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Abstract

In this paper we analyze the Hamiltonian properties of faulty random networks.
This consideration is of interest when considering wireless broadcast networks. A ran-
dom geometric network is a graph whose vertices correspond to points uniformly and
independently distributed in the unit square, and whose edges connect any pair of
vertices if their distance is below some specified bound. A faulty random geometric
network is a random geometric network whose vertices or edges fail at random. Algo-
rithms to find Hamiltonian cycles in faulty random geometric networks are presented.

1 Introduction

The use of distributed computing in wireless networks is a computational model that is gain-
ing increasing importance in computer science and telecommunication. In this setting, the
processors, scattered geographically, communicate through transmitters, effectively form-
ing a wireless broadcast network. The following setting arises in applications of wireless
broadcast networks: A set of stations are located in some geographical area. These sta-
tions can compute, send and receive messages in synchronous steps. All the transmitters
have the same power, but their effective broadcast range is limited to some specified dis-
tance r, that is, two stations can only communicate if their distance is at most r. Unit
disk graphs provide a convenient way to model this setting: A graph is a unit disk graph
if each vertex can be mapped to a point in the plane in such a way that two vertices are
adjacent if and only if their distance is at most some specified bound r. Several researchers
have shown that some important problems on broadcast networks are, in fact, classic prob-
lems restricted to unit disk graphs (see [3]). However, as pointed by Clark, Colbourn and
Johnson in [4], unit disk graphs assume that no interference from weather, mountains or
other obstacles affects the communication between two stations. Also, this model does not
take into account the possibility that individual stations go down because of problems with
power supply, mechanical damages, sabotage, etc.

The advent of mobile computing and of cellular phones introduces an uncertainty with
respect to the positions of the stations. Assuming that the stations are homogeneously dis-
tributed in the plane is a simplified way to cope with that changing environment. Random
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geometric graphs come at hand to model such a situation: A random geometric graph
(RGG) is a unit disk graph whose vertices are points uniformly distributed in the unit
square.

A Hamiltonian cycle is a cycle (or circuit) that visits once each vertex of a graph. If a
graph has a Hamiltonian cycle, it is said that the graph is Hamiltonian. Deciding whether
or not a given graph has a Hamiltonian cycle is a well-known NP-complete problem [6].
The problem is NP-complete even when restricted to unit disk graphs [7]. The question
whether a uniform Gn,m or binomial Gn,p random graph is or not Hamiltonian is well solved;
see paper viii of [1] for an extensive account.

In this paper we present algorithms to find Hamiltonian paths on a random geometric
network with random faults. This is an important issue, because if a network has this
property it is possible to build a path to efficiently perform distributed computations based
on end-to-end communication protocols, which allow distributed algorithms to treat an
unreliable network as a reliable channel [8]. Both edge failures and vertex failures are
taken into account, keeping in mind that, as said, edge failures can be interpreted as the
inability to communicate between two stations because of the presence of some unexpected
obstacle and vertex failures can be interpreted as the inability to perform computation in
inoperative stations.

2 Preliminaries

In the following, a network is modeled by a graph, where processors correspond to vertices
and communication channels correspond to edges. Let G be a graph and let F be a
subgraph of G; G represents a fault-free graph and F represents the resulting graph after
the occurrence of (edge or vertex) faults in G. In this paper we differentiate between edge
faults and vertex faults: graphs with faulty edges are the result of removing edges from
an original graph; graphs with faulty vertices are the result of removing vertices from an
original graph together with the edges incident to the removed vertices. In graph theoretical
terms, a graph with faulty vertices refers to a vertex induced subgraph of an original graph
and a graph with faulty edges refers to a subgraph of an original graph.

Let G = (V,E) be a graph and let f ∈ (0, 1) denote its vertex failure probability. We
assume that vertex faults happen independently and with a constant probability f . Let V ′

be a subset of V where for all v ∈ V , Pr [v ∈ V ′] = 1 − f , independently for all vertices
in V . Then we say that the subgraph of G induced by V ′ is a graph with random faulty
vertices. Given G and f , we denote this probability space as FN (G, f).

Analogously, let G = (V,E) be a graph and let f ∈ (0, 1) denote its edge failure
probability. We assume that edge faults happen independently and with a constant proba-
bility f . Let E′ be a subset of E where for all e ∈ E, Pr [e ∈ E′] = 1−f , independently for
all edges in E. Then we say that the subgraph of G induced by E′ is a graph with random
faulty edges. Given G and f , we denote this probability space as FE(G, f).

A graph is a unit disk graph if each vertex can can be mapped to a point in the plane
in such a way that two vertices are adjacent if and only if their distance is at most some
specified bound r. Equivalently, a unit disk graph can be defined as the intersection graph
of a set of disks with radius r [3].

Observe that we have to fix which kind of norm is used to measure distances in the
plane. Under the lp norm (p > 1), the distance ‖x − y‖p between two points x = (x1, y1)
and y = (x2, y2) is (|x1 − x2|p + |y1 − y2|p)1/p. Under the l∞ norm, their distance is
max{|x1−x2|, |y1−y2|}. For sake of simplicity, we use the l∞ norm all through this paper.

Let r be a positive number and let V be any set of points in the unit square ([0, 1]2).
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A geometric graph G(V ; r) with vertex set V and radius r is the graph G = (V,E) where
E = {uv : u, v ∈ V ∧ 0 < ‖u − v‖ 6 r}. By definition, a geometric graph is a unit disk
graph. Notice that a geometric graph with faulty vertices is also a geometric graph, while
a geometric graph with faulty edges is not.

Let (Xi)i>1 be a sequence of u.i.d. points in the unit square and let (ri)i>1 be a
sequence of positive numbers. For all n ∈ N, call Xn = {X1, . . . , Xn}. For any natural n,
the graph G(Xn; rn) is a random geometric graph with n vertices and radius rn.

All through this paper we restrict our attention to the particular case of random
geometric graphs in l∞ whose radius is of the form

rn =
√
an
n

where rn → 0 and an/ log n→∞.

In [9] it is shown that this choice guarantees almost surely the construction of connected
graphs—disconnected fault-free networks would not make much sense in our setting. In
the following, we shall set bn = an/ log n.

Finally, recall that a sequence of events (En)n∈N occurs with high probability if
Pr [En]→ 1.

3 Hamiltonian cycles in RGGs with vertex faults

In this section we deal with the existence of Hamiltonian cycles in random geometric graphs
with random vertex faults. The following definition and its subsequent lemma capture the
property that vertices of a geometric graph are “nicely spread” on the unit square.

Definition 1 (Nice graphs). Consider any set Vn of n points in [0, 1]2, which together
with a radius rn, induce a geometric graph Gn = G(Vn; rn). Dissect the unit square into
4 d1/rne2 boxes of size sn × sn with sn = 1/2 d1/rne, placed packed in [0, 1]2 starting at
(0, 0). Given ε ∈ (0, 1), let us say that Gn is ε-nice if every box of this dissection contains
at least (1− ε)1

4an points and at most (1 + ε)1
4an points.

Notice that, by construction, all the boxes in the above dissection exactly fit in the
unit square and that 2sn 6 rn < 3sn. So, two vertices in the same or in neighboring boxes
are connected by an edge, and two vertices in boxes whose centers lie at a distance greater
than 3sn are not connected. All through the paper, when we speak about boxes we shall
understand the above dissection. For any i ∈ [κn], let B(i) denote the i-th box in the
dissection, according to some arbitrary but fixed order. Also, let α(i) denote the number
of vertices of Gn in box B(i). Our interest in nice graphs is that, with high probability,
random geometric are nice:

Lemma 1 ([5]). Let ε ∈ (0, 1
5). Then, limn→∞Pr [G(Xn; rn) is ε-nice] = 1.

The following definition expresses the fact that vertices of nice graphs fail “appropri-
ately:”

Definition 2 (Friendly graphs). Let ε ∈ (0, 1
5) and f ∈ [0, 1) be two constants. Let Gn

be an ε-nice geometric graph with n points and radius rn and let Fn be a vertex induced
subgraph of Gn. We say that F is (ε, f)-friendly if every box of this dissection contains at
least 1

4(1− ε)2(1− f)an points of Fn and at most 1
4(1 + ε)2(1− f)an points of Fn.

The following lemma states that, with high probability, nice geometric graphs with
random faulty vertices are friendly.
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Lemma 2. Let ε ∈ (0, 1
5) and f ∈ [0, 1) be two constants. For all n ∈ N, let Gn be an

ε-nice graph with n vertices and radius rn. Then,

lim
n→∞Pr [FN (Gn, f) is (ε, f)-friendly] = 1.

Proof. For any n, let Fn be drawn from FN (Gn, f). Choose a box in the dissection; let
yn be the number of points of Gn in this box and let Zn be the random variable counting
the number of points of Fn in this box. As Gn is ε-nice, we have that (1 − ε)1

4an 6 yn 6
(1 + ε)1

4an. On the other hand, as Zn is a sum of yn Bernoulli variables with parameter
1− f , (1− ε)1

4an(1− f) 6 E [Zn] = yn(1− f) 6 (1 + ε)1
4an(1− f). The result is obtained

using Chernoff’s bounds and Boole’s inequality.

We are ready to prove that, with high probability, friendly random geometric graphs
with random vertex faults are Hamiltonian.

Lemma 3. Let ε ∈ (0, 1
5) and f ∈ (0, 1) be two constants. Let Gn be any ε-nice geometric

graph with n vertices and radius rn and let Fn be an (ε, f)-friendly vertex induced subgraph
of Gn. Then, Fn is Hamiltonian and there exists a O(|E(Fn)|) algorithm to find it.

Proof. First of all, notice that any square grid with diagonal edges has a Hamiltonian cycle;
see Figure 1. Also, remark that in an (ε, f)-friendly graph, any pair of points in the same
box or in neighboring boxes are connected by an edge. For each box in the dissection,
construct a path visiting all the points of Fn in the box. This is always possible, since
vertices in a box form a clique. Then, following the order given by a Hamiltonian cycle in
the κn × κn square grid, patch the last point of each path with the first point of the next
path. This is always possible since the friendness of Fn ensures the existence of at least
two vertices in each box. This construction yields a Hamiltonian cycle for Fn. It is clear
that this algorithm can be done in time O(|E(Fn)|).

The same argument implies that non-faulty random geometric graphs are also Hamil-
tonian. Therefore we have the following result:

Theorem 1. With high probability, random geometric graphs with n vertices and radius
rn =

√
an/n, where rn → 0 and an/ logn→∞, and random vertex faults with probability

f ∈ [0, 1) are Hamiltonian.

Observe that just taking f = 0 in the previous theorem, we get that random geometric
graphs without faults are, with high probability, Hamiltonian.

4 Hamiltonian cycles in RGGs with edge faults

In this section we deal with the existence and search of Hamiltonian cycles in random
geometric graphs with random edge faults.

Lemma 4. Let ε ∈ (0, 1
5) and f ∈ (0, 1) be two constants. For all n ∈ N, let Gn be an

ε-nice geometric graph with n vertices and radius rn. Then,

lim
n→∞Pr [FE(Gn, f) is Hamiltonian] = 1.

Proof. Let n be any natural. Let Fn be an edge faulty random geometric graph of Gn
drawn from FE(G, f). For a box B and a vertex u ∈ V (Fn) inside box B, let d(u,B)
denote the number of neighbors of u in Fn inside box B.
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Let us compute the probability π that, for some box B and some vertex u ∈ V (Fn)
inside B, d(u,B) is smaller than 2:

π = Pr
[∨κni=1 ∨u∈B(i) d(u,B(i)) < 2

]

6
κn∑

i=1

∑

u∈B(i)

Pr [d(u,B(i)) < 2]

6
κn∑

i=1

∑

u∈B(i)

(
Pr [d(u,B(i)) = 0] + Pr [d(u,B(i)) = 1]

)

6 4 d1/rne2 · (1 + ε)1
4an ·

(
f (1−ε) 1

4
an−1 + (1− f)f (1−ε) 1

4
an−2

)

= d1/rne2 (1 + ε)anf (1−ε) 1
4
an−2

6 (1 + ε)3nf (1−ε) 1
4
bn logn−2

6 (1 + ε)3nf (1−ε) 1
5
bn logn.

Set t = −3/ log f ; then,

π 6 (1 + ε)3nf t logn = (1 + ε)3n1+t log f = (1 + ε)3n−2. (1)

Observe that inside each box B(i), there is a Gα(i),1−f binomial random graph. The
probability that such a binomial random graph has a Hamiltonian cycle is the same that
the probability that each of its vertices has at least degree 2 (see Theorem viii.11 of [1]).
Therefore, with probability greater than 1−(1+ε)3n−2, each box of the dissection contains
a Hamiltonian cycle.

In order to get a Hamiltonian cycle for Fn, we shall patch the Hamiltonian cycles
inside each box. We proceed as shown in Figure 2: The cycle will be made in a snake-like
way, removing two edges from each Hamiltonian cycle inside each box and joining the paths
with the small Hamiltonian cycles of the previous and next boxes. The probability that
this construction cannot be done is bounded above by

((
f2
)α(1)α(2)

) κn−1∏

i=2

(
f2
)(α(i)−1)α(i+1) 6

(
f2(1−ε) 1

4
an
)(

f2(1−ε)2 1
16
a2
n

)4d1/rne2−1
. (2)

Therefore, the probability that Fn does not have a Hamiltonian cycle is smaller than
the sum of the probabilities (1) and (2), which tends to zero as n tends to infinity.

The previous lemma shows, with high probability, the existence of a Hamiltonian
cycle in a random geometric graph with edge faults. Still, it would be desirable to have a
polynomial time algorithm to search for such a Hamiltonian cycle. In the remaining of this
section we present and analyze a Las Vegas algorithm that given a geometric graph with
edge faults, either returns a Hamiltonian cycle or reports that none is found.

Algorithm FGeo-HAM. Let Gn be a geometric graph with n vertices and radius rn.
Let Fn be an edge induced subgraph of Gn. Given a realization of Fn and rn, the following
algorithm computes a Hamiltonian cycle of Fn or fails.

Dissect the unit square into κn = 4 d1/re2 boxes of side sn = 1/2 d1/rne. For all
i ∈ [κn], let B(i) be the i-the box of this dissection, according to the snake-like ordering.

According to the proof of Lemma 4, to obtain a Hamiltonian cycle for F , we have to
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• find a Hamiltonian cycle for the vertices in each box, and
• patch the cycles in an snake-like way.

In order to perform the first step, we resort to the HAM algorithm of Bollobás,
Fenner and Frieze [2]. For each box i ∈ [κn], the HAM algorithm finds a Hamiltonian
cycle 〈ui,0, ui,1, . . . , ui,α(i)−1, ui,0〉 with edges in V (Fn) for the vertices in B(i) or fails. If
HAM does not find a Hamiltonian cycle for some box B(i), FGeo-HAM reports that no
Hamiltonian cycle for Fn can be found.

To simplify notation, in the following, a subindex (i, j) must be understood as (i, j
mod α(i)).

In order to perform the second step, for each box B(i), the algorithm needs to:

1. Decide in which direction will be the cycle traversed: 〈ui,0, ui,1, . . . , ui,α(i)−1〉 or
〈ui,α(i)−1, . . . , ui,1, ui,0〉.

2. Decide which edge of the cycle will be removed to patch with the cycle in box B(i−1)
(unless i = 1).

3. Decide which edge of the cycle will be removed to patch with the cycle in box B(i+1)
(unless i = κn).

Of course, these three decisions must agree with the edges in E(Fn). In order to take
the above decisions, we use a directed multistage flow network. This network will contain
2κn stages, where stages 2i− 1 and 2i are defined by the box B(i):

• Stage 1 contains a source node s and stage 2κn contains a target node t.
• For all j ∈ [α(1)], the network contains two nodes w+

1,j and w−1,j at stage 2.
• For all j ∈ [α(κn)], the network contains two nodes v+

κn,j
and v−κn,j at stage 2κn − 1.

• For all i ∈ {2, . . . , κn − 1} and all j ∈ [α(i)], the network contains two nodes v+
i,j and

v−i,j at stage 2i− 1 and two nodes w+
i,j and w−i,j at stage 2i.

The connections in this network are given by the following rules, defined from stage 2i− 1
to stage 2i by a box B(i) and from stage 2i to stage 2i + 1 by boxes B(i) and B(i + 1)
(x→ y means connect node x towards node y):

• For all i ∈ {2, . . . , κn − 1} and all j, k ∈ [α(i)], add v+
i,j → w+

i,k provided k 6= j + 1.
• For all i ∈ {2, . . . , κn − 1} and all j, k ∈ [α(i)], add v−i,j → w−i,k provided k 6= j − 1.
• The source s is connected towards all nodes in stage 2, and all nodes in stage 2κn− 1

are connected towards the target t.
• For all i ∈ [κn − 1], and for all j ∈ [α(i)] and all k ∈ [α(i + 1)], do the following

connections (p ∼ q means pq ∈ E(Fn)):

– If ui,j ∼ ui+1,k and ui,j+1 ∼ ui+1,k−1, then add w+
i,j → v+

i+1,k.
– If ui,j ∼ ui+1,k−1 and ui,j+1 ∼ ui+1,k, then add w+

i,j → v−i+1,k.
– If ui,j+1 ∼ ui+1,k and ui,j ∼ ui+1,k−1, then add w−i,j → v+

i+1,k.
– If ui,j+1 ∼ ui+1,k−1 and ui,j ∼ ui+1,k, then add w−i,j → v−i+1,k.

Let σh ∈ {+,−} for h ∈ [κn]. By construction, the above network has the following
property: If

〈
s, wσ1

1,j1
, . . . , vσhh,ih , w

σh
h,jh

, v
σh+1

h+1,ih+1
, w

σh+1

h+1,jh+1
, . . . , v

σκn
κn,iκn

, t
〉
,

is a valid path of nodes in the network, then F contains the Hamiltonian cycle determined
by
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〈 →
π
(
s, wσ1

1,j1

)
,

. . . ,
→
π
(
vσhh,ih , w

σh
h,jh

)
,
→
π
(
v
σh+1

h+1,ih+1
, w

σh+1

h+1,jh+1

)
, . . . ,

→
π
(
v
σκn
κn,jκn

, t
)
,

. . . ,
←
π
(
v
σh+1

h+1,ih+1
, w

σh+1

h+1,jh+1

)
,
←
π
(
vσhh,ih , w

σh
h,jh

)
, . . . ,

←
π
(
s, wσ1

1,j1

)

〉

where
→
π and

←
π are the following paths (illustrated in Figure 6):

→
π (s, w+

1,j1
) = 〈u1,j1〉

→
π (s, w−1,j1) = 〈u1,j1+1〉

→
π (v+

h,ih
, w+

h,jh
) = 〈uh,ih , uh,ih+1, . . . , uh,jh〉

→
π (v−h,ih , w

−
h,jh

) = 〈uh,ih−1, uh,ih−2, . . . , uh,jh+1〉
→
π (v+

κn,iκn
, t) = 〈uκn,iκn , uκn,iκn+1, . . . , uκn,iκn−1〉

→
π (v−κn,iκn , t) = 〈uκn,iκn−1, uκn,iκn−2, . . . , uκn,iκn 〉

←
π (v+

h,ih
, w+

h,jh
) = 〈uh,jh+1

, uh,jh+2
, . . . , uh,ih−1

〉
←
π (v−h,ih , w

−
h,jh

) = 〈uh,jh , uh,jh−1
, . . . , uh,ih〉

←
π (s, w+

1,j1
) = 〈u1,j1+1, u1,j1+2, . . . , u1,j1〉

←
π (s, w−1,j1) = 〈u1,j1 , u1,j1−1, . . . , u1,j1+1〉

In order to discover whether there is a path from s to t in the multistage network,
we use a depth first search algorithm. If t is reachable from s, then FGeo-HAM returns
the corresponding Hamiltonian cycle; otherwise, FGeo-HAM reports that no Hamiltonian
cycle for Fn can be found.

The following result characterizes the behavior of the FGeo-HAM algorithm on nice
random geometric with random edge faults.

Lemma 5. Let ε ∈ (0, 1
5) and f ∈ (0, 1) be two constants. For all n ∈ N, let Gn be

an ε-nice geometric graph with n vertices and radius rn. Let Tn be the random variable
that measures the cost of applying algorithm FGeo-HAM to FE(Gn, f). Let Hn be the
0/1 random variable that indicates if algorithm FGeo-HAM returns a Hamiltonian cycle in
FE(Gn, f). Then,

lim
n→∞Pr

[
Tn 6 γna3+ε

n

]
= 1 and lim

n→∞Pr [In = 1] = 1,

for some constant γ > 0.

Proof. Let Fn be drawn from FE(Gn, f).
We first analyze the cost of the FGeo-HAM algorithm: As Gn is spreading, we have

maxi∈[κn] α(i) = O(an). The cost of finding (or not) a small Hamiltonian cycle in a box
with HAM is O(a4+ε

n ) [2]. As there are O(n/an) boxes, each with O(an) vertices, we need
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time O(na3+ε
n ) to compute all the small Hamiltonian cycles. Then, we have to find a path

in a multistage graph with O(n/an) stages and O(an) nodes per stage, which can be done
in O(an · n/an) = O(n) time. Thus, the total cost is O(na3+ε

n + n) = O(na3+ε
n ).

We now analyze the failure probability of FGeo-HAM. There are two reasons for
failure: no small Hamiltonian cycle is found for some box, or no path exists from s to t.
The probability that HAM does not find a Hamiltonian cycle on a Gn,p binomial random
graph is o(2−n) [2]. So, the probability of not finding a small Hamiltonian cycle for some
of the O(n/an) boxes is o(2−an · n/an) = o(n1−bn/bn logn), which tends to zero because bn
tends to infinity. The probability that no path exists from s to t is given by Equation (2),
which tends to 0. Therefore, the probability that FGeo-HAM returns a Hamiltonian cycle
for a graph drawn from FE(Gn, f) tends to 1 as n tends to infinity.

As a consequence of Lemmas 1 and 5, we have:

Theorem 2. With high probability, the FGeo-HAM algorithm returns in polynomial time
a Hamiltonian cycle on random geometric graphs with n vertices and radius rn =

√
an/n,

where rn → 0 and an/ logn→∞, and random edge faults, provided the failure probability
is constant.
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(a) Even number of vertices (b) Odd number of vertices

Figure 1: Hamiltonian cycles in grid graphs with diagonal edges.

Figure 2: How to patch a big Hamiltonian cycle for the faulty graph using the
small Hamiltonian cycles inside each box of the dissection.
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s

1

w−1,α(1)−1

...

w−1,1

w−1,0

w+
1,α(1)−1

...

w+
1,1

w+
1,0

2

v−i,α(i)−1

...

v−i,1

v−i,0

v+
i,α(i)−1

...

v+
i,1

v+
i,0

2i−1

w−i,α(i)−1

...

w−i,1

w−i,0

w+
i,α(i)−1

...

w+
i,1

w+
i,0

2i

v−κ,α(κ)−1

...

v−κ,1

v−κ,0

v+
κ,α(κ)−1

...

v+
κ,1

v+
κ,0

2κ−1

t

2κ

· · · · · ·

Figure 3: Boxes in the multistage network build by the FGeo-HAM algorithm.

v+
i,0

v+
i,1

v+
i,2

v+
i,3

v+
i,4

v−i,0

v−i,1

v−i,2

v−i,3

v−i,4

w+
i,0

w+
i,1

w+
i,2

w+
i,3

w+
i,4

w−i,0

w−i,1

w−i,2

w−i,3

w−i,4

Figure 4: Connections in the multistage network build by the FGeo-HAM
algorithm in a box B(i). (Part 1)
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ui,0 ui,1 ui,2 ui,3 ui,4

ui+1,0 ui+1,1 ui+1,2 ui+1,3 ui+1,4

(a) Thin drak lines represent edges between B(i) and B(i + 1) and bold
light lines represent the cycle in the two boxes

w+
i,0

w+
i,1

w+
i,2

w+
i,3

w+
i,4

w−i,0

w−i,1

w−i,2

w−i,3

w−i,4

v+
i+1,0

v+
i+1,1

v+
i+1,2

v+
i+1,3

v+
i+1,4

v−i+1,0

v−i+1,1

v−i+1,2

v−i+1,3

v−i+1,4

(b) Corresponding connections from stage 2i to stage 2i+ 1.
The four colors represent the four kinds of arcs.

Figure 5: Connections in the multistage network built by the FGeo-HAM
algorithm for boxes B(i) and B(i+ 1). (Part 2)
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u1,j1

u1,j1+1

u1,j1+2

←
π (s, w+

1,j1
)

u1,j1−1

u1,j1

u1,j1+1

←
π (s, w−1,j1

)

uh,ih

uh,ih+1

uh,jh

uh,jh+1

uh,jh+2

uh,ih−1

→
π (v+

h,ih
, w+

h,jh
)

←
π (v+

h,ih
, w+

h,jh
)

uh,ih

uh,jh−1

uh,jh

uh,jh+1

uh,ih−2

uh,ih−1

→
π (v−h,ih

, w−h,jh
)

←
π (v−h,ih

, w−h,jh
)

uκ,iκ

uκ,iκ+1

uκ,iκ−1

→
π (v+

κ,iκ
, t)

uκ,iκ

uκ,iκ−2

uκ,iκ−1

→
π (v−κ,iκ

, t)

Figure 6: Illustration of the paths. Original cycles are drawn clockwise with
a thin line, dashed at the edges that must be deleted. The bold gray line with
an arrow shows the paths

→
π and

←
π , together with their direction. The thin

arrows show the points and direction where to patch the paths with the ones of
the previous or following box. The dashed lines are the edges that are removed

from the cycles.
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