109 research outputs found

    Design and analysis of a beacon-less routing protocol for large volume content dissemination in vehicular ad hoc networks

    Get PDF
    Largevolumecontentdisseminationispursuedbythegrowingnumberofhighquality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors’ best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well

    Scaling Laws for Vehicular Networks

    Get PDF
    Equipping automobiles with wireless communications and networking capabilities is becoming the frontier in the evolution to the next generation intelligent transportation systems (ITS). By means of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications, information generated by the vehicle-borne computer, vehicle control system, on-board sensors, or roadside infrastructure, can be effectively disseminated among vehicles/infrastructure in proximity or to vehicles/infrastructure multiple hops away, known as vehicular networks (VANETs), to enhance the situational awareness of vehicles and provide motorist/passengers with an information-rich travel environment. Scaling law for throughput capacity and delay in wireless networks has been considered as one of the most fundamental issues, which characterizes the trend of throughput/delay behavior when the network size increases. The study of scaling laws can lead to a better understanding of intrinsic properties of wireless networks and theoretical guidance on network design and deployment. Moreover, the results could also be applied to predict network performance, especially for the large-scale vehicular networks. However, map-restricted mobility and spatio-temporal dynamics of vehicle density dramatically complicate scaling laws studies for VANETs. As an effort to lay a scientific foundation of vehicular networking, my thesis investigates capacity scaling laws for vehicular networks with and without infrastructure, respectively. Firstly, the thesis studies scaling law of throughput capacity and end-to-end delay for a social-proximity vehicular network, where each vehicle has a restricted mobility region around a specific social spot and services are delivered in a store-carry-and-forward paradigm. It has been shown that although the throughput and delay may degrade in a high vehicle density area, it is still possible to achieve almost constant scaling for per vehicle throughput and end-to-end delay. Secondly, in addition to pure ad hoc vehicular networks, the thesis derives the capacity scaling laws for networks with wireless infrastructure, where services are delivered uniformly from infrastructure to all vehicles in the network. The V2V communication is also required to relay the downlink traffic to the vehicles outside the coverage of infrastructure. Three kinds of infrastructures have been considered, i.e., cellular base stations, wireless mesh backbones (a network of mesh nodes, including one mesh gateway), and roadside access points. The downlink capacity scaling is derived for each kind of infrastructure. Considering that the deployment/operation costs of different infrastructure are highly variable, the capacity-cost tradeoffs of different deployments are examined. The results from the thesis demonstrate the feasibility of deploying non-cellular infrastructure for supporting high-bandwidth vehicular applications. Thirdly, the fundamental impact of traffic signals at road intersection on drive-thru Internet access is particularly studied. The thesis analyzes the time-average throughput capacity of a typical vehicle driving through randomly deployed roadside Wi-Fi networks. Interestingly, we show a significant throughput gain for vehicles stopping at intersections due to red signals. The results provide a quick and efficient way of determining the Wi-Fi deployment scale according to required quality of services. In summary, the analysis developed and the scaling laws derived in the thesis provide should be very useful for understanding the fundamental performance of vehicular networks

    Quality-Driven Cross-Layer Protocols for Video Streaming over Vehicular Ad-Hoc Networks

    Get PDF
    The emerging vehicular ad-hoc networks (VANETs) offer a variety of applications and new potential markets related to safety, convenience and entertainment, however, they suffer from a number of challenges not shared so deeply by other types of existing networks, particularly, in terms of mobility of nodes, and end-to-end quality of service (QoS) provision. Although several existing works in the literature have attempted to provide efficient protocols at different layers targeted mostly for safety applications, there remain many barriers to be overcome in order to constrain the widespread use of such networks for non-safety applications, specifically, for video streaming: 1) impact of high speed mobility of nodes on end-to-end QoS provision; 2) cross-layer protocol design while keeping low computational complexity; 3) considering customer-oriented QoS metrics in the design of protocols; and 4) maintaining seamless single-hop and multi-hop connection between the destination vehicle and the road side unit (RSU) while network is moving. This thesis addresses each of the above limitations in design of cross-layer protocols for video streaming application. 1) An adaptive MAC retransmission limit selection scheme is proposed to improve the performance of IEEE 802.11p standard MAC protocol for video streaming applications over VANETs. A multi-objective optimization framework, which jointly minimizes the probability of playback freezes and start-up delay of the streamed video at the destination vehicle by tuning the MAC retransmission limit with respect to channel statistics as well as packet transmission rate, is applied at road side unit (RSU). Two-hop transmission is applied in zones in which the destination vehicle is not within the transmission range of any RSU. In the multi-hop scenario, we discuss the computation of access probability used in the MAC adaptation scheme and propose a cross-layer path selection scheme; 2) We take advantage of similarity between multi-hop urban VANETs in dense traffic conditions and mesh connected networks. First, we investigate an application-centric routing scheme for video streaming over mesh connected overlays. Next, we introduce the challenges of urban VANETs compared to mesh networks and extend the proposed scheme in mesh network into a protocol for urban VANETs. A classification-based method is proposed to select an optimal path for video streaming over multi-hop mesh networks. The novelty is to translate the path selection over multi-hop networks to a standard classification problem. The classification is based on minimizing average video packet distortion at the receiving nodes. The classifiers are trained offline using a vast collection of video sequences and wireless channel conditions in order to yield optimal performance during real time path selection. Our method substantially reduces the complexity of conventional exhaustive optimization methods and results in high quality (low distortion). Next, we propose an application-centric routing scheme for real-time video transmission over urban multi-hop vehicular ad-hoc network (VANET) scenarios. Queuing based mobility model, spatial traffic distribution and prob- ability of connectivity for sparse and dense VANET scenarios are taken into consideration in designing the routing protocol. Numerical results demonstrate the gain achieved by the proposed routing scheme versus geographic greedy forwarding in terms of video frame distortion and streaming start-up delay in several urban communication scenarios for various vehicle entrance rate and traffic densities; and 3) finally, the proposed quality-driven routing scheme for delivering video streams is combined with a novel IP management scheme. The routing scheme aims to optimize the visual quality of the transmitted video frames by minimizing the distortion, the start-up delay, and the frequency of the streaming freezes. As the destination vehicle is in motion, it is unrealistic to assume that the vehicle will remain connected to the same access router (AR) for the whole trip. Mobile IP management schemes can benefit from the proposed multi-hop routing protocol in order to adapt proxy mobile IPv6 (PMIPv6) for multi-hop VANET for video streaming applications. The proposed cross-layer protocols can significantly improve the video streaming quality in terms of the number of streaming freezes and start-up delay over VANETs while achieving low computational complexity by using pattern classification methods for optimization

    Provision Quality-of-Service Controlled Content Distribution in Vehicular Ad Hoc Networks

    Get PDF
    By equipping vehicles with the on-board wireless facility, the newly emerged vehicular networking targets to provision the broadband serves to vehicles. As such, a variety of novel and exciting applications can be provided to vehicular users to enhance their road safety and travel comfort, and finally raise a complete change to their on-road life. As the content distribution and media/video streaming, such as Youtube, Netflix, nowadays have become the most popular Internet applications, to enable the efficient content distribution and audio/video streaming services is thus of the paramount importance to the success of the vehicular networking. This, however, is fraught with fundamental challenges due to the distinguished natures of vehicular networking. On one hand, the vehicular communication is challenged by the spotty and volatile wireless connections caused by the high mobility of vehicles. This makes the download performance of connections very unstable and dramatically change over time, which directly threats to the on-top media applications. On the other hand, a vehicular network typically involves an extremely large-scale node population (e.g., hundreds or thousandths of vehicles in a region) with intense spatial and temporal variations across the network geometry at different times. This dictates any designs to be scalable and fully distributed which should not only be resilient to the network dynamics, but also provide the guaranteed quality-of-service (QoS) to users. The purpose of this dissertation is to address the challenges of the vehicular networking imposed by its intrinsic dynamic and large-scale natures, and build the efficient, scalable and, more importantly, practical systems to enable the cost-effective and QoS guaranteed content distribution and media streaming services to vehicular users. Note that to effective- ly deliver the content from the remote Internet to in-motion vehicles, it typically involves three parts as: 1.) an infrastructure grid of gateways which behave as the data depots or injection points of Internet contents and services to vehicles, 2.) protocol at gateways which schedules the bandwidth resource at gateways and coordinates the parallel transmissions to different vehicles, and 3.) the end-system control mechanism at receivers which adapts the receiver’s content download/playback strategy based on the available network throughput to provide users with the desired service experience. With above three parts in mind, the entire research work in this dissertation casts a systematic view to address each part in one topic with: 1.) design of large-scale cost-effective content distribution infrastructure, 2.) MAC (media access control) performance evaluation and channel time scheduling, and 3.) receiver adaptation and adaptive playout in dynamic download environment. In specific, in the first topic, we propose a practical solution to form a large-scale and cost-effective content distribution infrastructure in the city. We argue that a large-scale infrastructure with the dedicated resources, including storage, computing and communication capacity, is necessary for the vehicular network to become an alternative of 3G/4G cellular network as the dominating approach of ubiquitous content distribution and data services to vehicles. On addressing this issue, we propose a fully distributed scheme to form a large-scale infrastructure by the contributions of individual entities in the city, such as grocery stores, movie theaters, etc. That is to say, the installation and maintenance costs are shared by many individuals. In this topic, we explain the design rationale on how to motivate individuals to contribute, and specify the detailed design of the system, which is embodied with distributed protocols and performance evaluation. The second topic investigates on the MAC throughput performance of the vehicle-to- infrastructure (V2I) communications when vehicles drive through RSUs, namely drive-thru Internet. Note that with a large-scale population of fast-motion nodes contending the chan- nel for transmissions, the MAC performance determines the achievable nodal throughput and is crucial to the on-top applications. In this topic, using a simple yet accurate Marko- vian model, we first show the impacts of mobility (characterized by node velocity and moving directions) on the nodal and system throughput performance, respectively. Based on this analysis, we then propose three enhancement schemes to timely adjust the MAC parameters in tune with the vehicle mobility to achieve the maximal the system throughput. The last topic investigates on the end-system design to deliver the user desired media streaming services in the vehicular environment. In specific, the vehicular communications are notoriously known for the intermittent connectivity and dramatically varying throughput. Video streaming on top of vehicular networks therefore inevitably suffers from the severe network dynamics, resulting in the frequent jerkiness or even freezing video playback. To address this issue, an analytical model is first developed to unveil the impacts of network dynamics on the resultant video performance to users in terms of video start-up delay and smoothness of playback. Based on the analysis, the adaptive playout buffer mechanism is developed to adapt the video playback strategy at receivers towards the user-defined video quality. The proposals developed in the three topics are validated with the extensive and high fidelity simulations. We believe that our analysis developed in the dissertation can provide insightful lights on understanding the fundamental performance of the vehicular content distribution networks from the aspects of session-level download performance in urban vehicular networks (topic 1), MAC throughput performance (topic 2), and user perceived media quality (topic 3). The protocols developed in the three topics, respectively, offer practical and efficient solutions to build and optimize the vehicular content distribution networks

    Connected Vehicles: Solutions and Challenges

    Get PDF
    Abstract-Providing various wireless connectivities for vehicles enables the communication between vehicles and their internal and external environments. Such a connected vehicle solution is expected to be the next frontier for automotive revolution and the key to the evolution to next generation intelligent transportation systems (ITSs). Moreover, connected vehicles are also the building blocks of emerging Internet of Vehicles (IoV). Extensive research activities and numerous industrial initiatives have paved the way for the coming era of connected vehicles. In this paper, we focus on wireless technologies and potential challenges to provide vehicle-to-x connectivity. In particular, we discuss the challenges and review the state-of-the-art wireless solutions for vehicle-to-sensor, vehicleto-vehicle, vehicle-to-Internet, and vehicle-to-road infrastructure connectivities. We also identify future research issues for building connected vehicles

    Interference-aware multipath video streaming in vehicular environments

    Get PDF
    The multipath transmission is one of the suitable transmission methods for high data rate oriented communication such as video streaming. Each video packets are split into smaller frames for parallel transmission via different paths. One path may interfere with another path due to these parallel transmissions. The multipath oriented interference is due to the route coupling which is one of the major challenges in vehicular traffic environments. The route coupling increases channel contention resulting in video packet collision. In this context, this paper proposes an Interference-aware Multipath Video Streaming (I-MVS) framework focusing on link and node disjoint optimal paths. Specifically, a multipath vehicular network model is derived. The model is utilized to develop interference-aware video streaming method considering angular driving statistics of vehicles. The quality of video streaming links is measured based on packet error rate considering non-circular transmission range oriented shadowing effects. Algorithms are developed as a complete operational I-MVS framework. The comparative performance evaluation attests the benefit of the proposed framework considering various video streaming related metrics

    Urban Microclimate and Traffic Monitoring with Mobile Wireless Sensor Networks

    Get PDF
    Climate is usually defined as the average of the atmospheric conditions over both an extended period of time and a large region. Small scale patterns of climate resulting from the combined influence of topography, urban buildings structure, watercourses, vegetation, are known as microclimates, which refers to a specific site or location. The microclimate scale may be at the level of a settlement (urban or rural), neighborhood, cluster, street or buffer space in between buildings or within the building itself. Specifically, the dispersion and dilution of air pollutants emitted by vehicles is one of the most investigated topics within urban meteorology, for its fundamental impact on the environment affecting cities of all sizes. This issues concern the average and peak values of various air pollutants as well as their temporal trends and spatial variability. The accurate detection of these values might be advantageously exploited by public authorities to better plan the public and private transportation by evaluating the impact on people health, while controlling the greenhouse phenomenon. As the unpredictable nature of a climate variations requires an incessant and ubiquitous sensing,Wireless Sensor Networks (WSNs) represent a key technology for environmental monitoring, hazard detection and, consequently, for decision making (Martinez et al., 2004). A WSN is designed to be self-configuring and independent from any pre-existing infrastructure, being composed of a large number of elementary Sensor Nodes (SNs) that can be large-scale deployed with small installation and maintenance costs. Literature contains several examples of frameworks for evaluating the urban air quality with WSNs, as it is reported in (Santini et al., 2008). In addition, in (Cordova-Lopez et al., 2007) it is addressed the monitoring of exhaust and environmental pollution through the use of WSN and GIS technology. As micro-climate monitoring usually requires deploying a large number of measurement tools, in (Shu-Chiung et al., 2009) it is adopted vehicular wireless sensor networks (VWSNs) approach to reduce system complexity, while achieving fine-grainedmonitoring. Another aspect strictly correlated with microclimate establishment is represented by the ecologic footprint of traffic congestion due to inefficient traffic management. As a consequence, an increasing number of cities are going to develop intelligent transport system (ITS) as an approach to harmonize roads and vehicles in optimized and green paths. ITSs involves several technologies as advanced informatics, data communications and transmissions, electronics and computer control with the aim of real-time traffic reporting and alerting. Such a framework allows remote operation management and self-configuration of traffic flows, as well as

    AN EFFICIENT ENVIRONMENTAL CHANNEL MODELLING IN 802.11P MAC PROTOCOL FOR V2I

    Get PDF
    Recent development in communication of wireless communication for automobile industry have aided the growth of SITS (Smart Intelligent Transport System) which solves numerous vehicular based communication service concerns like traffic congestion, accidental mishap etc. VANET (Vehicular Ad-hoc Network) a characteristic class of MANET (Mobile ad-hoc Network) which is a fundamental element of SITS in which the moving vehicles inter connected and communicates with each other remotely. Wireless technologies play an important part in assisting both Vehicle to Infrastructure (V2I) and Vehicle to Vehicle (V2V) correspondence in VANET. The existing scheduling technique does not consider the environmental factor which affects the throughput performance and increases packet drop rate which result in degradation of service quality. Here in this work the author propose a RHU (Rural, Highway and Urban) environment model considering the environmental factor. The efficient environmental model algorithm is incorporated into slotted aloha in IEEE 802.11p MAC protocols which aided as a spine for assisting both safety application and non-Safety applications. Experiments are conducted for collision and throughput efficiency for varied traffic load and speed of vehicle. The experimental result shows the proposed environmental model impact on collision and throughput efficiency for varied environment and thus helps improving QoS for VANET application
    corecore