1,372 research outputs found

    Model-driven engineering approach to design and implementation of robot control system

    Full text link
    In this paper we apply a model-driven engineering approach to designing domain-specific solutions for robot control system development. We present a case study of the complete process, including identification of the domain meta-model, graphical notation definition and source code generation for subsumption architecture -- a well-known example of robot control architecture. Our goal is to show that both the definition of the robot-control architecture and its supporting tools fits well into the typical workflow of model-driven engineering development.Comment: Presented at DSLRob 2011 (arXiv:cs/1212.3308

    An autonomous satellite architecture integrating deliberative reasoning and behavioural intelligence

    Get PDF
    This paper describes a method for the design of autonomous spacecraft, based upon behavioral approaches to intelligent robotics. First, a number of previous spacecraft automation projects are reviewed. A methodology for the design of autonomous spacecraft is then presented, drawing upon both the European Space Agency technological center (ESTEC) automation and robotics methodology and the subsumption architecture for autonomous robots. A layered competency model for autonomous orbital spacecraft is proposed. A simple example of low level competencies and their interaction is presented in order to illustrate the methodology. Finally, the general principles adopted for the control hardware design of the AUSTRALIS-1 spacecraft are described. This system will provide an orbital experimental platform for spacecraft autonomy studies, supporting the exploration of different logical control models, different computational metaphors within the behavioral control framework, and different mappings from the logical control model to its physical implementation

    Autonomous stair climbing

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.Includes bibliographical references (p. 71-73).As the face of warfare changes, the military has started to explore the application of robotics on the battlefield. Robots give soldiers a flexible, technologically advanced, disposable set of eyes and ears to assist them with their goal. This thesis deals with the design and implementation of a system to allow a small highly mobile tactical robot to climb stairs autonomously. A subsumption architecture is used to coordinate and control the maneuver. Various approaches to the problem including evolved architectures and use of contraction analysis are explored. Code was written and tested for functionality with basic test software. The functionality of parts of the system and control architecture was tested on the robot in a simulated operational environment.by Kailas Narendran.M.Eng

    Autonomy in the real real-world: A behaviour based view of autonomous systems control in an industrial product inspection system

    Get PDF
    The thesis presented in this dissertation appears in two sequential parts that arose from an exploration of the use of Behaviour Based Artificial Intelligence (BBAI) techniques in a domain outside that of robotics, where BBAI is most frequently used. The work details a real-world physical implementation of the control and interactions of an industrial product inspection system from a BBAI perspective. It concentrates particularly on the control of a number of active laser scanning sensor systems (each a subsystem of a larger main inspection system), using a subsumption architecture. This industrial implementation is in itself a new direction for BBAI control and an important aspect of this thesis. However, the work has also led on to the development of a number of key ideas which contribute to the field of BBAI in general. The second part of the thesis concerns the nature of physical and temporal constraints on a distributed control system and the desirability of utilising mechanisms to provide continuous, low-level learning and adaptation of domain knowledge on a sub-behavioural basis. Techniques used include artificial neural networks and hill-climbing state-space search algorithms. Discussion is supported with examples from experiments with the laser scanning inspection system. Encouraging results suggest that concerted design effort at this low level of activity will benefit the whole system in terms of behavioural robustness and reliability. Relevant aspects of the design process that should be of value in similar real-world projects are identified and emphasised. These issues are particularly important in providing a firm foundation for artificial intelligence based control systems

    Dynamic networks for robotic control and behaviour selection in interactive environments

    Get PDF
    Traditional robotics have the capabilities of the robot hard coded and have the robot function in structured environments (structured environments are those that are predefined for a given task). This approach can limit the functionality of a robot and how they can interact in an environment. Behaviour networks are reactive systems that are able to function in unstructured dynamic environments by selecting behaviours to execute based on the current state of the environment. Behaviour networks are made up of nodes that represent behaviours and these store an activation value to represent the motivation for that behaviour. The nodes receive inputs from a variety of sources and pass proportions of that input to other nodes in the network.Behaviour networks traditionally also have their capabilities predefined. The main aim of this thesis is to expand upon the concepts of traditional robotics by demonstrating the use of distributed behaviours in an environment. This thesis aims to show that distributing object specific data, such as; behaviours and goals, will assist in the task planning for a mobile robot.This thesis explores and tests the traditional behaviour network with a variety of experiments. Each experiment showcases particular features of the behaviour network including flaws that have been identified. Proposed solutions to the found flaws are then presented and explored. The behaviour network is then tested in a simulated environment with distributed behaviours and the dynamic behaviour network is defined. The thesis demonstrates that distributed behaviours can expand the capabilities of a mobile robot using a dynamic behaviour network

    MIT Mobile Robots - What's Next?

    Get PDF
    The MIT Mobile Robot Project began in January of 1985 with the objective of building machines that could operate autonomously and robustly in dynamically changing environments. We now have four working robots, each progressively more intelligent and sophisticated. All incorporate some rather novel ideas about how to build a control system that can adequately deal with complex environments. The project has also contributed some innovative and creative technical solutions in terms of putting together sensors, actuators, power supplies and processing power into whole systems that actually work. From our experiences over the past two and a half years, we have gained insight into the real issues and problems and what the goals should be for future robotics research. This paper gives our perspectives on mobile robotics: our objectives, experiences, mistakes and future plans.MIT Artificial Intelligence Laborator
    corecore