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Abstract

This paper is on face/head reenactment where the goal is to transfer the facial pose
(3D head orientation and expression) of a target face to a source face. Previous meth-
ods focus on learning embedding networks for identity and pose disentanglement which
proves to be a rather hard task, degrading the quality of the generated images. We take
a different approach, bypassing the training of such networks, by using (fine-tuned) pre-
trained GANs which have been shown capable of producing high-quality facial images.
Because GANs are characterized by weak controllability, the core of our approach is a
method to discover which directions in latent GAN space are responsible for control-
ling facial pose and expression variations. We present a simple pipeline to learn such
directions with the aid of a 3D shape model which, by construction, already captures
disentangled directions for facial pose, identity and expression. Moreover, we show that
by embedding real images in the GAN latent space, our method can be successfully used
for the reenactment of real-world faces. Our method features several favorable properties
including using a single source image (one-shot) and enabling cross-person reenactment.
Our qualitative and quantitative results show that our approach often produces reenacted
faces of significantly higher quality than those produced by state-of-the-art methods for
the standard benchmarks of VoxCeleb1 & 2. Source code is available at: https:
//github.com/StelaBou/stylegan_directions_face_reenactment

1 Introduction
This paper is on face/head reenactment where the goal is to transfer the facial pose, defined
here as the rigid 3D face/head orientation and the deformable facial expression, of a tar-
get facial image to a source facial image. Such technology is the key enabler for creating
high-quality digital head avatars which find a multitude of applications in telepresence, Aug-
mented Reality/Virtual Reality (AR/VR), and the creative industries. Recently, and thanks
to the advent of Deep Learning, there has been tremendous progress in the so-called neural
face reenactment [7, 54, 60]. Despite the progress, synthesizing photorealistic face/head se-
quences is still considered a hard task with the quality of existing solutions being far from
sufficient for the demanding applications mentioned above.
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A major challenge that most prior methods [5, 7, 17, 59, 60, 61] have focused so far is
how to achieve identity and pose disentanglement to both preserve the appearance and iden-
tity characteristics of the source face and successfully transfer to the facial pose of the target
face. Training conditional generative models to produce embeddings with such disentangle-
ment properties is known to be a difficult machine learning task [11, 26, 41], and this turns
out to be a significant technical impediment for face reenactment too. Additionally, previous
methods [59, 60] have approached reenactment using paired data during training. However,
under such a paired setting it is not clear how to formulate cross-person reenactment [59].

In this work, we are taking a different path to neural face reenactment. A major mo-
tivation for our work is that unconstrained face generation using modern state-of-the-art
GANs [22, 23, 24] has reached levels of unprecedented realism to the point that it is often
impossible to distinguish real facial images from generated ones. Hence, the research ques-
tion we would like to address in this paper is: Can a pretrained GAN [24] be adapted for face
reenactment? A key challenge that needs to be addressed to this end, is that GANs come with
no semantic parameters to control their output. Hence, in order to alleviate this, the core of
our approach is a method to discover which directions in the latent GAN space are respon-
sible for controlling facial pose and expression variations. Knowledge of these directions
would directly equip the pretrained GAN with the desired reenactment capabilities. Inspired
by Voynov and Babenko [51], we present a very simple pipeline to learn such directions with
the help of a linear 3D shape model [15]. By construction, such a shape model captures dis-
entangled directions for facial pose, identity and expression which is exactly what is required
for reenactment. Moreover, a second key challenge that needs to be addressed is how to use
the GAN for the manipulation of real-world images. Capitalizing on [45], we further show
that by embedding real images in the GAN latent space, our pipeline can be successfully
used for real face reenactment. Overall, we make the following contributions:

1. Instead of training conditional generative models [7, 60], we present a different ap-
proach to face reenactment by finding the directions in the latent space of a pretrained
GAN (StyleGAN2 [24] fine-tuned on the VoxCeleb1 dataset) that are responsible for
controlling the facial pose (i.e. rigid head orientation and expression), and show how
these directions can be used for neural face reenactment on video datasets.

2. To achieve our goal, we describe a simple pipeline that is trained with the aid of a
linear 3D shape model which already contains disentangled directions for facial shape
in terms of pose, identity and expression. We further show that our pipeline can be
trained with real images too by firstly embedding them into the GAN space, enabling
the successful reenactment of real-world faces.

3. We show that our method features several favorable properties including using a single
source image (one-shot), and enabling cross-person reenactment.

4. We perform several qualitative and quantitative comparisons with recent state-of-the-
art reenactment methods, illustrating that our approach often produces reenacted faces
of significantly higher quality for the standard benchmarks of VoxCeleb1 & 2 [9, 28].

2 Related work

Semantic face editing: There is a plethora of recent works that investigate the existence of
interpretable directions in the GAN’s latent space [20, 31, 32, 39, 40, 48, 49, 51, 57, 58].
These methods are able to successfully edit synthetic images, however, most of them do
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not allow controllable editing and thus they cannot be applied on the face reenactment task.
Voynov and Babenko [51], introduce an unsupervised method that is able to discover dis-
entangled linear directions in the latent GAN space by jointly learning the directions and a
classifier that learns to predict which direction is responsible for the image transformation.
Our method is inspired by Voynov and Babenko [51], extending it in several ways to make it
suitable for neural face reenactment. Additionally, there is a line of work that allows explicit
controllable facial image editing [2, 11, 14, 16, 29, 41, 52]. Related to our method is Sty-
leRig [44] which uses 3DMM parameters to control the generated images from a pretrained
StyleGAN2. StyleRig’s training pipeline is not end-to-end and significantly more compli-
cated than ours, while in order to learn better disentangled directions, StyleRig requires
different models for different attributes (e.g. pose, expression). In contrast, we learn all
disentangled directions for face reenactment simultaneously and our model can successfully
edit all attributes as well as edit only one attribute. Moreover, StyleRig is mainly applied on
synthetic images, thus real image editing is not straightforward. Consequently, the aforemen-
tioned issues restrict StyleRig’s applicability for real-world face reenactment, where various
facial attributes change simultaneously. A follow-up work, PIE [43], focuses on inverting
real images to enable editing using StyleRig [44]. However, their method is computationally
expensive (10 min/image) which is prohibitive for video-based facial reenactment.
GAN inversion: GAN inversion aims to encode real images into the latent space of pre-
trained GANs [22, 24], which enables their editing using existing methods of synthetic im-
age manipulation. Most of the inversion techniques [3, 4, 12, 35, 45, 53] train encoder-based
architectures that focus on predicting the best latent codes that can generate images visually
similar with the original ones and allow successful editing. The authors of [65] propose a hy-
brid approach which consists of learning an encoder followed by an optimization step on the
latent space to refine the similarity between the reconstructed and real images. Additionally,
Richardson et al. [35] introduce a method that tries to solve the editability-perception trade-
off, while recently in [36], the authors propose fine-tuning the generator to better capture
appearance features, so that the inverted images resemble the original ones.
Neural face/head reenactment: Face reenactment is a non-trivial task, as it requires wide
generalization across identity and facial pose. Many of the proposed methods rely on fa-
cial landmark information [17, 19, 46, 47, 55, 59, 60, 62]. The authors of [60] propose
a one-shot face reenactment method driven by landmarks, which decomposes an image on
pose-dependent and pose-independent components. A limitation of landmark based methods
is that landmarks preserve identity information, thus impeding their applicability on cross-
subject face reenactment [7]. In [7] the authors perform face reenactment by learning pose
and identity embeddings using two different encoders. Additionally, warping-based meth-
ods [34, 42, 54, 56] synthesize the reenacted images based on the motion of the driving
faces. Those methods produce realistic results, however they suffer from visual artifacts and
pose mismatch especially in large head pose variations. Finally, the authors of [27] propose
a two-step architecture that aims to disentangle the spatial and style components of an image
that leads to better preservation of the source identity, while in [13] the authors present a
GAN-based method conditioned on a 3D face representation [66].

To summarize, all the aforementioned methods rely on training conditional generative
models on large paired datasets in order to learn facial descriptors with disentanglement
properties. In this paper, we propose a new approach for face reenactment that learns disen-
tangled directions in the latent space of a pretrained StyleGAN2 on the VoxCeleb dataset. We
show that the discovery of meaningful and disentangled directions that are responsible for
controlling the facial pose can be used for high quality self- and cross-identity reenactment.
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Figure 1: Overview of our method: Given a pair of source Is and target It images, we
calculate the facial pose parameter vectors ps and pt using the Net3D network, respectively.
The matrix of directions A is trained such that, given the shift ∆w = A∆p, the reenacted
image Ir generated using the latent code wr = ws +∆w, illustrates the facial pose of the
target face, while maintaining the identity of the source face.

3 Method
Our method consists of three parts detailed in the following subsections. In Section 3.1,
we show how to find the facial pose directions in the latent GAN space and use them for
face/head reenactment. In Section 3.2, we describe how to extend our method to handle real
facial images. Finally, in Section 3.3, we investigate how better results can be obtained by
fine-tuning on paired video data.

3.1 Finding the reenactment latent directions
The generator G takes as input latent codes z ∼ N (0,I) ∈ R512 and generates images I =
G(z) ∈ R3×256×256. StyleGAN2 firstly maps the latent code z into the intermediate latent
code w ∈ R512 using a series of fully connected layers. Then, the latent code w is fed into
each convolution layer of StyleGAN2’s generator. This mapping enforces the disentangled
representation of StyleGAN2 [24]. In order to fairly compare our work with previous face
reenactment methods, we need a StyleGAN2 model that generates synthetic images that re-
semble the distribution of the VoxCeleb dataset [28]. This dataset is more diverse compared
to Flickr-Faces-HQ (FFHQ) dataset [22] in terms of head poses and expressions, providing
the ability to find more meaningful directions for face reenactment (e.g. GANs pretrained on
FFHQ do not account for roll changes in head pose). Having a pretrained StyleGAN2 gen-
erator on FFHQ dataset, we use the method of Karras et al. [23] to fine-tune the generator
on VoxCeleb. We note that we do not finetune the generator under any reenactment objec-
tive. Our generator on VoxCeleb is able to produce synthetic images with random identities
(different from the identities of VoxCeleb) that follow the distribution of VoxCeleb dataset
in terms of head poses and expressions.

A facial shape s ∈ R3N (N is the number of vertices) can be written in terms of a linear
3D shape model as:

s = s̄+Sipi +Sepe, (1)

where s̄ is the mean 3D shape, Si ∈ R3N×mi and Se ∈ R3N×me are the PCA bases for identity
and expression, and pi and pe are the corresponding identity and expression coefficients.
Moreover, we denote as pθ ∈R3 the rigid head orientation defined by the three Euler angles
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(yaw, pitch, roll). For reenactment, we are interested in manipulating head orientation and
expression, so our facial pose parameter vector is p= [pθ ,pe]∈R3+me . We note that all PCA
shape bases are orthogonal to each other, and hence they capture disentangled variations of
identity and expression. They are calculated in a frontalized reference frame, thus they are
also disentangled with head orientation. These bases can be also interpreted as directions in
the shape space. We propose to learn similar directions in the GAN latent space.

In particular, we propose to associate a change ∆p in facial pose, with a change ∆w in
the (intermediate) latent GAN space so that the two generated images G(w) and G(w+∆w)
differ only in pose by the same amount ∆s induced by ∆p. If the directions sought in the GAN
latent space are assumed to be linear [30], this implies the following linear relationship:

∆w = A∆p, (2)

where A ∈ Rdout×din is a matrix, the columns of which (i.e. din) represent the directions in
GAN latent space. In our case, din = (3+me) and dout = Nl ×512, where Nl is the number
of the generators layers we opt to apply shift changes.
Training pipeline: The matrix A is unknown so we propose the simple pipeline of Fig. 1 to
estimate it: in particular, we sample two random latent codes zs and zt (s, t for source and
target, respectively) and pass them through the generator G. The two generated images Is =
G(zs) and It = G(zt) are fed into the pre-trained Net3D which estimates the corresponding
pose parameter vectors, ps and pt , respectively. Using Eq. 2, we compute ∆w = A∆p =
A(pt −ps) and wr = ws +∆w. From wr our pipeline generates the reenacted facial image
Ir = G(wr), which depicts the source face in the facial pose of the target. The only trainable
quantity in the above pipeline is the matrix A containing the unknown directions in GAN
latent space. We propose to learn it in a self-supervised manner.
Training losses: Our pipeline is trained by minimizing the following total loss:

L= λrLr +λidLid +λperLper, (3)

where λr = 1,λid = 10 and λper = 10. The reenactment lossLr ensures successful facial pose
transfer from target to source and it is defined as: Lr =Lsh+Leye+Lmouth. Lsh = ‖Sr−Sgt‖1
is the shape loss, where Sr is the 3D shape of the reenacted image and Sgt is the reconstructed
ground-truth 3D shape calculated using Eq. 1 with the identity coefficients pi of the source
face and the coefficients pe of the target face. Additionally, to enhance the expression transfer
we calculate the eye loss Leye (the mouth loss Lmouth is computed in a similar fashion) which
compares the inner distances between the eye landmark pairs of upper and lower eyelids
between the reenacted and reconstructed ground-truth shapes (see supplementary for detailed
explanation of eye Leye and mouth Lmouth losses). Additionally, Lid is an identity loss based
on the cosine similarity of features extracted from the source Is and the reenacted Ir image
using the face recognition network of [10]. This loss imposes that the identity of the source is
preserved in the reenacted image. Finally, we also found that better image quality is obtained
if we additionally use Lper which is the standard perceptual loss of [21].
Training details: We estimate the distribution of each element of the pose parameters p
by randomly generating 10K images and computing their corresponding p vectors. Using
the estimated distributions, during training, we re-scale each element of p from its origi-
nal range to a common range [−a,a]. Furthermore, to increase the disentanglement of the
learned directions of our method, we follow a training strategy where for 50% of the training
samples we reenact only one attribute by using ∆p = [0, ...,εi, ...0], where εi is sampled from
a uniform distribution U [−a,a].
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3.2 Real image reenactment

So far our method is able to transfer facial pose from a source facial image to a target only
for synthetically generated images. To extend our method to work with real images, in this
section, we propose (a) to use a pipeline for inverting the images back to the latent code
space of StyleGAN2, and (b) a mixed training approach for discovering the latent directions.
Real image inversion: Ideally, the inversion method should produce latent codes that can
generate facial images identical with the original ones and enable image editing without
producing visual artifacts. Although satisfying both requirements is challenging [3, 35, 45],
we found that the following pipeline produces excellent results for the purposes of our goal
(i.e. face/head reenactment). During training, we employ an encoder based method [45]
to invert the real images into theW+ space [1]. However, directly using the inverted latent
codes winv does not produce satisfactory reenactment results. This happens because the latent
codes obtained from inversion, may present a domain gap from the latent codes of synthetic
images. To alleviate this, we propose a mixed data approach for training the pipeline of
Section 3.1: specifically, we first invert the extracted frames from the VoxCeleb dataset, and
during training, at each iteration (i.e. for each batch) we use 50% random latent codes w and
50% embedded latent codes winv.

The inverted images using the encoder based method [45] might still be missing some
identity details. To alleviate this, only during inference, we use an additional optimization
step [36] that lightly optimizes the generator, so that the newly generated image more closely
resembles the original one. Note that this step does not affect the calculation of winv and is
used only during inference to obtain a higher quality inversion. We perform the optimization
for 200 steps and only on the source frame of each video.

3.3 Fine-tuning on paired video data

Our method so far has been trained with unpaired static facial images. This has at least
two advantages: (a) it enables training with a very large number of identities, and (b) seems
more suitable for cross-person reenactment. However, additional improvements enabled
by the optimization of additional losses can be obtained by further training on paired data
from VoxCeleb1. Compared to training from scratch on video data, as in most previous
methods (e.g. [7, 59, 60]), we believe that our approach offers a more balanced option that
combines the best of both worlds: training with unpaired static images and fine-tuning with
paired video data. From each video of our training set, we randomly sample a source and a
target face that have the same identity but different pose and expression. Consequently, we
minimize the following loss function L = λrLr +λidLid +λperLper +λpixLpix, where Lr is
the same reenactment loss defined in Section 3.1, Lid andLper are the identity and perceptual
losses, however this time calculated between the reenacted Ir and the target image It and Lpix
is a pixel-wise L1 loss between the reenacted and target images.

4 Experiments
In this section, we present qualitative and quantitative results and comparisons of our method
with recent state-of-the-art approaches. The bulk of our results and comparisons, reported
in Section 4.1, are on self- and cross-person reenactment on the VoxCeleb1 [28] dataset.
Comparisons with state-of-the-art on the VoxCeleb2 [9] test set released by [59] are provided
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in the supplementary material. Finally, in Section 4.2 we report ablation studies on the
various design choices of our method.
Implementation details: We fine-tune StyleGAN2 on the VoxCeleb1 dataset with 256×256
image resolution and we train the encoder of [45] for real image inversion. The 3D shape
model we use is DECA [15]. For our training procedure, we only learn a matrix of directions
A∈R(Nl×512)×k where k = 3+me,me = 12 and Nl = 8. We train three matrices of directions:
the first one is on synthetically generated images (Section 3.1), while the second one on
mixed real and synthetic data (Section 3.2). Finally, as described in Section 3.3, we obtain
a third model by fine-tuning the second one on paired data. For training, we used the Adam
optimizer [25] with constant learning rate 10−4. We train our models for 20K iterations with
a batch size of 12 on synthetic and real images. Fine-tuning is performed on real paired
images for 150K iterations. All models are implemented in PyTorch [33].

4.1 Comparison with state-of-the-art on VoxCeleb
Herein, we compare the performance of our method against the state-of-the-art in face reen-
actment on VoxCeleb1 [28]. We conduct two types of experiments, namely self- and cross-
person reenactment. For evaluation purposes, we use both the video data provided by [59]
and the original test-set of VoxCeleb1. We note that there is no overlap between the train
and test identities and videos. Similar comparisons on the VoxCeleb2 [9] test set released
by [59] are provided in the supplementary material. We compare our method quantitatively
and qualitatively with six methods: X2Face [56], FOMM [42], Fast bi-layer [60], Neural-
Head [7], LSR [27] and PIR [34]. For X2Face [56], FOMM [42] and PIR [34], we use the
pretrained (by the authors) model on VoxCeleb1. For Fast bi-layer [60], Neural-Head [7]
and LSR [27] we also use the pretrained (by the authors) models on VoxCeleb2 [9]. For fair
comparison with the methods of Neural-Head [7] and LSR [27], we evaluate their model
under the one-shot setting.
Quantitative comparisons: We report seven different metrics. We compute the Learned
Perceptual Image Path Similarity (LPIPS) [63] to measure the perceptual similarities, and to
quantify identity preservation we compute the cosine similarity (CSIM) of ArcFace [10] fea-
tures. Moreover, we measure the quality of the reenacted images using the Frechet-Inception
Distance (FID) metric [18], while we also report the Fréchet Video Distance (FVD) [50] met-
ric that measures both the video quality and the temporal consistency of the generated videos.
To quantify the facial pose transfer, we calculate the normalized mean error (NME) between
the predicted landmarks in the reenacted and target images. We use [6] for landmark estima-
tion, and we calculate the NME by normalizing it with the square root of the ground truth
face bounding box and multiplying it by 103. We further evaluate pose transfer by calculat-
ing the mean L1 distance of the head pose (Pose) in degrees and the mean L1 distance of the
expression coefficients pe (Exp.).

In Tables 1 and 2, we report the quantitative results for self and cross-subject reenact-
ment, respectively. For self-reenactment, we combine the original test set of VoxCeleb1 [28]
and the test set provided by [59]. For cross-subject reenactment, we randomly select 200
video pairs from the small test set of [59]. In self-reenactment, all metrics are calculated
between the reenacted and the target faces, while in cross-subject reenactment, CSIM is cal-
culated between the source and the reenacted faces and pose/expression error between the
target and the reenacted faces. As a result, the values of CSIM in cross-subject reenactment
are expected to be lower. Regarding self-reenactment, X2Face and PIR have a higher value
on CSIM, however we argue that this is due to their warping-based technique which enables

Citation
Citation
{Tov, Alaluf, Nitzan, Patashnik, and Cohen-Or} 2021

Citation
Citation
{Feng, Feng, Black, and Bolkart} 2021

Citation
Citation
{Kingma and Ba} 2015

Citation
Citation
{Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, etprotect unhbox voidb@x protect penalty @M  {}al.} 2019

Citation
Citation
{Nagrani, Chung, and Zisserman} 2017

Citation
Citation
{Zakharov, Shysheya, Burkov, and Lempitsky} 2019

Citation
Citation
{Chung, Nagrani, and Zisserman} 2018

Citation
Citation
{Zakharov, Shysheya, Burkov, and Lempitsky} 2019

Citation
Citation
{Wiles, Koepke, and Zisserman} 2018

Citation
Citation
{Siarohin, Lathuili{è}re, Tulyakov, Ricci, and Sebe} 2019

Citation
Citation
{Zakharov, Ivakhnenko, Shysheya, and Lempitsky} 2020

Citation
Citation
{Burkov, Pasechnik, Grigorev, and Lempitsky} 2020

Citation
Citation
{Meshry, Suri, Davis, and Shrivastava} 2021

Citation
Citation
{Ren, Li, Chen, Li, and Liu} 2021

Citation
Citation
{Wiles, Koepke, and Zisserman} 2018

Citation
Citation
{Siarohin, Lathuili{è}re, Tulyakov, Ricci, and Sebe} 2019

Citation
Citation
{Ren, Li, Chen, Li, and Liu} 2021

Citation
Citation
{Zakharov, Ivakhnenko, Shysheya, and Lempitsky} 2020

Citation
Citation
{Burkov, Pasechnik, Grigorev, and Lempitsky} 2020

Citation
Citation
{Meshry, Suri, Davis, and Shrivastava} 2021

Citation
Citation
{Chung, Nagrani, and Zisserman} 2018

Citation
Citation
{Burkov, Pasechnik, Grigorev, and Lempitsky} 2020

Citation
Citation
{Meshry, Suri, Davis, and Shrivastava} 2021

Citation
Citation
{Zhang, Isola, Efros, Shechtman, and Wang} 2018

Citation
Citation
{Deng, Guo, Xue, and Zafeiriou} 2019

Citation
Citation
{Heusel, Ramsauer, Unterthiner, Nessler, and Hochreiter} 2017

Citation
Citation
{Unterthiner, van Steenkiste, Kurach, Marinier, Michalski, and Gelly} 2018

Citation
Citation
{Bulat and Tzimiropoulos} 2017

Citation
Citation
{Nagrani, Chung, and Zisserman} 2017

Citation
Citation
{Zakharov, Shysheya, Burkov, and Lempitsky} 2019

Citation
Citation
{Zakharov, Shysheya, Burkov, and Lempitsky} 2019



8 BOUNARELI ET AL.: FINDING DIRECTIONS IN GAN’S LATENT SPACE FOR NFR

better reconstruction of the background and other identity characteristics. Importantly, this
quantitative result is accompanied by poor qualitative results (e.g. see Fig. 2). Additionally,
regarding pose transfer, we achieve similar results on NME and Pose error with Fast Bi-
layer [60] and LSR [27] (their methods are trained on VoxCeleb2 which contains 5× more
identities) and we outperform all methods on expression transfer. Finally, our results on FID
and FVD metric confirm that the quality of our generated videos resembles the quality of
VoxCeleb dataset. Cross-subject reenactment is more challenging, as source and target faces
have different identities. In this case, it is important to maintain the source identity charac-
teristics without transferring the target ones. In Table 2, the high CSIM value for FOMM
is not accompanied by good qualitative results as shown in Fig. 2, where FOMM, in most
cases, is not able to transfer the target head pose (hence their method achieves higher CSIM
but poor pose transfer). Additionally, we achieve better head pose and expression transfer
compared to all other methods.

Method CSIM LPIPS FID FVD NME Pose Exp.
X2Face [56] 0.70 0.13 35.5 409 17.8 1.5 0.90
FOMM [42] 0.65 0.14 35.6 402 34.1 5.0 1.3

Fast Bi-layer [60] 0.64 0.23 52.8 634 13.2 1.1 0.80
Neural-Head [7] 0.40 0.22 98.4 587 15.5 1.3 0.90

LSR [27] 0.59 0.13 45.7 464 17.8 1.0 0.75
PIR [34] 0.71 0.12 57.2 414 18.2 1.86 0.94

Ours 0.66 0.11 35.0 345 14.1 1.1 0.68

Table 1: Quantitative results on self-reenactment. The results are reported on the combined
original test set of VoxCeleb1 [28] and the test set released by [59]. For CSIM metric, higher
is better (↑), while in all other metrics lower is better (↓).

Method CSIM Pose Exp.
X2Face [56] 0.57 2.2 1.5
FOMM [42] 0.73 7.7 2.0

Fast Bi-layer [60] 0.48 1.5 1.3
Neural-Head [7] 0.36 1.7 1.6

LSR [27] 0.50 1.4 1.2
PIR [34] 0.62 2.2 1.4

Ours 0.63 1.2 1.0

Table 2: Quantitative results on cross-subject reenactment. The results are reported on 200
video pairs from the test set of [59]. For CSIM metric, higher is better (↑), while in all other
metrics lower is better (↓).

Qualitative comparisons: Unfortunately, quantitative comparisons alone are insufficient to
capture the quality of reenactment. Hence, we opt for qualitative visual comparisons in mul-
tiple ways: (a) results in Fig. 2, (b) in the supplementary material, we provide more results in
self and cross-subject reenactment both on VoxCeleb1 and VoxCeleb2 datasets, and (c) we
also provide all self-reenactment videos for the small test set of VoxCeleb1 (and VoxCeleb2)
provided in [59] and cross-reenactment videos of randomly selected identities (providing
all possible pairs is not possible). As we can see from Fig. 2 and the videos provided in the
supplementary material, our method provides, for the majority of videos, the highest reenact-
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Source Target Ours X2Face FOMM
Neural

Head

Fast 

Bi-layer
LSR PIR

Figure 2: Qualitative results and comparisons for self (top three rows) and cross-subject
reenactment (last three rows) on VoxCeleb1. The first and second columns show the source
and target faces. Our method preserves the appearance and identity characteristics (e.g. face
shape) of the source face significantly better and also better captures fine-grained expression
details such as closed eyes (2nd and 5th row).

ment quality including accurate transfer of pose and expression and, significantly enhanced
identity preservation compared to all other methods. Importantly one great advantage of our
method on cross-subject reenactment, as shown in Fig. 2, is that it is able to reenact the
source face with minimal identity leakage (e.g facial shape) from the target face, in contrast
to landmark-based methods such as Fast Bi-layer [60]. Finally, to show that our method is
able to generalise well on other facial video datasets, we provide additional results on the
FaceForensics [37] and 300-VW [38] datasets in the supplementary material.

4.2 Ablation studies

We perform several ablation tests to (a) measure the impact of the identity and perceptual
losses, and the additional shape losses for the eyes and mouth, (b) validate our trained models
on synthetic, mixed and paired images, and (c) assess the use of optimization in G during
inference. For (a), we perform experiments on synthetic images with and without the identity
and perceptual losses. To evaluate the models, we randomly generate 5K pairs of synthetic
images (source and target) and reenact the source image with the pose and expression of
the target. As shown in Table 3, the incorporation of the identity and perceptual losses is
crucial to isolate the latent space directions that strictly control the head pose and expression
characteristics without affecting the identity of the source face. In a similar fashion, in
Table 3, we show the impact of the additional shape losses, namely the eye Leye and mouth
Lmouth losses. As shown, omitting these losses leads to higher pose and expression error.

For (b), we evaluate the three different training schemes, namely synthetic only (Section
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Method CSIM ↑ Pose ↓ Exp. ↓
Ours w/ Lid +Lper 0.52 2.4 1.2

Ours w/o Lid +Lper 0.42 2.5 1.2
Ours w/ Leye +Lmouth 0.52 2.4 1.2

Ours w/o Leye +Lmouth 0.52 2.6 1.5

Table 3: Ablation study on the impact of the identity Lid and perceptual Lper losses, and on
the impact of eye Leye and mouth Lmouth losses. CSIM is calculated between the source and
the reenacted images which are on different poses.

Method CSIM ↑ Pose ↓ Exp. ↓
Ours synthetic 0.60 1.7 1.1

Ours real & synthetic 0.63 1.6 1.1
Ours paired 0.66 1.1 0.8
w/o optim. 0.45 1.4 1.0

w/ optim. in G 0.66 1.1 0.8

Table 4: Ablation studies on self-reenactment using three different models: (a) trained on
synthetic images, (b) trained on both synthetic and real images, and (c) fine-tuned on paired
data, and on self reenactment with and without optimization of the generator G.

3.1), mixed synthetic-real (Section 3.2), and mixed synthetic-real fine-tuned with paired data
(Section 3.3) for self-reenactment. The results, shown in Table 4 (first three rows), illustrate
the impact of each of these training schemes with the one using paired data providing the
best results as expected. Finally, regarding (c), we report results of self-reenactment, with-
out any optimization and with optimization of G. As shown in Table 4 (last two rows), the
optimization of G improves our results (as expected) especially regarding the identity preser-
vation (CSIM). Moreover, with this ablation study we show that our learned directions do
not get adversely affected by the optimization step, as both Pose and Expression errors are
improving. We note that, to evaluate the different models in Table 4, we use the small test
set of [59].

5 Discussion and conclusions

This paper introduces a new approach to neural head/face reenactment using a 3D shape
model to learn disentangled directions of facial pose in latent GAN space. The approach
comes with specific advantages such as the use of powerful pre-trained GANs and 3D shape
models which have been studied and developed for several years in computer vision and
machine learning. These advantages however, in some cases, can turn into disadvantages.
For example, we observed that in extreme source and target poses the reenacted images
have some visual artifacts. We attribute this to the GAN inversion process, which renders
the inverted latent codes in extreme head poses less editable. Finally, we acknowledge that
although face reenactment can be used in a variety of applications such as art, video con-
ferencing etc., it can also be applied for malicious purposes. However, our work does not
amplify any of the potential dangers that already exist.
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Appendix

A Supplementary Material
In the supplementary material, we first provide an analysis of the discovered directions in
the latent space (Section A.1). Moreover, in Section A.2 we describe in detail the com-
putation of the shape losses and in Section A.3 we discuss the limitations of our method.
Additionally, we show results of our method on facial attribute editing (Section A.4). Fi-
nally, in Section A.5 we provide additional quantitative and qualitative results both on Vox-
Celeb1 [28] and VoxCeleb2 [9] datasets, we show results on FaceForensics [37] and 300-
VW [38] datasets and we compare with state-of-the-art methods for synthetic image editing
on FFHQ dataset [22].

A.1 Analysis of the learned directions

Linearity: In our work, we discover the disentangled directions that control the facial pose
by optimising a matrix A so that:

∆w = A∆p, (4)

where ∆w denotes a shift in the latent space and ∆p denotes the corresponding change in
the parameters space. That is, independently of the source attributes, we assume linearity
between a shift ∆w that is applied to an arbitrary code w and the induced change ∆p in the
parameter space – i.e., the change between the source and the reenacted attributes.

Several recent methods propose to learn linear directions in the latent space of Style-
GAN [39, 40, 51] in order to perform synthetic image editing, based on the fact that theW
latent space of StyleGAN [22] has been designed to be linear and disentangled. Furthermore,
in [30], Nitzan et al. provide a comprehensive analysis on the existence of linear relations
between the magnitude of change in the semantic attributes (e.g., pose, smile, etc) and the
traversal distance along the corresponding linear latent paths. In order to further support our
hypothesis (i.e., Eq. 4), we perform a similar analysis by examining the correlation between
random shifts in the latent space, ∆w, and the predicted shifts in the parameters space, ∆̂p.
Specifically, given a known change ∆p, we calculate the corresponding ∆w using Eq. 4 and
we apply this change (i.e., ∆w) onto random latent codes of images with different attributes.
Then, we calculate the predicted change ∆̂p between the source and the reenacted images.
In Fig. 3 we demonstrate the results of our analysis in four different attributes, namely, yaw
angle, pitch angle, smile, and open mouth. In all attributes, the calculated correlation is close
to 0.9 indicating strong linear relationship.

Disentanglement: Following the common understanding of disentanglement in the area
of GANs [8, 11, 22], we refer to a disentangled latent direction, when travelling across it,
leads to image generations where only a single attribute changes. To assess the directions
learnt by our method in terms of disentanglement, in Fig. 4 we illustrate the differences
between the source and reenacted attributes when changing a single attribute. In Fig. 4a,
we only transfer the yaw angle from the target image, while in Fig. 4b we only transfer the
smile expression from the target image. We observe that the differences between the rest of
the attributes (i.e., pitch, roll, and expression in Fig. 4a and yaw, pitch, and roll in Fig. 4b)
are clearly small, which indicates that the discovered directions are disentangled. We note
that these plots were calculated using 2000 random image pairs. In Fig. 4a, we show the
differences in yaw angle that were calculated as the absolute difference between the source
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Figure 3: Analysis of the correlation between shifts ‖∆w‖ in the latent space and the pre-
dicted changes |∆̂p| in the parameters space. We show results of four different attributes (yaw
and pitch angles, smile, and open mouth). In all attributes the correlation is high, indicating
strong linear relationship.

and the target yaw angles (measured in degrees), while the differences in the unchanged
attributes were calculated between the source and reenacted images. In a similar way, in
Fig. 4b we show the differences in expression that were calculated as the absolute difference
between the source and the target expression (pe coefficients).

A.2 Shape losses

In order to transfer the target facial pose to the source face, we calculate the reenactment loss
as:

Lr = Lsh +Leye +Lmouth, (5)

where Lsh is the shape loss and Leye, Lmouth the eye and mouth loss, respectively. As shown
in our ablation studies (Section 4.2), Leye, Lmouth losses contribute to more accurate expres-
sion transfer from the target face to the source face. Specifically, eye loss compares the inner
distances d = ‖(·, ·)‖1 of the eye landmark pairs (defined as Peye) of upper and lower eyelids
between the reenacted (Sr) and reconstructed ground-truth (Sgt ) shapes:

Leye = ∑
(i, j)∈Peye

∥∥d
(
Sr(i),Sr( j)

)
−d

(
Sgt(i),Sgt( j)

∥∥ , (6)

Similarly, mouth loss is computed between the mouth landmark pairs. In Fig. 5, we show
the landmark pairs that are used to calculate these losses. In more detail, Peye and Pmouth are
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(a) L1 distance in pitch, roll angles (in degrees) and expression (pe coefficients) when transferring only
the yaw angle from the target images.

(b) L1 distance in yaw, pitch and roll angles (in degrees) when transferring only the smile expression
from the target images.

Figure 4: Difference between the source and reenacted facial attributes when transferring
only one facial attribute (e.g., yaw angle and smile expression) from the target images.

defined as:

Peye =
[
(37,40),(38,42),(39,41),

(43,46),(44,48),(45,47)
]
,

Pmouth =
[
(49,55),(50,60),(51,59),(52,58),

(53,57),(54,56),

(61,65),(62,68),(63,67),(64,66)
]

A.3 Limitations
Our method introduces a new approach to neural face reenactment, which using a 3D shape
model learns the disentangled directions of facial pose in the latent space of a pretrained
GAN. Our framework is simple and effective, however there are few limitations. We ob-
served that most of failures happen when the source or target faces are on extreme head
poses. Specifically, as mentioned in Section 3.1, we estimated the distribution of each el-
ement of the pose parameters p by randomly generating 10K images using our pretrained
generator on VoxCeleb1 [28] dataset. As shown in Fig. 6, each attribute of the head pose
(yaw, pitch, roll) has a specific range. As a result, when the head pose of a real image is
outside that distribution, our model often produces visual artifacts. For instance, in the first
row of Fig. 7, the target yaw angle is −70◦ while on the second row the source pitch angle
is 33◦. Additionally, we notice that in some cases when the source and target head poses
have large distance between them (third row in Fig. 7), while we are able to successfully
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Figure 5: Depiction of the landmark pairs Peye and Pmouth that contribute to the corresponding
losses Leye and Lmouth. The landmarks of each pair are drawn with the same color.

Figure 6: Distribution of the three Euler angles of head pose (yaw, pitch, roll) extracted using
10K synthetic images from our pretrained GAN on VoxCeleb1 dataset.

transfer the head pose and expression, the reenacted images have visual artifacts that affect
the preservation of the source identity. We attribute this to the GAN inversion process, which
renders the inverted latent codes in extreme head poses less editable.

A.4 Image editing

Our method is able to discover the disentangled directions of pose and expression in the latent
space of StyleGAN2. Consequently, except from face reenactment, our model can perform
pose and expression editing by simply setting the desired head pose or expression. Fig. 8
illustrates results of per attribute editing. As shown, our model can alter the head pose (e.g.
yaw, pitch, roll) or the expression (e.g. open mouth, smile) by maintaining all other attributes
unchanged. Similarly, our method can be used in the frontalization task. We compare our
model with the methods of pSp [35] and R&R [64] and we report both qualitative (Fig. 9)
and quantitative (Table 5) results. Specifically, we randomly select 250 frames of different
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Source Target Reenacted

Figure 7: Cases where face reenactment fails, with the generated images being too blurry or
contaminated with artifacts. The first two columns show the source and target images, while
the reenacted images are presented on the last column.

identities from the VoxCeleb test set and we perform frontalization. In Table 5, we evaluate
the identity preservation (CSIM) and the pose error between the source and the frontalized
images.

Method CSIM ↑ Pose ↓
pSp [35] 0.40 3.0

R&R [64] 0.45 3.5
Ours 0.60 1.2

Table 5: Quantitative results on frontalization task. We compare our method with pSp [35]
and R&R [64] by evaluating the identity preservation (CSIM) and the Pose error between
the source and the frontalized images.

A.5 Additional results

We provide more results in self- (Fig. 10, 11) and cross-subject (Fig. 12) reenactment in
VoxCeleb1 [28] dataset and we compare our method with X2Face [56], FOMM [42], Fast
bi-layer [60], Neural-Head [7], LSR [27] and PIR [34]. Moreover, in Fig. 13, 14 we show
additional comparisons in VoxCeleb2 [9] dataset. Finally, we provide ALL self-reenactment
videos from the small test sets of VoxCeleb1 and VoxCeleb2, as defined in [59], with the
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Source Open mouth Smile Pitch Roll Yaw

Figure 8: Our method can perform pose and expression editing on real images. Specifically,
we are able to edit an attribute by keeping all other attributes unchanged. The first column
shows the source images, while the rest columns show editings of different expressions and
head poses.

exception of some videos, which are not available for download1, and 10 random pairs from
each dataset for cross-subject reenactment. Furthermore, we show that our method is able to
generalise well on other facial video datasets. In Fig. 15 we provide results on FaceForen-
sics [37] and 300-VW [38] datasets both on self (Fig. 15a) and on cross-subject (Fig. 15b)
reenactment.

Finally, to show the superiority of our method against methods for synthetic image edit-
ing, we compare against two state-of-the-art methods, namely ID-disentanglement [29] and
StyleFlow [2]. The authors of ID-disentanglement [29] introduce a method that learns to
disentangle the facial pose and the identity characteristics using a pretrained StyleGAN2
on FFHQ dataset. Additionally, StyleFlow [2] is a state-of-the-art method that finds mean-
ingful non-linear directions in the latent space of StyleGAN2 using supervision from mul-
tiple attribute classifiers and regressors. Both ID-disentanglement [29] and StyleFlow [2]
provide pretrained models using the StyleGAN2 generator trained on FFHQ dataset [22].
Consequently, in order to fairly compare against these methods, we train our model using
synthetically generated images from StyleGAN2 generator trained on FFHQ. We compare
against ID-disentanglement [29] and StyleFlow [2] on cross-subject reenactment using syn-
thetic images. Specifically, we use the small test set (1000 images) provided by the authors of
StyleFlow [2] and we randomly select 500 image pairs (source and target faces) to perform
face reenactment. In Table 6 and in Fig. 16, we show quantitative and qualitative results
of our method against ID-disentanglement [29] and StyleFlow [2]. As shown in Table 6
our method outperforms all other method both on identity preservation (CSIM) and on pose
transfer metrics, namely Pose, Exp. and NME. Additionally, as illustrated in Fig. 16, our
method can successfully edit the source image given the target facial pose, without altering
the source identity. On the contrary, ID-disentanglement (ID-dis) method [29] is not able to
preserve the source identity, while StyleFlow fails to faithfully transfer the target head pose
and expression.

1We were not able to download: id10178, id10269, id10595, id10675, id10902, id10919, id10966, id11207
from VoxCeleb1 and id00061, id00154, id01224, id03127, id04295, id04570, id04862, id04950, id05999, id08696
from VoxCeleb2.
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Source pSp R&ROurs

Figure 9: Face frontalization examples. We perform comparisons with pSp [35] and
R&R [64] and we show that our method successfully perform face frontalization by pre-
serving the identity of the source face.

Method CSIM Pose Exp. NME
ID-disentanglement [29] 0.56 2.0 0.12 12.0

StyleFlow [2] 0.67 2.6 0.13 16.0
Ours 0.80 1.1 0.09 10.1

Table 6: Quantitative comparisons against two state-of-the-art methods for synthetic image
editing, namely ID-disentanglement [29] and StyleFlow [2]. For CSIM metric, higher is
better (↑), while in all other metrics lower is better (↓).
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Source Target Ours X2Face FOMM Neural-Head Fast Bi-layer LSR PIR

Figure 10: Qualitative results and comparisons for self-reenactment on VoxCeleb1 [28]
dataset. The first and second columns show the source and target faces. We compare our
method with X2Face [56], FOMM [42], Neural-Head [7], Fast Bi-layer [60], LSR [27] and
PIR [34].
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Source Target Ours X2Face FOMM Neural-Head Fast Bi-layer LSR PIR

Figure 11: Qualitative results and comparisons for self-reenactment on VoxCeleb1 [28]
dataset. The first and second columns show the source and target faces. We compare our
method with X2Face [56], FOMM [42], Neural-Head [7], Fast Bi-layer [60], LSR [27] and
PIR [34].
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Source Target Ours X2Face FOMM Neural-Head Fast Bi-layer LSR PIR

Figure 12: Qualitative results and comparisons for cross-subject reenactment on Vox-
Celeb1 [28] dataset. The first and second columns show the source and target faces. We
compare our method with X2Face [56], FOMM [42], Neural-Head [7], Fast Bi-layer [60],
LSR [27] and PIR [34].
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Source Target Ours X2Face FOMM Neural-Head Fast Bi-layer LSR PIR

Figure 13: Qualitative results and comparisons for self-reenactment on VoxCeleb2 [9]
dataset. The first and second columns show the source and target faces. We compare our
method with X2Face [56], FOMM [42], Neural-Head [7], Fast Bi-layer [60], LSR [27] and
PIR [34].
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Source Target Ours X2Face FOMM Neural-Head Fast Bi-layer LSR PIR

Figure 14: Qualitative results and comparisons for cross-subject reenactment on Vox-
Celeb2 [9] dataset. The first and second columns show the source and target faces. We
compare our method with X2Face [56], FOMM [42], Neural-Head [7], Fast Bi-layer [60],
LSR [27] and PIR [34].
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Source Target Reenacted

(a) Self-reenactment.

Source Target Reenacted

(b) Cross-subject reenactment.
Figure 15: Qualitative results of our method for self (a) and cross-subject (b) reenactment on
FaceForensics [37] and 300-VW [38] datasets.
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Source Target Ours ID-dis StyleFlow

Figure 16: Qualitative comparisons against ID-disentanglement (ID-dis) [29] and Style-
Flow [2] using random source-target pairs from the small test set provided by the authors
of StyleFlow [2].
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