250,414 research outputs found

    Hamiltonian cycles in faulty random geometric networks

    Get PDF
    In this paper we analyze the Hamiltonian properties of faulty random networks. This consideration is of interest when considering wireless broadcast networks. A random geometric network is a graph whose vertices correspond to points uniformly and independently distributed in the unit square, and whose edges connect any pair of vertices if their distance is below some specified bound. A faulty random geometric network is a random geometric network whose vertices or edges fail at random. Algorithms to find Hamiltonian cycles in faulty random geometric networks are presented.Postprint (published version

    Statistics of Cycles: How Loopy is your Network?

    Full text link
    We study the distribution of cycles of length h in large networks (of size N>>1) and find it to be an excellent ergodic estimator, even in the extreme inhomogeneous case of scale-free networks. The distribution is sharply peaked around a characteristic cycle length, h* ~ N^a. Our results suggest that h* and the exponent a might usefully characterize broad families of networks. In addition to an exact counting of cycles in hierarchical nets, we present a Monte-Carlo sampling algorithm for approximately locating h* and reliably determining a. Our empirical results indicate that for small random scale-free nets of degree exponent g, a=1/(g-1), and a grows as the nets become larger.Comment: Further work presented and conclusions revised, following referee report

    Tensor Spectral Clustering for Partitioning Higher-order Network Structures

    Full text link
    Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms.Comment: SDM 201

    Mathematical evolution in discrete networks

    Get PDF
    This paper provides a mathematical explanation for the phenomenon of \triadic closure" so often seen in social networks. It appears to be a natural consequence when network change is constrained to be continuous. The concept of chordless cycles in the network's \irreducible spine" is used in the analysis of the network's dynamic behavior. A surprising result is that as networks undergo random, but continuous, perturbations they tend to become more structured and less chaotic
    corecore