the change range of the
interaction force is too large and it would cause unnecessary
vibrations. Fig. 9 shows the interaction force and endpoint tra-
jectory of the robot arm with variable admittance parameters.
With the help of variable admittance control, the robot arm
admittancemodel changes corresponding to the impedance of
the human arm. Once the operator’s arm suddenly becomes
rigid, the admittance parameters of the robot arm shrink in
order to cater to the operator’s changes. As a result, we can see
that the operator brakes suddenly at about 5s and 9s and the
interaction force changes from about 5N to 0N and it bounces
back to about 4N . Fig. 8(b) shows that when the operator
braked at about 5s, the position dropped from 0.75m to 0.66m
in Y axis and 0.62m to 0.53m in X axis, which corresponding
to the high interaction force between the robot arm and human
arm at about 5s in Fig.8(a). In addition, Fig. 9(b) shows

the smooth braking process with variable admittance control.
This test shows that variable admittance control can resulting
in a satisfied balance between the interaction force and the
robot arm end-effector position.

C. HUMAN-ROBOT COLLABORATIVE SAWING TASK
Based on general experience, the performance of two-person
sawing task under master-slave structure would be better.
In this case, the human-robot collaborative sawing task can be
split into two stages. In the first stage, the operator plays the
role of the master to pull the saw along the blade and the robot
arm is compliant to the master in the motion axis in order not
to oppose operator’s effort. And in the second stage, the robot
arm is changed to be themaster to pull the saw along the blade
and the operator is compliant to the robot arm in turn.

In this subsection, a set of cooperative experiment is con-
ducted to verify the proposed control method. Fig. 1 shows
the experiment setup, the extracted human arm configurations
and the muscle activation level data are used to regulate the
human arm impedance parameters and the endpoint stiffness
of the human arm is utilized to map the joint stiffness of the
robot arm. And the force feedback is employed as the input
of the robot arm endpoint admittance control model.

For convenience, the robot endpoint task goal in x ′(y′) axis
is predetermined at a point x = 0.75m and y = 0.65m.
Therefore, the robot arm pull the saw to the task goal when
it is robot arm’s turn to be master. Conversely, when the
human arm pull back the saw, the robot arm is compliant
and allows the human arm to pull the saw to anywhere within
the control range. The rotational stiffness of the human arm
endpoint is set at a high value KHrot = 1000N/m in order to
maintain the orientation of the robot arm end-effector with
a high mapping rotational joint stiffness. According to the
test of fixed admittance control results, the parameters of
the admittance model along the direction perpendicular to
the direction of motion x ′(y′) are set in high stiffness and
damping in order to avoid the interference with the sawing
performance.

The first experiment is conducted utilizing fixed high-low
stiffness switching method. In this case, the stiffness of each
joint can be set to arbitrary value under the premise of sta-
bility. According to the actual situation, the stiffness of joint
S1 is fixed as Kmax = 200Nm/rad and Kmin = 50Nm/rad ,
the stiffness of joint E1 is fixed as Kmax = 150Nm/rad and
Kmin = 40Nm/rad and the stiffness of joint W1 is fixed as
Kmax = 35Nm/rad andKmin = 10Nm/rad . The trigger value
of the stiffness switching is Kx = 1kN/m, which means that
the robot joint stiffness switch to maximum value when the
human arm stiffness Kx ≥ 1 and it switch back to minimum
when the Kx ≤ 1.
The results of the first experiment are shown in Fig. 10. The

first figure shows the estimated human arm endpoint stiffness
while the second figure shows the stiffness of three key joint
S1, E1 and W1 using in sawing task. The stiffness of the
robot joint S1,E1 andW1 switch to 200Nm/rad , 150Nm/rad
and 35Nm/rad when the human arm stiffness Kx ≥ 1 and
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FIGURE 10. The results of human-robot collaborative sawing task using high-low stiffness switching method. First figure shows
estimation of human arm endpoint stiffness. Second figure shows the stiffness of three key joint using in sawing task. Third
figure shows the interaction force between human arm endpoint and robot arm end-effector. Fourth figure shows the position of
the robot arm end-effector in Cartesian space.

FIGURE 11. The results of human-robot collaborative sawing task using the proposed method. First figure shows estimation of
human arm endpoint stiffness. Second figure shows the mapping stiffness of three key joint using in sawing task. Third
figure shows the interaction force between human arm endpoint and robot arm end-effector. Fourth figure shows the position of
the robot arm end-effector in Cartesian space.

they switch back to 50Nm/rad , 40Nm/rad and 10Nm/rad
when Kx ≤ 1. These two figures reflect the master-slave
structure of human-robot collaborative sawing task. The third

figure shows the interaction force between human arm end-
point and robot arm end-effector. We can see the interaction
force at the switching point, for example at about 11s and 12s,
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FIGURE 12. Sawing surface and vertical view of the wood. Test 1 denotes
the results of the high-low stiffness switching method while Test 2 shows
the results of the proposed method.

it bounces to 67N and drops down to −46N . The interaction
force is very high at the switching moment, and it would
cause the feeling of discomfort to the operator. In addition,
the sawing performance will also be affected. The fourth
shows the position of robot arm end-effector in Cartesian
space. According to the Fig. 10, we can see that the sawing
performance is not smooth enough and the blade is stuck at
about 55s in the sawing process.

The second experiment is conducted using the proposed
method. The robot arm joint stiffness change corresponding
to the human arm endpoint stiffness in real time. According
to the test of variable admittance control method, this method
is employed in the process of robot arm pulling back.

The experimental results are shown in Fig. 11. The first
and second figures show the estimated human arm end-
point stiffness and the mapping stiffness of the three key
joint based on (10) and the constant matrix K a

r is set as
diag{230, 150, 50}. The third figure shows the interaction
force during the sawing process. We can see that the inter-
action force is maintained between 25N and −25N during
the master-slave transition moments. The fourth and fifth
figures show the position of the robot arm end-effector. Since
the direction of sawing task is along the x ′(y′) axis, we present
the position of X axis and Y axis as an alternative. According
to the Fig. 11, it is obvious that the sawing performance of
the proposed method is much smoother than the performance
of high-low stiffness switching method, the interaction force
would not bounce or drop down to a very high level with
the control law of the admittance model. We can observe
from the third and fourth figures at about 75s to 110s that
the operator is allowed to increase or decrease the sawing
frequency, or even stop and resume sawing task at any time
(the smooth curve at about 125s and 135s in the fourth figure).
And the interaction force would not vary greatly during the
stop and resume process.

The intuitive results of the human-robot collaborative
wood sawing task are shown in Fig. 12. Test 1 denotes
the results of the high-low stiffness switching method while
Test 2 shows the results of the proposed method. With the
proposed method, the object has a smoother sawing surface
and less wood burrs.

VI. CONCLUSION
In this paper, a novel neural learning enhanced variable
admittance control approach was proposed for the human-
robot collaboration task. Firstly, the human arm impedance
parameters were estimated by recording the EMG signals and
tracking the arm configurations. The estimated endpoint stiff-
ness of the human arm was used to map the joint stiffness of
the robot arm and the full impedance parameters of the human
arm were employed to obtain the corresponding admittance
model of the robot arm. In order to enhance the tracking
performance of the robot arm, a NN-based adaptive controller
was designed to compensate for the unknown dynamics and
uncertain payloads. The validity of the proposed technique
was verified by comparative experiments. In our future study,
we will consider to improve the proposed approach for more
complex tasks. In this paper, the EMG signals is used to
monitor the muscle activation levels and we will also try to
combine with the muscle fatigue measurement method into
our framework in the future study.
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