
Autonomous Stair Climbing

By

Kailas Narendran

B.S. Electrical Engineering & Computer Science
Massachusetts Institute of Technology, 2001

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTERS OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FEBRUARY 2003

Copyright © 2003 Kailas Narendran. All Rights Reserved

The author hereby grants to MIT permission to reproduce and to distribute publicly paper
and electronic copies of this thesis document in whole or in part.

Signature of Author
' epa Aient of Electrical Engineering and Computer Science

Certified by __.

Jamie Anderson
Charles Stark Draper Laboratory

Thesis Sypervisor

Certified by
Prof. Kaelbling

Professor of Computer Science and Engineering
Thesis Advisor

Accepted by _
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 3 0 2003 BARKER

LIBRARIES

[This Page Left Blank Intentionally]

2

Autonomous Stair Climbing

By

Kailas Narendran

Submitted to the Department of Electrical Engineering and Computer Science on January
15, 2003, in partial fulfillment of the requirements for the Degree of Masters of

Engineering in Electrical Engineering and Computer Science

Abstract

As the face of warfare changes, the military has started to explore the application

of robotics on the battlefield. Robots give soldiers a flexible, technologically advanced,
disposable set of eyes and ears to assist them with their goal. This thesis deals with the

design and implementation of a system to allow a small highly mobile tactical robot to

climb stairs autonomously. A subsumption architecture is used to coordinate and control

the maneuver. Various approaches to the problem including evolved architectures and

use of contraction analysis are explored. Code was written and tested for functionality
with basic test software. The functionality of parts of the system and control architecture
was tested on the robot in a simulated operational environment.

Technical Supervisor: Dr. Jamie Anderson
Title: Principal Member of Technical Staff & Group Leader GBB3

Thesis Advisor: Professor Leslie P. Kaelbling
Title: Professor of Computer Science and Engineering

3

[This Page Left Blank Intentionally]

4

ACKNOWLEDGEMENT
January 15, 2003

This thesis was prepared at The Charles Stark Draper Laboratory, Inc. based on work
supported by the Naval Air Warfare Center, Aircraft Division and The Defense
Advanced Research Projects Agency (DARPA) under Contract N00421-01 -C-0297.

Publication of this thesis does not constitute approval by Draper or the sponsoring agency
of the findings or conclusions contained herein. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the author and do not
necessarily reflect the views of the Naval Air Warfare Center, Aircraft Division and
DARPA. It is published for the exchange and stimulation of ideas.

(Author's signature)

5

[This Page Left Blank Intentionally]

6

Table of Contents

TABLE OF CONTENTS 7

TABLE OF FIGURES 9

TABLE OF TABLES 10

CHAPTER 0 11

ACKNOWLEDGEMENTS 11

CHAPTER 1 12

INTRODUCTION 12
MOTIVATION t3
CHAPTER PREVIEW 21

CHAPTER 2 22

CANDIDATE CONTROL ARCHITECTURES 22
VEHICLE STATE 22
EVOIvED ARCHITECTURI 23
CONTRACTION 33

SUBSUMPTION 36

CHAPTER 3 38

RELATED AND PRIOR WORK 38
SUBSUMPTION ARCHITECTURE 38
STAIR CLIMBING 39
DISCUSSION 43

CHAPTER 4 45

CONTROL ARCHITECTURE DESIGN 45

POSE SEQUENCE 46
HIGH-LEVEL GOALS 47

BEHAVIORAL BLOCKS 51

INTERCONNECTION OF BLOCKS 53

DEGREES OI, FREEDOM IN DESIGN 60

CHAPTER 5 62

7

IMPLEMENTATION
SoITwARE, ARCHITECTURE

62
62

CHAPTER 6 67

RESULTS 67

CHAPTER 7 68

DISCUSSION 68

WORKS CITED 71

8

Table of Figures

Figure 1 - High level system diagram for use of high mobility tactical robots (HMTR) in
w a rfa re .. 13

Figure 2 - DR Vehicle Solid M odel.. 14
Figure 3 - PackBot from iRobot.. 15
Figure 4 - Specifications of vehicle... 16
Figure 5 - Throwbot B .. 16
Figure 6 - M ast assisted climbing and self righting [1.2] .. 17
Figure 7 - Various robot poses... 18
Figure 9 - System software design.. 19
Figure 10 - Simulator model... 24
Figure 12 - Program front panel.. 28
Figure 14 - Graph of fitness as function of generation. Pmutation . I Pcrossover=.05. 4 state

v a ria b le s .. 2 9
Figure 16 - Graph of fitness as function of generation. Pmutationt=. 1 Pcrossover.0 1. 4 state

v a ria b le s .. 3 0
Figure 18 - Bounce fools fitness function ... 31
Figure 20 - Vehicle fools second fitness function.. 32
Figure 22 - Stair climbing maneuver. Left to right, top to bottom steps 0 through 5...... 46
Figure 23 - High-level goals for climbing... 47
Figure 24 - Track arm control goals.. 48
Figure 25 - M ast control goals ... 49
Figure 26 - Drive control goals .. 50
Figure 27 - Behavioral blocks... 52
Figure 28 - Diagram of full subsumption control architecture 60
Figure 29 - Software system block diagram ... 62
Figure 30 - Object diagram .. 64

9

Table of Tables

Table I - Observable and Controllable Robot State Variables 22

10

Chapter 0

Acknowledgements
I'd like to thank the Draper education office, the Draper Fellows Program, the

Naval Air Warfare Center, Aircraft Division and DARPA for giving me the incredible

opportunity to conduct my MEng thesis work at Draper Labs. I learned a lot and had the

pleasant opportunity to work with many talented individuals. Especially, I would like to

extend my heartfelt gratitude to Jamie, George, Dave, and Sean who helped out as much

as they could even when the work on my thesis was in its darkest hour. I would also like

to thank Professor Kaelbling for her understanding and flexibility in helping me sort stuff

out and agreeing to be my on campus reader at the last minute.

II

Chapter 1

Introduction
There has been a recent push to construct robots that fit the role of modem

warfare. Rather than dealing with a uniformed enemy on a distinct battlefield, the current

era of war takes the battle into urban environments. This juxtaposition of combatants and

civilians results in much of the equipment and strategies used for conventional warfare

(heavy munitions, blind fire strategies, etc.) having to be replaced by more precise and

calculated measures. Where in the past one could simply drop bombs on a foxhole,

knowing all the occupants were enemies, the possibility of invading the capital of a

foreign city would preclude such methods as civilians and enemy combatants occupy the

same structures.

Many recent innovations in surveillance technology have facilitated this shift in

goal of modem warfare. The US military currently has unmanned aerial vehicles that are

able to track and target with the accuracy of feet, giving the fighting force unprecedented

precision in their attacks. Use of satellite imagery provides covert views of large

expanses of earth that would be impossible to survey otherwise. In all of these cases,

however, the target is out in the open. These technologies could help the military target a

specific building, but what about a room in the building? What happens when the special

ops make their landing under the cover of night and need to determine whom the

occupant of that room is, around the corner, without waking the entire neighborhood?

The next step in modem warfare is the introduction of robotics to the playing

field. Robots give soldiers a mobile, and most importantly, disposable, set of eyes, ears

and more sophisticated surveillance equipment. They can generally be packages in a

12

form factor that is more robust and easier to hide than an adult. Recently, DARPA has

made a push for tactical mobile robotics (TMR). This involves creating robots that can

be used in the aforementioned ways, in a hostile environment. The creation of small,

maneuverable, robust, high performance, and low lifetime vehicles for indoor use is the

next step to realize the dream of robots on the modem battlefield.

Motivation
The motivation for this project stems from the target mission for the Distributed

Robotics (DR) program vehicle, designed for DARPA.

DARPA Grant
The proposal to DARPA from Draper Laboratory for this project outlined the

creation of a collection of small, reconfigurable, robots with operator control units (OCU)

and a communications relay node (CRN) that can provide higher echelon vehicle data,

image distribution and vehicle tasking.

j ',,mlik Ylticl (,nmunnds

Comm Relay/
Image Processing

Node

Command Center

Multi-Unit Control

Small Unit Operation

hej.
Individual Soldier System

Individual Robots

Figure 1 - High level system diagram for use of high mobility tactical robots (HMTR) in warfare

13

The distributed nature of this system makes it very flexible and open to future

development. The vehicle design is centered on an indoor operating environment. The

OCU is used by a solider, in the field to provide direct control over all aspects of the

robot, while providing feedback from onboard sensors (imagery, thermal, etc.).

Vehicle Hardware Design

Figure 2 - DR Vehicle Solid Model

The final design of the DR vehicle is shown in Figure 2. The vehicle has a

set of wheels, tracks and an actuated mast in the rear. Both of the tracks rotate in unison

through 3600 about an axis through the centers of the front two wheels. The rear mast

can rotate through a little over 2700, from being flush with the top of the vehicle, to past

parallel with the back face. Each side of the vehicle is driven with a brushless astroflight

motor. Maxon brushed DC motors actuate the rotation of the track arms and the rear

mast. There is a simple clutching mechanism that engages the drive train for each side to

transfer power to the treads. The design of the vehicle was inspired by the PackBot from

14

iRobot, shown in Figure 3. On account of its robust and flexible design, the PackBot has

already received limited deployment in Afghanistan [1.1].

Figure 3 - PackBot from iRobot

The design of the DR vehicle is unique enough that separate patents are being pursued.

Design specs

This vehicle was created with aggressive drop-test and robustness goals and

functional flexibility in mind. The material is a soft, rubber like compound. Most

elements of the structural body were cast. Almost all components were custom made

from aluminum to reduce weight. The spiral patterns in the wheels allow the robot to

sustain considerable impact loads from being dropped [1.2]. The appendages to the main

body give it the ability to adapt to a plurality of operational circumstances.

15

\].I II(- i'
Drive train: 4 whre ldiferetil drive with

,rggble traki
Dimensions: 25 cm (L) 122 cm (W) Y 9 cn (H)
Mass: 1.5 kg
Mobility: 3 e/a ma 5peed. 15-err ma.

obstace rite

Articulation: roturig r otuettt aCk gnd era:
iturt duivert
Mission duration: 30 min
Survivability: -an drop onto jtrvitrtnrr
Max. viewing height: 40 :m (mastr cam rr

Autonomous modes: tutmted trleoperattr
nertr ruere, 5ri ighting
Organic sensors: 2 uTierme S(wtithe dIe,
P 1teuad s ints, n I te (r-

Payloads: Sotrt-wave IR caetia (SWit) eloc-
trometnrteletttdrtttctittr (EMl 0) derice, avail-

ubLI patyload part

V

Figure 4 - Specifications of vehicle

The physical design of the robot gives it the flexibility of fast, lower power operation on

a smooth surface (when the wheels are driving); but the option of climbing over rough

terrain is available by putting down the tracks. Figure 4 shows the physical dimensions

and parameters of the vehicle. The rear mast was added to give the vehicle the ability to

climb over large obstacles. The concept of a rear mast for climbing obstacles was proven

in a previous robot, Throwbot B, shown in Figure 5.

Figure 5 - Throwbot B

16

I I:0 I \ I i \ i ()' ! "

Dimensions: 1 rm (L) x g em (W) x 3 ca
(H) (wilexpamrin pack)
Mass: 250 9
Battery liIe: 10 h
Computer specs; 206 Mz Intel Str ongArm,
92 M13 RAM
Display: 320 x 240 attive matrix

Control input: aty utttmsueen arid dit-
crete butr
Graphical user interface: Yehiie tontiro
health'rllare, real-time video display

- Cummunication3: LLL 802. 11bh wvie Iess L AN

Throwbot B is of approximately the same size and weight as the DR vehicle. The added

tracks in the DR vehicle replace the larger wheels in Throwbot B. Figure 6 shows an

illustration of the robot using the mast for maneuvers such as climbing a large obstacle or

righting itself. All of these operations are key to the robustness requirement of the

vehicle.

Fsn

Figure 6 - Mast assisted climbing and self righting [1.2]

17

Degrees offreedom & Sensors

As described earlier, the robot has five degrees of freedom: two independent

drives, independently actuated mast and track arms, and a clutching mechanism to engage

the tracks. Using the mast and track arms, the robot can achieve various operational

poses enumerated in Figure 7.

Figure 7 - Various robot poses

These poses allow varied functionality, from climbing and looking over large obstacles

(left side of figure), to driving on either tracks or treads (right side of figure). Onboard,

the vehicle has a 3-axis accelerometer, and a heading rate gyro. There are also current

sensors on drive motors and rate encoders on the wheel shafts allowing precise closed-

loop control of drive torque and speed. There are also electronics onboard to transmit

information from onboard cameras or other configurable sensing electronics back to the

operator.

Operator Interface

18

The operator interface (OCU) for the robot is provided through a Compaq iPaq

Figure 8 - Operator control interface (OCU)

handheld computer, shown in Figure 8. The user interface provides the user with control

over the position of the mast and track arms, and turn rate. Speed is controlled by

position of the stylus on the screen. Feedback is provided about vehicle state. The on

screen display can provide the close to real-time video feed from cameras on board the

robot. The OCU communicates with the robot over a wireless 802.1 lb network link.

Vehicle Software Design

SB Well understood
antd documnt

Under eng control

OCU CRNVideo

AFClt'j SW development driving video interfaces

Figure 9 - System software design

The software design for the entire system is shown in Figure 9. All of the

software that is applicable for this thesis resides in the "Autonomous Control" block.

Other layers of software are used for communication with all hardware actuators and

19

sensors. All of the on-board software is compiled for the OMNIl400 platform, running

under Windows CE on the InHand single-board computer on the robot.

Thesis Motivation
The goal of stair climbing in this thesis was motivated by the fact this robot is an

indoor vehicle. Stairs are very commonplace and will almost certainly be encountered by

this vehicle during its real world operation. The vehicle certainly possesses the capability

to climb stairs, but functional tradeoffs in the user interface make it difficult for a human

to control the robot during the maneuver.

To climb stairs, the robot must use all of its actuators simultaneously. It needs to

be able to control its heading, while actuating the track arms and mast appropriately to

ensure the body is carried over the rise of the stair. While the OCU provides control over

each of these degrees of freedom independently, using all of them at the same time is

problematic due to the limitations of the physical interface. There are four degrees of

freedom that need to be controlled (mast, tracks and each side of drive), and only two

degrees of input (x and y position on screen) available to do so. In addition, the feedback

provided to the operator from the vehicle is minimal. While a video image is great for

surveillance, using it to guide the vehicle through complicated, three-dimensional

maneuvers is very difficult. The conclusion to draw is that more intelligence is needed

on board for the vehicle to be able to complete this maneuver.

Robust to various changes in physical constants
The control architecture that will do the stair climbing control needs to be very

robust. There are no guarantees for the physical constants or geometries in a combat

situation. The robot should be able to climb a variety of stair geometries (rather than just

20

those that are up to code), and surmount the steps even if there are surface hazards (loose

or uneven surface).

Easy to operate
The end user of this robot will be a special ops soldier in the field. Given that

their ultimate goal is self-preservation and completion of the mission, they aren't going to

tolerate a complicated and involved system to climb stairs. The control system to

implement stair climbing should be as easy to use as possible, requiring minimal operator

interface and input.

Feasible to implement
There must be a way to implement the system in a timely fashion that's

compatible with my MEng appointment and DARPA contract timeframes. There is also

a limited amount of computational resources onboard the robot, and available during

development. Finally, the state feedback is only available through a real world, noisy,

incomplete channel. The system should be able to work even given these real world

constraints.

Chapter Preview
The following chapters describe the progression of this project from exploration

of possible control architectures, through software implementation and testing on the

final vehicle.

21

Chapter 2

Candidate Control Architectures
Over the course of this project, a few control architectures were evaluated before

choosing the final candidate for implementation. The first architectures were chosen with

some degree of rationale, but eliminated for problems that were unforeseen upon their

initial selection.

The design of the control system of the DR robot progressed from attempting to

evolve a control structure, to using contraction analysis to design a stable control law, to

a subsumption architecture. The evolved architecture was attempted in part as a 6.836

(Embodied Intelligence) final project. Contraction analysis was suggested as an option

by Professor Jean Jacques Slotine. Finally, subsumption was selected as the most

appropriate architecture for this task.

Vehicle State
The state of the vehicle from the point of view of control software is encapsulated

in a few variables, shown in Table 1.

Observable States Controllable States
X Axis Acceleration Mast Position
Y Axis Acceleration Tracks Position
Z Axis Acceleration Left Side Drive Velocity
Z Axis Rate Gyro Right Side Drive Velocity

Table I - Observable and Controllable Robot State Variables

The observable states are all the variables of inertial navigation from the IMU onboard

the robot. Sensors exist for other state variables on the robot (motor current, temp, etc.),

but they are not available via the low level software interface. Controllable states are

accessed by putting commands in a queue that is processed by lower level software. The

commands relay desired limb position and the max velocity used to move it to that

22

position. According to software interface rules, when the robot is in the autonomous

climbing mode, no commands other than that of the autonomous climbing architecture

should be entered into the queue.

Evolved Architecture
The use of an evolved architecture for this project was inspired by the work of

Karl Sims. Sims' work on evolving creatures that could swim was a very compelling

example presented in 6.836. This project seemed to parallel that one in a number of

ways.

The system of the DR vehicle climbing stairs is quite complicated when a purely

mechanical analysis is attempted. There are numerous physical parameters that come

into play when one analyzes the frictions, moments of inertia, etc. that affect the motion

of the robot while climbing stairs. More importantly, there are many possible solutions

that will work for getting the vehicle to climb stairs. Since this problem has numerous

solutions in a high dimensional space, a genetic algorithm was chosen as the method to

search the space and arrive at a solution.

Attempted Setup
The use of a genetic algorithm for searching the parameter space for stair

climbing required some standard elements, a model, a control and genetic structure, and a

method of selection and breeding (evolution).

Model
The fitness of each genome was evaluated in simulation. Due to time and

computational constraints, the vehicle model was a simplified version of Throwbot B,

23

with some of the sensors from the DR vehicle (shown in figure 3). This model is much

simpler than the actual DR vehicle. The idea was to get the system working on a simple

model, then increase the complexity to get better results. The problems with that plan are

discussed later.

'ms 4ms '8s 2 MS6m 60fps

Figure 10 - Simulator model

The simulator used was Vortex from Critical Mass labs. It includes mass properties and

friction models in the simulation. The world provided a "step" for the vehicle to climb.

The sensors on the vehicle provided feedback for full body attitude (heading, pitch and

roll).

24

Control Structure
The control for the vehicle uses an augmented neural network (ANN) shown in

Figure 11. At each time step, an input vector of body attitude and state vectors are

transformed through a matrix of weights to an output vector of mast velocity and new

state variables. In the figure, "s" refers to the state vector. This vector evolves over time.

Figure 11 - Augmented Neural Network diagram, q- body
attitude, s- state vector, w- weight vector, h-mast velocity

The state vector allows the transmission of information from one time step to another.

The "q" vector encapsulates the body attitude as would be available from a 2 axis gyro,

returning the plane of the body of the robot relative to a plane orthogonal to gravity. The

"h" vector is the mast velocity, evolving over time as a function of the body attitude and

the state.

Due to the complexity of the model and the issues involved in searching the

parameter space (discussed later), a constant wheel velocity was chosen. The ANN and

wheel velocity are encoded in a genome. Each individual is evaluated by decoding the

genome to the above control structure, and simulating the controller on the model

described above.

The actual range of values the weights, states, and initial velocity could have is an

experimental parameter. In addition, the number of state variables is set at compile-time.

25

Genome Structure
The genome was simply a string of bits that encode all the weights for the

transformation matrix from input space to output space (shown in Figure 11), and the

velocity of the vehicle. Each of the numbers in the genome was encoded with a grey

code to equalize the effect of one-bit mutations on the system. The number of bits

encoding each value is a system parameter. In all experiments there were 50 bits

encoding each value. I initially planned on experimenting with different encoding sizes.

In the end, it took way too long to actually run the simulations and there was no time to

experiment with different encoding sizes. The reason for choosing 50 bits for encoding

each value was to find an encoding length that wasn't too long, yet not short enough that

one bit flip makes a big difference.

Fitness and Simulation
Each genome was given approximately three seconds of simulated time to climb

the step. The simulator was run till termination criteria were achieved. In most cases this

amounted to time running out. If the vehicle was successful, termination implies that it

climbed the step before time ran out. The metric for determining if the step had been

climbed was the distance between the center of mass of the vehicle and some point on the

top of the step, scaled to increase resolution after it is converted to an integer (shown in

equation 1). The total fitness was the sum of that difference and the number of ticks the

simulation ran for.

- fitness = ticks _t + 00 - (COM X - GOALU,)|

Equation 1 - Fitness function

This structure of the fitness function allows the robot to first learn how to climb the step,

and continually improve its fitness as it climbs the step faster. It is useful to note that this

26

fitness function does not reward an individual for the orientation after they climb the step.

It is assumed that if the robot can climb one step, the operator can realign for the next

one. Given the added complexity and dimensionality for including orientation, it was

deemed unnecessary. The fitness function returns a negative value since the time to

climb the step (ticks), and the difference in vertical displacement needs to be minimized.

Making the function negative makes the highest fitness individual have the most positive

value.

Evolution
The evolutionary algorithm implemented was very simple. User parameters

included the population size, number of parents, number of generations, and crossover

and mutation frequencies (shown in figure 12 in program front panel).

Initially random genomes were created and their fitness is evaluated in the

simulator. After evaluating the fitness of all the individuals, parents were selected as the

top few individuals, and created the next generation. Parents were kept in the population

(eliteist strategy), so the best fitness never decreased.

27

.olutionary Parameters

Initial Population Crossover Freq

Fitness Steps: 11000 Mutation Prob

Generations Parents / Gen

Evolve! Stop!

DNA File Run Simulation

F Statistics
Est Time Left: Done

FCurrent Generation

F _ I Overall Progress

Figure 13 - Program front panel

Crossover was applied during reproduction. To create the offspring DNA, initially the

genome of a random parent (probability that it is either parent) was copied bit by bit to

the child DNA. With a probability equal to the probability of crossover at each bit, the

copying switched to the other parent's DNA. After the child had been created, there was

a bit-flip that occurs with a probability equal to the probability of mutation.

Problems
The execution of this project was an exercise in patience and frustration. Due to

the computational complexity of simulating this 3D world, evolution took an extremely

long amount of time to run. Evaluating the fitness of an individual genome took from

five to ten seconds each. This quickly adds up when decent population and generation

sizes are chosen. As a result, most runs were only fifty generations with a population size

of 100. The time that it took to run fit well with my schedule and allowed me to get in

two or three runs in a 24-hour period.

28

This evolutionary system used as my 6.836 project on the Throwbot B model was

essentially an experiment to see if it would be an appropriate system to use for the full

blown thesis project on the actual DR vehicle. All experiments were done in a few weeks

in the spring. The computational time constraints became significant as even this simple

model took a long time to run.

Performance
The evolutionary system implemented was successful in that it did create a

control system that was able to climb the step. The parameters that I initially intended to

vary, however, generally did not function as desired.

One main goal of the experiment was to see the effect of evolutionary variables

on performance. Due to the size of the genome, it turned out that that fifty generations

generally wasn't enough for performance to change radically (see figure 14).

Fitness Run #9

O0 iii II II11I IIIIII1I111 III [if1111 111

(0i (D C-o'- (D- (C)
500

-500 -+-max

-amin

1000 average

-1500
generation

Figure 15 - Graph of fitness as function of generation. Pmutation.= Pcrossover=.05. 4 state variables

Since the algorithm couldn't run very long, the initial jump in performance is due to some

random genome that did pretty well, and only needed slight modifications to increase its

performance. The plateau is characteristic of the behavior between big jumps in fitness

29

caused by mutation and recombination. Unfortunately, it wasn't feasible to run the

simulation for longer periods of time due to the lack of time to change other parameters.

One interesting fact that appeared from this limited-run-time evolution is that genetic

recombination is much more applicable than point mutations. Figure 6 shows the fitness

increase with a Pcrossover that is 1/5 that of figure 16.

Fitness Run #5

0
(0 T- (D IT I O (D - CD -r-C O

- -500 - max
-- min

U Il AIL A RAA--1000 average

-1500
generation

Figure 17 - Graph of fitness as function of generation. Pmutation=-I Pcrossover=.01. 4 state variables

The rate of increase in fitness is much sharper in the run that has a higher probability of

crossover. This behavior makes sense due to the enormous size of the genome. With

four state variables, the genome is well over 1000 bits long. This results in minimal

effect of point mutation on the resulting genome.

One annoying aspect of genetic algorithms is that they seem to find the bug in

software faster than the solution you're looking for. There were some solutions that

simply exploited holes in the fitness function (which was revised a few times during the

progress of experiments). Initially the stopping criteria for the simulator just checked the

distance from the z coordinate of center of mass to the z coordinate of the goal.

30

Figure 18 - Bounce fools fitness function

Figure 19 shows the vehicle, as it is about to get on the step. It's hard to see, but at this

point the vehicle jumps up a bit due to the speed the wheels are spinning and it registers

as if it has cleared the top of the step. To overcome this bug, the stopping criteria were

changed to make sure the center of mass passed the edge of the step. This would ensure

that no slight bumps or awkward movement of the mast would make it look like the

vehicle had climbed the step. After fifty generations, the winner didn't make it on the

step in less than three seconds, but executed the maneuver shown in figure 20.

31

Figure 21 - Vehicle fools second fitness function

Instead of making it over the step, the vehicle was traveling fast enough that its

momentum carried it forward along the angle of the mast. To beat this strategy, the finish

line was moved farther back on the step.

The vehicles that eventually evolved after fifty generations, however, were able to

climb the step. They didn't do it as fast as desired, but they did make it up.

Variables
The parameter space I wanted to explore primarily dealt with the effect of state

variables and evolutionary parameters on the quality of the results. I was really unable to

achieve this goal due to the inordinate amount of time it took to evolve anything useful.

In addition, velocities that were not very high caused the simulator to break and the robot

would go flying off into outer space. Since the mast velocity is a weighted sum of the

state variables and body attitude, too many state variables would cause the mast to move

too fast. To prevent that from happening, the value of the weights was decreased. This,

in turn, resulted in more time being required to increase performance.

32

For this short evolutionary time, the search really just seemed to be random.

Higher mutation and crossover values yielded better results. This is probably only

partially due to the fact that useful information was transferred from parent to child, but

more likely due to the fact that the recombination randomly resulted in better individuals

(there was usually only one big jump in fitness, then a plateau).

At the end of the spring term, I determined an evolutionary strategy was not the

optimal plan of attack mainly for computational and logistical reasons. I was very

limited by the amount of computational resources available to me at Draper. Due to the

nature of three dimensional physics, the simulation of a very simplified model of the

robot took a very long time. In addition, the vortex package didn't provide any interface

to import models from SolidWorks (the CAD package used for mechanical design at

Draper), requiring that I would build a very simplified model in their scripting language

by hand (not a simple, or accurate task). Finally, the documentation and support for the

modeling and simulation package were very poor. For the plurality of aforementioned

reasons, and suggestions from my on campus advisor, I decided to explore Contraction

Analysis.

Contraction
Contraction Analysis is a novel form of analysis of stability of non-linear systems

developed by Jean Jaques Slotine and Winfried Lohmiller [2.1]. Contraction analysis

was devised as a general way to look at stability of non-linear systems. Its structure is

based on the notion of stability being nominal motion about some equilibrium point. If

something is called stable, you don't need to actually know what the motion is, just that

33

there is one that exists. In the end, all initial trajectories tend to the same one and initial

conditions or disturbances are forgotten.

Contraction analysis guarantees global exponential convergence of trajectories.

The summarized results from the derivation of the theory [2.2] are presented in this

section. Assume we have a general deterministic system of the form

x = f (x, t) Equation 2

where f is a n x 1 nonlinear vector fuction and x is the n x 1 state vector. We assume that

all functions are real and smooth.

If there exists a uniformly positive definite metric

M (x, t) = O(x, t)' O(x, t) Equation 3

such that the associated generalized Jacobian

F = (0+ -)0-
ax Equation 4

is uniformly negative definite, the all system trajectories converge exponentially to a

single trajectory with the rate of lXma, the largest eigenvalue of the symmetric part of F.

Using the definitions above, it is possible to show that combinations of

contracting systems are also contracting [2.1, 2.2]. Interesting work in neural research

has suggested that the computations executed by the brain for motion are contracting in

nature. Rather than the brain learning entire motions, it's possible that the control is

composed of smaller "primitives", which are contracting in and of themselves. A

common example is that of a frog's spine [2.2]. Stimulating separate parts of the spine

causes predictable joint torques. When stimulations are combined, the resulting forces

are vector sums of the individual stimulations [2.3]. If these input stimulations come

from some contracting system, the overall result could be the stable motion seen in the

34

frog's movement [2.2]. The notion of these motion primitives inspired the thought of

possibly using contraction analysis as a method of designing the control law for the stair

climbing behavior of the robot.

The idea was to come up with contracting primitives of motion for stair climbing

(for example, mast and tread motion). Next, a genetic algorithm would search a smaller

space of combinations of these motions to determine a maneuver to climb stairs that was

contracting (search for M in Equation 3). When I started working on the problem, it

rapidly became very intractable.

Problems
The primary issue was the mathematical model of the entire system was required

to prove any type of contraction. From the aforementioned equations involved in proving

contraction, it's evident that to prove stability using contraction analysis, a

comprehensive state space model is required. This task is not trivial at all. I began to

work on the three-dimensional state space model, and quickly fell back to a two

dimensional simplification. Finally, it quickly became evident that physical constants

and physical parameters of the robot would play a big part in the robustness of this

solution (affecting the eigenvalues of important matrices). Since the physical model of

the robot wasn't fully nailed down till some point in the summer of 2002, and the

operational environment isn't certain at all, those constants are sure to be variables. On

top of all these problems, contraction analysis is a very new theory. It was impossible to

find anyone familiar with the theory other than Professor Slotine, let alone many

examples of application of contraction theory to multidimensional problems. For all

these reasons, a more conceptual notion of contraction, subsumption, was explored.

35

Subsumption
The notion of a subsumption architecture was recently made popular by Brooks as

a robust method of control for an autonomous robot in a complex, dynamic world [2.4].

The design rationale behind a subsumption architecture is to create a complex overall

behavior by layers of simpler behaviors. The robot is usually tying to accomplish a lot of

tasks at the same time, but some tasks take priority from time to time allowing a complex

range of behaviors.

Brook's general design rationale is very centered in the real world, assuming the

control should be as simple as possible, and the world will be complex. The control

system should be resilient to errors and failure. He creates the subsumption architecture

specifically for a robot that has multiple goals, sensors and requires robustness and

extensibility, a perfect match to the DR vehicle [2.4].

The subsumption architecture design rationale creates a control system from the

bottom up. The control systems are layered, with the bottom layers performing the

lowest level, mundane tasks required for the robot to move its actuators. The higher level

layers perform more intelligent tasks like path planning or obstacle avoidance. The

feedback loop of control is closed through the environment as all the input for the robot

comes through noisy sensor channels.

These subsumption layers are created by a collection of augmented finite state

machines (AFSMs). The AFSMs run completely independently, and asynchronously of

each other, with no global knowledge. They only communicate with each other through

what are conceptually called "wires". These wires can carry some value or nothing at all.

The AFSMs are generally Mealy machines that can have multiple inputs and outputs

[2.4]. Wires are connected together by "suppression" and "inhibition" blocks. These

36

blocks have an input, output and a sidetap. In the case of the suppression block, the value

of the output is equal to that of the input when the sidetap is empty. When there is a

value on the sidetap line, the output gets the value of the sidetap. In the case of the

inhibition block, the output is equal to the input as long as the sidetap line is empty.

Whenever the sidetap gets a value, the output becomes empty [2.4].

These connection blocks, in conjunction with computational blocks, can allow for

very complex and intricate behavior.

Rationale behind decision
The decision to use a subsumption architecture in this robot was based primarily

on robustness, flexibility and feasibility. Much of the prior work done with subsumption

based control was on a higher level, where subsumption usually coordinated some

searching or exploring algorithm. In a few cases subsumption controlled and coordinated

physical motion during some complex maneuver [2.4, 2.5].

37

Chapter 3

Related and Prior Work
Subsumption architectures and the goal of stair climbing are not new and there

has been a good deal of work done in the past in both of these areas. This chapter

describes some previous work that has been done with subsumption architectures,

highlighting the nature of most applications of the subsumption architecture. Finally, the

design and strategies of some other robots that are able to successfully navigate stairs are

discussed.

Subsumption Architecture
Much of the work dealing with subsumption architectures has come from the Al

Lab at MIT in the late eighties and early nineties. Brooks presented the architecture in a

paper in 1986, suggesting a decentralized control system that acted in a goal driven, task-

achieving manner [3.19]. Subsumption architectures have been used in everything from

low level movement control to high level path planning.

The Ghengis robot is one of the six-legged walking robots from the Al lab. The

robot has six independent legs that communicate with each other over a token ring

network. With little central coordination and low amounts of computational power, the

robot is able to successfully walk. The layers that provide robust leg movement exist in

very small, robust, local asynchronous units. Little information from the higher levels

make it down to the lower levels that were actually involved in moving the legs around.

The Ghengis robot clearly demonstrates the use of a subsumption architecture to

accomplish a complex control and movement task in a robust fashion [3.1].

38

The robot Toto, also from the Al lab at MIT, is controlled using a subsumption

based architecture. The goal of Toto is general navigation including obstacle avoidance,

path planning and map creation [3.2]. Toto is an upright robot outfitted with numerous

sonar and collision detection sensors. At the heart of Toto's control system is a

subsumption architecture that ties together all the goals of navigation. Toto's lowest

levels of competence allow it to wander aimlessly, as the higher levels give it the ability

to accomplish map navigation.

There are a lot of other robots various individuals have built that use subsumption

architectures for control. There are commercial robot programming packages (such as

Robolab) that have subsumption architectures built into them. In all cases of robots

controlled with subsumption architectures I was able to find, the subsumption

architecture is used to control path planning. This is probably due to the fact that using a

subsumption architecture is not very analytical. Most problems of complicated motion

are approached in a more traditional sense, devising equations and simulations to prove

an outcome. This was generally the case when I searched for robots that accomplished

stair climbing.

Stair Climbing
It is a reasonable generalization to say that robots fall into two categories, legged

and not legged. I found many robots that climbed stairs, in both categories. The majority

of the robots in the legged category are able to climb stairs, as one of the motivations for

legged locomotion is to deal with stairs, which are an architectural artifact that descends

directly from man's evolution to walk to two legs.

39

I found robots that could climb stairs with as few as one or as many as six legs.

The simplest legged robot that could climb stairs was the planar hopper from the MIT

Leg Lab [3.6]. The robot has one leg that is actuated along an axis that can be directed in

a plane. The robot, with the body constrained to a plane, can hop around and bounce

over small objects, conceivably giving it the ability to climb stairs.

A four legged robot that can climb stairs is the SCOUT, from McGill University

[3.5, 3.7]. Each of the legs can be actuated along an axis that can be tilted forward and

back. By using a sequence of motions, the robot is able to bounce up steps. The six

legged robot RHEX (aka the robotic cockroach) from McGill, is able to climb stairs by

simply running at them till it climbs [3.7]. This is due to the innovative and very simple

mechanical design of the robot [3.8]. The robot has a small, rectangular body with six

legs. Each leg is made of a small, curved piece of metal. The legs rotate about the point

where they connect to the body, through an axis in the plane of the body and orthogonal

to the direction of motion. The four outer legs rotate together, and are out of phase with

the inner ones by 180 degrees.

The series of TITAN quadruped walking robots from Hirose & Yoneda Robotics

Lab accomplish stair climbing by maintaining static equilibrium during coordinated

motion with four legs while climbing [3.10, 3.11]. The goes-over-all-terrain (GOAT)

robot from CMU uses a unique design of wheels on four actuated arms to allow itself to

climb stairs and accomplish self righting [3.3]. A robot that is similar in appearance to

the GOAT is the SHRIMP [3.22]. This vehicle is unique in that its clever mechanical

design allows it to climb large obstacles (including stairs), completely passively. The

40

connection of a number of mechanical members passively moves to surmount the stair

while the only electronics necessary drive the wheels.

One of the newest additions to the realm of legged stair-climbing robots is the

walking robot from Honda, ASIMO [3.16]. The robot walks upright on two legs, using a

variety of algorithms. I was unable to find details about its stair climbing algorithms,

although there are movies available of the robot climbing stairs [3.16, 3.17].

As early as 1968 General Electric had built a large (II feet tall, 3 ton) vehicle that

was legged, and could climb over stair like obstacles [3.18]. A human was in full control

of the vehicle, actuating all of its degrees of freedom using handles and pedals in the

cockpit. OSU created a hexapod walker in 1989 that was able to traverse most terrain

[3.18]. While it was human controlled, the leg positioning was autonomous.

I found numerous other small robots designed by individuals that could

accomplish stair climbing tasks (made for various school competitions and such). In all

cases, these legged vehicles are large, usually not self contained, and generally slow. For

most practical, all terrain use, non-legged robots are used.

In the area of non-legged robots for stair climbing, the main contenders were large

tracked vehicles. The most popular one is the Urbie, a tracked vehicle from iRobot also

developed under DARPA initiatives [3.13]. Urbie is a large vehicle with a design similar

to that of the packbot from iRobot (described in chapter 1). The robot is able to cover

most terrain and tackle a good range of obstacles while driving. When it climbs stairs, it

simply dominates the geometry of the stair and drives over it. To maintain stability while

climbing, it is crucial that it tracks straight up the stairs. Urbie uses a vision based

algorithm for maintaining stability while climbing stairs, using information from the

41

straight lines visible while climbing (edge of steps, rails, etc.) to determine heading

information [3.12]. Work done at UPenn with Urbie has used multiple sensor inputs

(accelerometer, vision and sonar), with confidence estimates into an arbitrator to choose

the best one for heading estimates [3.20]. This strategy provides a much more robust

heading estimate, as it can work when conditions aren't ideal for any one or two of the

sensors. For example, the vision system fails in extreme lighting conditions. When that

happens, the robot relies more on the sonar or body attitude from inertial measurements

(accelerometer). If there's no wall next to the staircase, the sonar fails and the vision and

accelerometer take over. If there's a sudden jarring motion that throws off the

accelerometer, the other two are used. The control system uses an arbitrating entity to

decide which sensor to use as input for the control system.

Another robot that is being used popularly for industrial applications that can

climb stairs is the Andros Mark VI. The robot is large with two sets of treads that can be

rotated in our out [3.14]. Similar to Urbie, it climbs stairs by dominating the geometry

and driving straight up. Rather than using vision to ensure straight tracking, the robot has

accelerometers onboard that relay its bank angle (relative to a vertical gravity vector) to

the control software. A simple proportional control algorithm that increases the velocity

of the side that's lagging behind based on the turn angle is enough to make the robot

climb stairs in a stable fashion [3.15]. Just approved by the FDA for prescription use, is

the iBot, the stair climbing wheelchair developed at Deka and marketed by Independence

Technology [3.21]. This robotic wheelchair climbs stairs by rotating the member that

connects its two driven wheels to lift it over the edge of a step. This approach to stair

42

climbing is based on complicated control theory and uses many inertial sensors to ensure

stability.

Discussion
Its clear there has been a good deal of work done regarding stair climbing with

robots. In the case of legged robots doing the climbing, the size of the robot is generally

very large (including power source). In addition, they aren't very fast or cheap. The

class of non-legged robots able to climb stairs is predominantly robots that geometrically

dominate the stairs. This makes for a robot that is still relatively large.

The design tradeoff that seems to occur is between four elements, mechanical

complexity, control complexity, size, and capabilities. All of the legged robots have a

high degree of mechanical and control complexity and a large form factor.

Consequently, they have a good degree of functionality and can generally make it over

reasonable terrain.

The non-legged robots that accomplish stair climbing have a simpler degree of

control (since there is no legged locomotion involved), but they are lack the operational

flexibility and have an intermediate size. To be able to climb stairs, all non-legged robots

other than the GOAT are large and climb by dominating geometry of the stair [3.3]. If

the robot doesn't simply climb by being larger than the steps, it has a very specific design

that doesn't really lend itself to much else [3.9].

Due to the specific size requirements on the DR vehicle, a coordinated maneuver

was chosen as the method of climbing stairs. Stair climbing isn't in the mission goal of

the robot, resulting in many other requirements driving the physical design of the robot.

43

From my research, it looks like this approach to stair climbing is unique, probably due to

its complexity.

44

Chapter 4

Control Architecture Design
A subsumption architecture was implemented to control the DR vehicle. The

system was designed in a similar fashion to its predecessors.

The first step in the design of the control architecture involved identifying a set of

goals for the system to accomplish [4.1]. After the goals had been established, a set of

behaviors and precedence must be created. After having accomplished the first two

steps, it was possible to start creating the necessary blocks to implement the said system

with a subsumption architecture.

On a high level, this system was split into control of the tracks, mast, and drive

train. The mast and track controls were responsible for raising the center of mass of the

vehicle over the lip of the stairs. The drive train layer was responsible for keeping the

robot moving up the stairs in a reasonably straight trajectory. There was some interaction

between the mast and tracks layers (described later), but the drive layer remained isolated

from the other two.

Unlike other subsumption systems that controlled movement, this one lacked a

central coordinating entity, like the central pattern generator of The Ghengis robot [4.2].

The reason for not having a centrally coordinating structure was to keep all blocks as

simple as possible, as per Brook's rules of subsumption [4.1]. In a sense, the design of

the architecture causes a pattern generator to emerge. This is discussed more in depth

later.

45

Pose Sequence
The robot climbs stairs by moving itself through the sequence of poses shown

below.

Figure 22 - Stair climbing maneuver. Left to right, top to bottom steps 0 through 5

This sequence of poses utilizes the knobby treads to grab the corner of the stairs and pull

the robot up. During that process, the mast pushes the back end of the robot off the

ground. To keep the middle of the robot from being stuck on the corner of the step, the

tracks rotate back around to help push over again, using the knobby tracks.

46

To accomplish this sequence, a set of behaviors is established for each component

of the robot. As the robot moves, the simple behaviors for the individual limbs interact to

produce complex motion.

High-Level Goals

Accomplish mission -
a
0

Traverse terrain CD

CL
Find stairs

Find a step to climb

Keep limbs in positions for fastest transitions

Move through poses for climbing step

Track straight up step in stable manner

Figure 23 - High-level goals for climbing

The high-level goals for stair climbing are shown in Figure 23. These goals

describe the most general behaviors the robot needs to exhibit. It is useful to note that the

highest-level goals are all user controlled. This arises from the fact the robot is

teleoperated and the human operator controls most functionality of the vehicle. The

autonomous climbing is only meant to be an operational crutch for maneuvers where the

user interface lacks functionality.

The layering of the high-level goals implies precedence for their execution. At all

times stability is most important. As the levels get higher, they become less critical to the

survival of the robot or execution of the desired action. Functional blocks for the tracks,

mast and drive train implement the non-operator goal layers. The following sections

47

describe the goals for each functional block, the building blocks to create these functional

blocks, and finally the actual blocks themselves.

Tracks

Follow user input commands

Keep tracks behind /slightly in front of leading edge of robot

Move tracks out to possibly raise front end of robot

Move tracks back in to carry robot over corner of step

Inhibit maneuver till body angle is great enough

Figure 24 - Track arm control goals.

The goals for the track arm control layer are shown in Figure 24. The lowest

layer functions as a goal to keep the tracks in the best position for the next transition. All

of the other layers move the track arms throughout the maneuver. These layers are

consistent with the general layering of the overall goals for the autonomous climbing.

48

Mast

Figure 25 - Mast control goals

The goals for mast control are shown in Figure 25. At the beginning of the

maneuver (shown in Figure 22), the mast is kept parallel to the ground to keep the robot

from falling over backwards. In addition, the time required to start raising the rear

section of the robot (the second layer from the bottom), is minimized when the mast is

almost in position. The 3rd layer is present to make sure that the mast stays down as the

body angle moves past the point where the robot thinks it is horizontal.

49

Follow user input commands

Make sure the mast stays down as the back of robot is rising

Move mast down to raise back end of robot

Keep mast parallel to ground (mast angle = (180-body pitch angle))

Drive

Figure 26 - Drive control goals

The goals for the drive functional block are shown in Figure 26. These goals are

a bit different from the rest, as they all deal with stability. Through the entire climbing

maneuver, the goal is for the robot to track straight. To accomplish this, a proportional

drive based on the banking angle (angle from left to right from the robot's point of view)

is used. This is a method similar to that used in other stair climbing vehicles [4.3].

At the onset of this project, I thought there would be some closed-loop velocity

control on the drive motors. Due to the dynamic range required from the drive train, the

motors are brushless motors with sensors for stator position. The controller runs the

motors in a sensored mode for low velocities, and moves to sensorless control when the

speed increases. The controller was not able to do velocity control in the sensored

region. As a result, this layer is critical to function as the commands to the drive motors

result in a torque, rather than a velocity. Since the mechanics and physical constants are

not symmetric, there is a good deal of fluctuation in the drive speeds.

50

Follow user input commands

Bank angle added to the drive command for that side (compensate for unequal drive)

Drive each side at the same value to track straight

Behavioral Blocks
After a set of goals for each functional block have been established, they are

implemented with a network of behavioral blocks. These blocks act as the control

architecture's interface to the robot and the building blocks of functionality. The blocks

function as elements that process information in close to real time, and provide modular,

independent units to create the overall subsumption architecture.

Wires connect each of these blocks together, carrying the output of one to the

input of another. Wires can have a value (the output of the box connected to the inputs),

or be empty (if the block connected to its input has no output). Each of these blocks can

be thought of as an FSM, transitioning on its own local clock. At each clock cycle, the

state transition is dictated by the input to the FSM. The state the machine is in dictates

the output.

All of the blocks used to construct the control architecture are shown in Figure 27.

51

Function Blocks

Moving Average Filtering
Block

Single Input, Single Output
Function

Double Input, Single Output
Function

Boolean Function

Interconnection Blocks

inhibition

suppression

Source/Sink Blocks

Robot State Input

)
---- ---- - - --- - --

State/Drive Command
Variable

Constant Value --

Figure 27 - Behavioral blocks

The blocks are organized in to three categories, function, interconnect and source/sink.

The function blocks take care of computational tasks that may be unique to this

application of a subsumption architecture. All of the function blocks except for the

moving average are implemented separately in each instance (ie - the boolean function

isn't always the same in the "Boolean Function" blocks). In the case of the moving

average filtering block, the only parameter is the size of the window. This block provides

rudimentary first-order filtering on sensor input. The functional blocks get their input

from the source blocks.

The source/sink blocks take care of the interface of the control architecture to the

physical robot. They act as an abstraction barrier that takes care of running actuators and

pulling data from sensors. They run at a high sampling rate to work as close to real time

52

as possible. Background machinery takes care of writing appropriate values from the

physical system into source blocks, and sending the values from the sink blocks to

actuators. The interconnection blocks connect all of the blocks together.

The interconnection blocks are the standard ones described in Brook's original

subsumption architecture [4.1]. The inhibition and suppression blocks have input, output

and sidetap ports. In the illustration, the input and output ports are parallel and the

sidetap port is orthogonal to the other two. In input on the sidetap dictates the behavior

of both of these blocks. If there is no input available on the sidetap, the output equals the

input in both the inhibition and suppression blocks. In the inhibition block, if there is

data on the sidetap the output becomes empty. In the suppression block, the output gets

the data from sidetap if its available. The use of these blocks allows layers of control to

be connected together in a hierarchical fashion.

Interconnection of Blocks
Each functional block is composed of smaller functional blocks, tied together with

interconnection blocks. Each smaller functional block is composed of function and

source/sink blocks connected to create a datapath. Each of these smaller functional

blocks embodies the earlier specified layers of control. In this section the functional

block that implements the goals for control of each degree of freedom (tracks, mast and

drive), are built in an incremental fashion.

53

Tracks

obot Pitch i om

iaccelitomfetflr
Movmng Aveige s IiL

F ____: ___

inhibition

Pose &,nstirnt Position

tracks position command
variable

Fili- ------------

Pose Constant Position

mla alt p o l eommand IPOS n

ti jablo -no

The highest layer keeps the track arms in a position behind

vehicle.

i obt l 'ich Pose (2onditional
otev nimmvniiqet 0

'7___________________________

mast position :ornmand

Pose Constant Position
0*

..

the leading edge of the

tracks position command
S variable

nhibition

Pose Cnstant Position
190'

The next layer down tries to move the tracks out to lift the front end of the vehicle. At

this stage, it continuously suppresses the lowest layer.

54

Pose Constant Position supIso
800

J'-sp Cn:In sjtin

Rnbol Pitch Iorn
;(cMoviop teielaqle I ~___ tracks position command

oI variable

Pose Constant Position
00

mast position command I Pose Conditional nibto
variable > 2OO*

Pose Constant Position

19O*

The next layer down moves the tracks back to climb over the edge of the step. There is a

conditional to ensure that the mast is positioned down to lift the back end of the robot

before this layer is activated.

mas Roositchntomn Pose Conditional ihbto

metero Moving Average PoeCniinltracks position command
acelrovariable

I J

inhibition
Pose Constant Position

190

mast position command! Pose Conditional in herobon

varbs > 2iva

Pose Constant Position

1904

The final, lowest layer is the most important, inhibiting action until the body angle is high

enough. Its positioning allows it to control inhibition and suppression of higher layers.

55

Mast
-- - - - - - -- - - -- - -

Robot Pitch from Angle Transformation mast position command
accelerometer Moving Average (input -1) + 180 I variable

liack posi on ommand t
valiable-

In the lowest level, the goal is to keep the mast parallel to the ground at all times

Robot Pitch from Angle Transformation s mast position commandaccelerometer Moving Average (input 1) + 180 suppression variable

I

accelerometer--------

Pose Conditionai
< 80*

I mrk poslon' am d _se 7.,II0o.'lia Pose Constant Position
Valable- 2700

The next level adds the ability to move the mast down to raise the back end of the vehicle

when the body pitch is at the right level.

56

Ro c -a oin Aerge a Angle Transformation supeson Imast positin command I
Robot Pitch from Moving Average (inputss ainbom an

accelerometer (nput 1)so~to +upao varabl

Pose Conditional - ihbto
< 80*

track poaition command Pose Conditional Pose Constant Position
variable =0 or> 2000 2700

The final layer adds a conditional to ensure that the mast stays down even after the robot

has passed the horizontal position when it is entering the run of the top of the step.

Drive

nI hot bank inro n Error Magnitude Conditional Error Maonitude Conditional

!-\FSI~q oj tqo) it10\3 i~lI?

)±

Desired Speed -

Left side drive command I
variable

I4 Right side drive command
i variable

The first layer simply sends the same drive command to both motors. Since there is no

closed loop control for velocity around the motors (and frictional constants are not

known), another layer is necessary to ensure the robot tracks straight up the stairs.

57

Robot bank angle from Moving Average Error Magnitude Conditional Error Magnitude Conditional
accelerometer >0 <0

)

Drive Error Correction
ABS(input1)+ABS(input2)

0x20Desired Speed

s uppresso Left side drive command

supprssio Right aide drive command
supprssionvariable

The next layer implements a tracking strategy similar to that used by Martens and

Newman in getting the Andros Mark VI to climb stairs [4.3]. The algorithm looks at the

bank angle of the robot (the tilt from left to right) and adjusts the drive proportionally.

Interconnection
From the diagrams of the control networks, it is evident that the topology of the

connections dictates the behavior. There are many conflicting goals at any point, whose

priorities are decided by the interconnection blocks.

Desired Emergent Behavior
While each layer or block may exhibit some simple functionality, the total

emergent behavior is the interesting element of using a subsumption architecture. When

all the layers interact, the input to output mapping is different from what might appear by

using just one of the layers. Even between the three distinct functional blocks (tracks,

mast and drive train), there is interconnection through the environment.

58

While there is no distinct central pattern generator for this system, the behavior of

one emerges from the interaction of the blocks. Using the pose conditionals and

interconnection blocks, the system controls itself, making the transition from one pose to

another. Rather than containing one entity that coordinates these transitions, many blocks

work in unison to achieve the same effect. This is one example of an emergent behavior

from the system. Rather than being a behavior that is observable externally, the emergent

behavior is a structural one that plays and integral part in the control of the robot.

Feedback loops
The use of subsumption architecture is essentially design of a feedback system.

In this case, the outside environment and inertial sensors for body attitude complete the

loop. Between the main functional blocks, there are connections such as the commanded

mast and track position.

Analysis
Analysis of this system is very difficult. A wise man once said, "All simulations

are doomed to succeed". That statement is very true and very applicable to this project.

One of the goals of this project is feasibility and applicability. There is no point in

having a control system that works in a simplified simulation and has to be redone for the

actual application. For these reasons, no simulation was used in the development of this

control system.

All evaluations and analysis of the performance of this control system had to

happen on the actual vehicle. This ensures that the algorithm works with all the real life

variables and non-idealities.

59

Degrees of Freedom in Design
Even with a general control topology, there are still degrees of freedom in the

design of control architecture. Most of the variables lie in constants that dictate the

intermediate poses during stair climbing. The pose conditionals all look at body attitude

to decide if its time to inhibit certain data lines. These actions cause different layers to

take control and change the pose of the robot.

Getting the robot to climb stairs robustly will require tweaking these values.

Since there is no automated simulation, there is no quick way to choose the optimal

values of these constants. Their starting values (shown in Figure 28) were chosen

through careful trials, manually controlling the robot.

Robot Pitch from
accelerometer

Angle . mast position
- Moving Average Transformation command

(input -1) + 180 n variable

Pose Conditional .2 Error Magnitude Error Magnitude
inhibition Moving Average Conditional Conditional

>0 <0

Drive Error
Pose Conditional Pose ConstantCorrection

> i Position01 or> 201 Pos)' ABS(Inputl)+ABS

Desiredp__duLeft

side drve
suppressi command

--- -- variable

Pose Conditional tracks position -

variable suppressi Right side drive

..... variable
.inhibition

Pose Constant C
Position

........... I t Pose Co stant suppressi

ono

80
Pose Conditional -.................i7 inhibition 42

> 200*

Pose Constant
Position

1900

Figure 28 - Diagram of full subsumption control architecture

60

These careful trials generally involved moving the robot by hand into the

intermediate poses, shown in Figure 22. Pose conditional and pose constant blocks were

given the values of the accelerometers at each of the poses. The desired speed was set to

the lowest value where motion still occurred. If the vehicle moves too fast, the update

rates in the system and time constants for actuators would not be able to keep up.

61

Chapter 5

Implementation
This entire system was implemented in software. I used Microsoft Visual C++ to

write and compile code for the Omni 1400 Single Board Computer. The software to

implement the subsumption control architecture was layered on top of the standard

control software running onboard the robot.

Software Architecture
There are many layers to the software used to control the DR vehicle. As

mentioned before, all of the software for this project resides onboard the vehicle in the

"Autonomous Control" block of Figure 29.

Mcus
MUnr Sensg r

Contro 110

SBWeludrto

0CU CRN de
cL" l ona mom aooriril

andcessor Contmro

C

I a V4110 Contained within the vehicle 1
Anjol' SW development driving video interfaces

Figure 29 - Software system block diagram

Also in the "Autonomous Control" block resides software for retrotraverse, and other

software assisted maneuvers executed by the robot. The entire interface to the rest of the

vehicle occurs through lower level software written by other developers on this project.

In Figure 29, the OCU is the operator control unit (described in chapter 1). The CRN is

the communication relay node. The CRN acts as a repeater or a higher level coordinating

entity (it can talk to many robots at once). The MCU is the master control unit, taking

62

care of low level control of motors and sensors. The interface provided was very simple,

and consisted of only three or four functions that allowed insertion of pose commands

into an execution queue, and retrieval of state information from the robot.

Operating System
The entire system of the vehicle SBC (single board computer) on which the

autonomous climbing (hereafter referred to as autoclimb) software resided ran Windows

CE. The subsumption architecture was implemented by creating multiple threads

(described in detail in the following sections). Due to the nature of windows task

handling, there were no real-time guarantees. This drawback strengthens the argument

for using the subsumption architecture to control the robot. Brook's original design of

the subsumption architecture was to control a robot running in an asynchronous,

uncertain world. The lack of timing guarantees is overcome by running loops at higher

than necessary rates inside each of the independent threads.

63

Object Organization and Implementation
Completely independent threads in memory realize each subsumption block.

These threads are created by descendents of a CSubsumptionBaseBlock class, shown in

Figure 30.

CSubsumotonBaseBlock
Takes care of managing threads and input/output

Calls virtual update function at each
timestep

- . btioion 6~n~ra
S CSuppresson CSISOFunction CISOFunctiOn '.Boolean Function Block Smooths Input

Inhibition Block Suppression Block SISO Function Block DISO Function Block 1 inputs, 1 output 1 inputs, 1 output
2 inputs, 1 output 2 inpats, output 1 inputs, 1 output 2 inputs, 1 output output=f(input) output is smoothed versidri

output=input if sidetap is output=input if sidetap is output=f(input) output=f(input 1,input2) if f(input)=false, output of input after moving windoi#
mpty. else, ouput is empy Rmply. else, ouput= sidetapis empty average

CMataSource CMata~ink
Data Source Block Data Sink Block

1 inputs variable, 1 output 1 inputs, 1 output variable'
output=input variable output variable=input

Figure 30 - Object diagram

CSubsumptionBaseBlock is an abstract class that takes care of thread

management. Upon its start, it runs in a periodic loop (no timing guarantees), updating

internal state and outputs at each execution with a pure virtual update function. The

descendents of CSubsumptionBaseBlock implement the update function and an

initialization routine to define inputs and outputs to create a class that can be instantiated.

This generic structure allows simple creation of a vast number of useful blocks. CWire

objects connect subsumption blocks together.

The CWire interface is very simple, providing access to shared memory. Each

object can have only one source and any number of recipients. Source and recipient

64

blocks receive a pointer to the CWire object that connects them. A set of three simple

functions provide the interface to put data into the wire, remove it, and check if the wire

is empty.

The function blocks (CSISOFunction, CDISOFunction, and CBoolFunction) are

generic objects that take a pointer to a function they evaluate during their update. They

implement blocks that do simple math, or conditional blocks.

The sources and sink blocks (CDataSource and CDataSink) act as part of the

abstraction barrier between the subsumption architecture and the interface of the robot.

Both of these objects connect a CWire object to a variable. In the case of the

CDataSource, the value of the variable is pushed into the CWire. In the CDataSink, the

variable receives the value from the CWire. There are threads running outside of the

subsumption architecture code that interface the variables to the command queue for

actuators and input from robot sensors.

The CMovingAverage block allows conditioning of input data. It is reasonable to

assume there will be a fair amount of noise on the inputs. This block provides a real time

moving window average on the data at its input port. The filter is very simple and does

decrease overall bandwidth. The parameters on the block allow configuration of the

width of the window.

Notes
It is important to note that this subsumption architecture is abstracted to behave as

if it is continuous, although it is discrete [5.1]. Due to timing issues inherent in windows

programming, there are no real-time guarantees for any processes that are running. In

addition, the timing for all of the processes was arbitrarily set at 30ms to begin with

65

(update function is called every -30ms). It is likely that the processes must run much

faster to be able to do their job, but that is to be determined through the empirical tests.

The time constants for the actuators are actually quite slow, and could affect the

configuration of many components of this system.

66

Chapter 6

Results
A robot was not available to test the entire system. In the end, I wrote code,

compiled and ran limited sections of the subsumption diagram presented in the previous

chapter. I was able to test the layer that ensured the mast stayed parallel to the ground

(layer 0 of the mast functional block). When the layer was run, the mast did indeed stay

parallel to the ground. I was able to hold the robot in my hands and change the pitch

angle of the robot, and the mast stayed parallel to the ground. There was a bit of phase

delay resulting from the moving average filter, but not really significant compared to the

delay from the time it took to actually move the mast (due to limits on the speed of the

motors). Due to lack of software interface available, I wasn't able to get graphs and

quantifiable results of mast movement and the actual performance of the control

architecture.

While working on the drive layer, I discovered some bugs in the programming of

the speed controllers. I wasn't able to gain access to a robot to do further tests in time to

retest the drive train with the full architecture. From the behavior expressed during the

tests with the faulty controller, it did look like it seemed to work as the drive for a side

would start to speed up as the robot tilted to that side. This isn't very representative since

the bug in the controllers would cause the motor to start jittering and it was hard to get a

sense of how fast it was actually trying to go. In addition, it wasn't run on the ground,

making it subject to the real world artifacts of slippage, etc.

67

Chapter 7

Discussion
Since I wasn't able to perform extensive tests on the performance of the designed

subsumption architecture, this project provided more insights about the benefits of

various approaches to control of the robot. Each of the approaches, subsumption,

contraction analysis and evolved architectures had their own merits and would

appropriate in different situations.

Evolved architectures have been used in very compelling ways to solve various

engineering problems. They work well in searches of a relatively low dimensional space

with a suitable fitness function. The problem with using an evolved architecture lies in

the fitness function. In a robotic application such as the one presented in this paper, the

goal is some complicated motion. As a result, the fitness function is very complicated

and computationally intensive. These drawbacks are overcome if one possesses a great

deal of computational resources or a lot of time. Another approach is to simplify the

simulation/fitness function to decrease the computational complexity (in the case of this

project, perhaps constrain simulated motion to two dimensions). While making the

problem simpler, you most likely remove the elements that made it difficult in the first

place (sensor noise, slippage, etc.). In the end, you often find a solution that is "doomed

to succeed". While the solution may work well in simulation, it doesn't necessarily

transfer to the real world. A similar problem arises with contraction analysis.

To apply contraction analysis to a problem, a comprehensive mathematical model

must exist for the system. The benefit to using contraction analysis is that the solution

you devise is guaranteed to work (assuming the model is correct or very close to it). The

68

drawback lies in the fact a full mathematical model of the system is required. In the case

of a highly non-linear system (such as this one), the state space model of motion is very

difficult to devise. Some simplifications are definitely required. After the

simplifications, you run into the same problems as the evolved architecture. If you don't

have any simplifications, all you can prove is that the solution will work for the exact

system you have modeled in your state space equations.

In the engineering task of mobile robotics, one fundamental problem is

uncertainty. Since the robots live and act in the real, high dimensional world, it's hard to

account for and simulate everything that they will experience. From the perspective of

time effectiveness, it often takes longer to create a consummate simulation than to just

test something in the real environment. For those reasons, in the case of mobile robotics,

a subsumption control architecture is most appropriate.

The subsumption architecture has nice aspects in both design and application.

Due to its decentralized nature, the various components are designed and implemented

with no knowledge of any others. This makes the subsumption architecture more fault

tolerant as each unit block and layer is very robust. The architecture is designed to give

good results from an intuitive point of view, rather than a mathematical one. The design

of a subsumption architecture control system utilizes higher level design on the part of

the human creating it, rather than mathematical methods. As a result, the solution is often

more complicated, but not quantifiable and provable. If one operates under the

assumption that simulations are not a realistic measure of functionality, this is not a

problem.

69

The drawback to a subsumption architecture is that you must have a platform to

evaluate the performance of the control architecture. That was not the case in this

project. As a result, only partial results could be concluded. For the layer that was

tested, keeping the mast parallel to the ground, the control architecture worked pretty

well. The functionality of that layer proves that the software architecture for

implementing the subsumption control is functional. It also demonstrates a functionality

that is independent of all the uncertainties inherent in the system (sensor noise, no real-

time guarantees, etc.). There were a few modifications necessary while testing on the

actual robot (as expected), to account for offsets in potentiometers and variations in

motors.

While concluding the entire system would robustly climb stairs successfully is a

matter of future work, it is reasonable to say that it looks like a subsumption architecture

could accomplish the goals of this project given enough time to test and tweak on a

functional robotic platform.

70

Works Cited

[1.1] http://www.cnn.com/2002/TECH/science/08/01/packbot/ . Accessed 11-24-02.

[1.2] Weagle, David and Pete Kerrebrock. High Mobility Impact Survivable Small
Robotic Vehicle. AUVSI 2002.

[2.1] Lohmiller, Winfried and Jean-Jacques Slotine. On Contraction Analysis for Non-
Linear Systems. Automatica, Vol. 34, No. 6, pp. 683-696, 1998.

[2.2] Slotine, Jean-Jacques and Winfried Lohmiller. Modularity, Evolution and the
Binding Problem: A View from Stability Theory. Neural Networks 14, 2001.

[2.3] Bizzi E., Giszter S.F., Loeb E., Mussa-Ivaldi F.A., Saltil P. Trends in
Neurosciences. Review 18:442. 1995.

[2.4] Brooks, Rodney. A Robust Layered Control SystemJbr a Mobile Robot. IEEE
Journal of Robotics and Automation, Vol. RA-2, No. 1, March 1986.

[2.5] Brooks, Rodney and Cynthia Breazeal. Draft of book distributed in 6.836 Spring
2002. Draft of July 24, 1998. pp 33-44.

[3.1] Brooks, Rodney and Cynthia Brazel. Draft of book distributed in 6.836 Spring
2002. Draft of July 24, 1998. pp 3 3 -4 4 .

[3.2] Mataric, Maja J. Integration of Representation into Goal-Driven Behavior-Based
Robots. IEEE Transactions on Robotics and Automation, Vol. 8, No. 3, June 1992.

[3.3] GOAT Model Photos. http://www-2.cs.cmu.edu/-trb/goat/. Last accessed December
11, 2002.

[3.5] Buehler, M., R. Battaglia, A. Cocosco, G. Hawker, J. Sarkis, K. Yamazaki.
SCOUT: A simple quadruped that walks, climbs and runs.

[3.6] MIT Leg Lab 2D Hopper.
http://www.ai.mit.edu/projects/leglab/robots/2D hopper/2D hopper.html. Last accessed
December 11, 2002.

[3.7] M. Buehler, " Dynamic Locomotion with One, Four and Six-Legged Robots ,"
Invited Paper, Journal of the Robotics Society of Japan, 20(3):15-20, April 2002.

[3.8] E.Z. Moore and M. Buehler, "Stable Stair Climbing in a Simple Hexapod", 4th Int.
Conf on Climbing and Walking Robots, Karlsruhe, Germany, September 24 - 26 , 2001.

71

[3.9] Shorya Awtar, Saket Kumar Singh, Praveen Tewari. Stair Climbing Mechanism:
Senior Year Project. http://web.mit.edu/~shorya/www/btp.htm. Last accessed December
12, 2002.

[3.10] Research on Walking Machines.
http://mozu.mes.titech.ac.jp/research/walk/walk.html. Last accessed December 12, 2002.

[3.11] Shigeo Hirose, Kan Yoneda, Kazuhiro Arai, Tomoyoshi Ibe; Design of Prismatic
Quadruped Walking Vehicle TITAN VI, Proc. 5th INt. Conf. Advanced Robotics, Pisa,
Italy, pp.723-728 (1991)

[3.12] Yalin Xiong, Larry Matthies. Vision-Guided Autonomous Stair Climbing.
Proceedings of the 200 IEEE International Conference on Robtics and Automation. San
Francisco, CA. April 2000.

[3.13] L. Matthies, Y. Xiong, R. Hogg, D. Zhu, A. Rankin, B. Kennedy, M. Hebert, R.
Maclachlan, C. Won, T. Frost, G. Sukhatme, M. McHenry, S. Goldberg. A Portable,
Autonomous, Urban Reconnaissance Robot. The 6h international Conference on
Intelligent Autonomous Systems.

[3.14] CESAR Experimental Facilities.
http://avalon.epm.oml.gov/IS/cesar/cesar facilities.html#andros. Last accessed
December 12, 2002.

[3.15] John D. Martens, Wyatt S. Newman. Stabilization of a Mobile Robot Climbing
Stairs. Center for Automation and Intelligent System Research. Case Western Reserve
University, Cleveland, OH.

[3.16] Honda Robot Top Page. http://world.honda.com/ASIMO/. Last accessed
December 12, 2002.

[3.17] http://www.plyojump.com/asimo.html. Last accessed December 12, 2002.

[3.18] Boone, Gary, and Hodgins, Jessica. "Walking and Running Machines". The MIT
Encyclopedia of the Cognitive Sciences, MIT Press, 1998.

[3.19] Brooks, Rodney. A robust layerd control systemf r a mobile robot. IEEE Journal
of Robotics and Automation, Vol. RA-2, No. 1, March 1986.

[3.20] Solomon Steplight, Geoffrey Egnal, Sank-Hack Jung, Daniel B. Walker, CAmillo
J. Taylor and James P. Ostrowski. A Mode-Based Sensor Fusion Approach to Robotic
Stair-Climbing. GRASP laboratory, University of Pennsylvania.

[3.21] Independence Technology a Johnson & Johnson Company.
http://www.indetech.com/ibot/. Last accessed December 12, 2002.

72

[3.22] Bluebotics SHRIMP Robot. http://www.bluebotics.com/products/shrimp/. Last
accessed January 14, 2003.

[4.1] Brooks, Rodney. A robust layerd control systemfor a mobile robot. IEEE Journal
of Robotics and Automation, Vol. RA-2, No. 1, March 1986.

[4.2] Brooks, Rodney and Cynthia Breazeal. Draft of book distributed in 6.836 Spring
2002. Draft of July 24, 1998. pp 33-44.

[4.3] John D. Martens, Wyatt S. Newman. Stabilization of a Mobile Robot Climbing
Stairs. Center for Automation and Intelligent System Research. Case Western Reserve
University, Cleveland, OH.

[5.1] Brooks, Rodney. A robust layered control system fr a mobile robot. IEEE Journal
of Robotics and Automation, Vol. RA-2, No. 1, March 1986.

73

