7,195 research outputs found

    Machine learning challenges in theoretical HEP

    Get PDF
    In these proceedings we perform a brief review of machine learning (ML) applications in theoretical High Energy Physics (HEP-TH). We start the discussion by defining and then classifying machine learning tasks in theoretical HEP. We then discuss some of the most popular and recent published approaches with focus on a relevant case study topic: the determination of parton distribution functions (PDFs) and related tools. Finally, we provide an outlook about future applications and developments due to the synergy between ML and HEP-TH.Comment: 7 pages, 3 figures, in proceedings of the 18th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2017

    Learning to Classify from Impure Samples with High-Dimensional Data

    Get PDF
    A persistent challenge in practical classification tasks is that labeled training sets are not always available. In particle physics, this challenge is surmounted by the use of simulations. These simulations accurately reproduce most features of data, but cannot be trusted to capture all of the complex correlations exploitable by modern machine learning methods. Recent work in weakly supervised learning has shown that simple, low-dimensional classifiers can be trained using only the impure mixtures present in data. Here, we demonstrate that complex, high-dimensional classifiers can also be trained on impure mixtures using weak supervision techniques, with performance comparable to what could be achieved with pure samples. Using weak supervision will therefore allow us to avoid relying exclusively on simulations for high-dimensional classification. This work opens the door to a new regime whereby complex models are trained directly on data, providing direct access to probe the underlying physics.Comment: 6 pages, 2 tables, 2 figures. v2: updated to match PRD versio

    The Machine Learning Landscape of Top Taggers

    Full text link
    Based on the established task of identifying boosted, hadronically decaying top quarks, we compare a wide range of modern machine learning approaches. Unlike most established methods they rely on low-level input, for instance calorimeter output. While their network architectures are vastly different, their performance is comparatively similar. In general, we find that these new approaches are extremely powerful and great fun.Comment: Yet another tagger included

    Direct optimisation of the discovery significance when training neural networks to search for new physics in particle colliders

    Full text link
    We introduce two new loss functions designed to directly optimise the statistical significance of the expected number of signal events when training neural networks to classify events as signal or background in the scenario of a search for new physics at a particle collider. The loss functions are designed to directly maximise commonly used estimates of the statistical significance, s/s+bs/\sqrt{s+b}, and the Asimov estimate, ZAZ_A. We consider their use in a toy SUSY search with 30~fb−1^{-1} of 14~TeV data collected at the LHC. In the case that the search for the SUSY model is dominated by systematic uncertainties, it is found that the loss function based on ZAZ_A can outperform the binary cross entropy in defining an optimal search region
    • 

    corecore