4,547 research outputs found

    Predator empire: the geopolitics of U.S. drone warfare

    Get PDF
    This paper critically assesses the CIA’s drone program and proposes that the use of unmanned aerial vehicles is driving an increasingly paramilitarized U.S. national security strategy. The paper suggests that large-scale ground wars are being eclipsed by fleets of weaponized drones capable of targeted killings across the planet. Evidence for this shift is found in key security documents that mobilize an amorphous war against vaguely defined al-Qa’ida “affiliates”. This is further legitimized by the White House’s presentation of drone warfare as a bureaucratic task managed by a “disposition matrix”. Such abstract narratives are challenged through the voices of people living in the tribal areas of Pakistan. What I call the Predator Empire names the biopolitical power that catalogues and eliminates threatening “patterns of life”. This permanent war is enabled by a topological spatial power that folds the environments of the “affiliate” into the surveillance machinery of the Homeland

    A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From Communications to Sensing and Intelligence

    Full text link
    Due to the advancements in cellular technologies and the dense deployment of cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the fifth-generation (5G) and beyond cellular networks is a promising solution to achieve safe UAV operation as well as enabling diversified applications with mission-specific payload data delivery. In particular, 5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in three-dimensional (3D) space. On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference. Besides the requirement of high-performance wireless communications, the ability to support effective and efficient sensing as well as network intelligence is also essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting aerial and ground users. In this paper, we provide a comprehensive overview of the latest research efforts on integrating UAVs into cellular networks, with an emphasis on how to exploit advanced techniques (e.g., intelligent reflecting surface, short packet transmission, energy harvesting, joint communication and radar sensing, and edge intelligence) to meet the diversified service requirements of next-generation wireless systems. Moreover, we highlight important directions for further investigation in future work.Comment: Accepted by IEEE JSA

    Implementing Cooperative Behavior & Control Using Open Source Technology Across Heterogeneous Vehicles

    Get PDF
    This thesis describes the research effort into implementing cooperative behavior and control across heterogeneous vehicles using low cost off-the-shelf technologies and open source software. Current cooperative behavior and control methods are explored and improved upon to build analysis models. These analysis models characterize ideal factor settings for implementation and establish limits of performance for these low cost approaches to cooperative behavior and control. The research focused on latency and position accuracy as the two measures of performance. Three different ground control station (GCS) software applications and two types of vehicles, rover ground vehicles and aerial multi-rotors, were used in this research. Using optimum factor settings from Design of Experiments (DOE), the multi-rotor following rover vehicle configuration experienced almost twice the latency of other experiments but also the lowest positional error of 0.8 m. Results show that the achieved update frequency of 0.5 Hz or slower would be far too slow for close-formation flight

    Multiple Access in Aerial Networks: From Orthogonal and Non-Orthogonal to Rate-Splitting

    Get PDF
    Recently, interest on the utilization of unmanned aerial vehicles (UAVs) has aroused. Specifically, UAVs can be used in cellular networks as aerial users for delivery, surveillance, rescue search, or as an aerial base station (aBS) for communication with ground users in remote uncovered areas or in dense environments requiring prompt high capacity. Aiming to satisfy the high requirements of wireless aerial networks, several multiple access techniques have been investigated. In particular, space-division multiple access(SDMA) and power-domain non-orthogonal multiple access (NOMA) present promising multiplexing gains for aerial downlink and uplink. Nevertheless, these gains are limited as they depend on the conditions of the environment. Hence, a generalized scheme has been recently proposed, called rate-splitting multiple access (RSMA), which is capable of achieving better spectral efficiency gains compared to SDMA and NOMA. In this paper, we present a comprehensive survey of key multiple access technologies adopted for aerial networks, where aBSs are deployed to serve ground users. Since there have been only sporadic results reported on the use of RSMA in aerial systems, we aim to extend the discussion on this topic by modelling and analyzing the weighted sum-rate performance of a two-user downlink network served by an RSMA-based aBS. Finally, related open issues and future research directions are exposed.Comment: 16 pages, 6 figures, submitted to IEEE Journa
    • …
    corecore