116 research outputs found

    MegaPortraits: One-shot Megapixel Neural Head Avatars

    Full text link
    In this work, we advance the neural head avatar technology to the megapixel resolution while focusing on the particularly challenging task of cross-driving synthesis, i.e., when the appearance of the driving image is substantially different from the animated source image. We propose a set of new neural architectures and training methods that can leverage both medium-resolution video data and high-resolution image data to achieve the desired levels of rendered image quality and generalization to novel views and motion. We demonstrate that suggested architectures and methods produce convincing high-resolution neural avatars, outperforming the competitors in the cross-driving scenario. Lastly, we show how a trained high-resolution neural avatar model can be distilled into a lightweight student model which runs in real-time and locks the identities of neural avatars to several dozens of pre-defined source images. Real-time operation and identity lock are essential for many practical applications head avatar systems

    CVTHead: One-shot Controllable Head Avatar with Vertex-feature Transformer

    Full text link
    Reconstructing personalized animatable head avatars has significant implications in the fields of AR/VR. Existing methods for achieving explicit face control of 3D Morphable Models (3DMM) typically rely on multi-view images or videos of a single subject, making the reconstruction process complex. Additionally, the traditional rendering pipeline is time-consuming, limiting real-time animation possibilities. In this paper, we introduce CVTHead, a novel approach that generates controllable neural head avatars from a single reference image using point-based neural rendering. CVTHead considers the sparse vertices of mesh as the point set and employs the proposed Vertex-feature Transformer to learn local feature descriptors for each vertex. This enables the modeling of long-range dependencies among all the vertices. Experimental results on the VoxCeleb dataset demonstrate that CVTHead achieves comparable performance to state-of-the-art graphics-based methods. Moreover, it enables efficient rendering of novel human heads with various expressions, head poses, and camera views. These attributes can be explicitly controlled using the coefficients of 3DMMs, facilitating versatile and realistic animation in real-time scenarios.Comment: WACV202

    ToonTalker: Cross-Domain Face Reenactment

    Full text link
    We target cross-domain face reenactment in this paper, i.e., driving a cartoon image with the video of a real person and vice versa. Recently, many works have focused on one-shot talking face generation to drive a portrait with a real video, i.e., within-domain reenactment. Straightforwardly applying those methods to cross-domain animation will cause inaccurate expression transfer, blur effects, and even apparent artifacts due to the domain shift between cartoon and real faces. Only a few works attempt to settle cross-domain face reenactment. The most related work AnimeCeleb requires constructing a dataset with pose vector and cartoon image pairs by animating 3D characters, which makes it inapplicable anymore if no paired data is available. In this paper, we propose a novel method for cross-domain reenactment without paired data. Specifically, we propose a transformer-based framework to align the motions from different domains into a common latent space where motion transfer is conducted via latent code addition. Two domain-specific motion encoders and two learnable motion base memories are used to capture domain properties. A source query transformer and a driving one are exploited to project domain-specific motion to the canonical space. The edited motion is projected back to the domain of the source with a transformer. Moreover, since no paired data is provided, we propose a novel cross-domain training scheme using data from two domains with the designed analogy constraint. Besides, we contribute a cartoon dataset in Disney style. Extensive evaluations demonstrate the superiority of our method over competing methods

    Neural Voice Puppetry: Audio-driven Facial Reenactment

    Get PDF
    We present Neural Voice Puppetry, a novel approach for audio-driven facial video synthesis. Given an audio sequence of a source person or digital assistant, we generate a photo-realistic output video of a target person that is in sync with the audio of the source input. This audio-driven facial reenactment is driven by a deep neural network that employs a latent 3D face model space. Through the underlying 3D representation, the model inherently learns temporal stability while we leverage neural rendering to generate photo-realistic output frames. Our approach generalizes across different people, allowing us to synthesize videos of a target actor with the voice of any unknown source actor or even synthetic voices that can be generated utilizing standard text-to-speech approaches. Neural Voice Puppetry has a variety of use-cases, including audio-driven video avatars, video dubbing, and text-driven video synthesis of a talking head. We demonstrate the capabilities of our method in a series of audio- and text-based puppetry examples. Our method is not only more general than existing works since we are generic to the input person, but we also show superior visual and lip sync quality compared to photo-realistic audio- and video-driven reenactment techniques

    Generating 3D faces using Convolutional Mesh Autoencoders

    Full text link
    Learned 3D representations of human faces are useful for computer vision problems such as 3D face tracking and reconstruction from images, as well as graphics applications such as character generation and animation. Traditional models learn a latent representation of a face using linear subspaces or higher-order tensor generalizations. Due to this linearity, they can not capture extreme deformations and non-linear expressions. To address this, we introduce a versatile model that learns a non-linear representation of a face using spectral convolutions on a mesh surface. We introduce mesh sampling operations that enable a hierarchical mesh representation that captures non-linear variations in shape and expression at multiple scales within the model. In a variational setting, our model samples diverse realistic 3D faces from a multivariate Gaussian distribution. Our training data consists of 20,466 meshes of extreme expressions captured over 12 different subjects. Despite limited training data, our trained model outperforms state-of-the-art face models with 50% lower reconstruction error, while using 75% fewer parameters. We also show that, replacing the expression space of an existing state-of-the-art face model with our autoencoder, achieves a lower reconstruction error. Our data, model and code are available at http://github.com/anuragranj/com

    One-Shot Face Video Re-enactment using Hybrid Latent Spaces of StyleGAN2

    Full text link
    While recent research has progressively overcome the low-resolution constraint of one-shot face video re-enactment with the help of StyleGAN's high-fidelity portrait generation, these approaches rely on at least one of the following: explicit 2D/3D priors, optical flow based warping as motion descriptors, off-the-shelf encoders, etc., which constrain their performance (e.g., inconsistent predictions, inability to capture fine facial details and accessories, poor generalization, artifacts). We propose an end-to-end framework for simultaneously supporting face attribute edits, facial motions and deformations, and facial identity control for video generation. It employs a hybrid latent-space that encodes a given frame into a pair of latents: Identity latent, WID\mathcal{W}_{ID}, and Facial deformation latent, SF\mathcal{S}_F, that respectively reside in the W+W+ and SSSS spaces of StyleGAN2. Thereby, incorporating the impressive editability-distortion trade-off of W+W+ and the high disentanglement properties of SSSS. These hybrid latents employ the StyleGAN2 generator to achieve high-fidelity face video re-enactment at 102421024^2. Furthermore, the model supports the generation of realistic re-enactment videos with other latent-based semantic edits (e.g., beard, age, make-up, etc.). Qualitative and quantitative analyses performed against state-of-the-art methods demonstrate the superiority of the proposed approach.Comment: The project page is located at https://trevineoorloff.github.io/FaceVideoReenactment_HybridLatents.io

    Single Source One Shot Reenactment using Weighted Motion from Paired Feature Points

    Get PDF
    Image reenactment is a task where the target object in the source image imitates the motion represented in the driving image. One of the most common reenactment tasks is face image animation. The major challenge in the current face reenactment approaches is to distinguish between facial motion and identity. For this reason, the previous models struggle to produce high-quality animations if the driving and source identities are different (cross-person reenactment). We propose a new (face) reenactment model that learns shape-independent motion features in a self-supervised setup. The motion is represented using a set of paired feature points extracted from the source and driving images simultaneously. The model is generalised to multiple reenactment tasks including faces and non-face objects using only a single source image. The extensive experiments show that the model faithfully transfers the driving motion to the source while retaining the source identity intact.acceptedVersionPeer reviewe

    A Generalist FaceX via Learning Unified Facial Representation

    Full text link
    This work presents FaceX framework, a novel facial generalist model capable of handling diverse facial tasks simultaneously. To achieve this goal, we initially formulate a unified facial representation for a broad spectrum of facial editing tasks, which macroscopically decomposes a face into fundamental identity, intra-personal variation, and environmental factors. Based on this, we introduce Facial Omni-Representation Decomposing (FORD) for seamless manipulation of various facial components, microscopically decomposing the core aspects of most facial editing tasks. Furthermore, by leveraging the prior of a pretrained StableDiffusion (SD) to enhance generation quality and accelerate training, we design Facial Omni-Representation Steering (FORS) to first assemble unified facial representations and then effectively steer the SD-aware generation process by the efficient Facial Representation Controller (FRC). %Without any additional features, Our versatile FaceX achieves competitive performance compared to elaborate task-specific models on popular facial editing tasks. Full codes and models will be available at https://github.com/diffusion-facex/FaceX.Comment: Project page: https://diffusion-facex.github.io
    • …
    corecore