4,190 research outputs found

    A Hybrid Simulation Methodology To Evaluate Network Centricdecision Making Under Extreme Events

    Get PDF
    Currently the network centric operation and network centric warfare have generated a new area of research focused on determining how hierarchical organizations composed by human beings and machines make decisions over collaborative environments. One of the most stressful scenarios for these kinds of organizations is the so-called extreme events. This dissertation provides a hybrid simulation methodology based on classical simulation paradigms combined with social network analysis for evaluating and improving the organizational structures and procedures, mainly the incident command systems and plans for facing those extreme events. According to this, we provide a methodology for generating hypotheses and afterwards testing organizational procedures either in real training systems or simulation models with validated data. As long as the organization changes their dyadic relationships dynamically over time, we propose to capture the longitudinal digraph in time and analyze it by means of its adjacency matrix. Thus, by using an object oriented approach, three domains are proposed for better understanding the performance and the surrounding environment of an emergency management organization. System dynamics is used for modeling the critical infrastructure linked to the warning alerts of a given organization at federal, state and local levels. Discrete simulations based on the defined concept of community of state enables us to control the complete model. Discrete event simulation allows us to create entities that represent the data and resource flows within the organization. We propose that cognitive models might well be suited in our methodology. For instance, we show how the team performance decays in time, according to the Yerkes-Dodson curve, affecting the measures of performance of the whole organizational system. Accordingly we suggest that the hybrid model could be applied to other types of organizations, such as military peacekeeping operations and joint task forces. Along with providing insight about organizations, the methodology supports the analysis of the after action review (AAR), based on collection of data obtained from the command and control systems or the so-called training scenarios. Furthermore, a rich set of mathematical measures arises from the hybrid models such as triad census, dyad census, eigenvalues, utilization, feedback loops, etc., which provides a strong foundation for studying an emergency management organization. Future research will be necessary for analyzing real data and validating the proposed methodology

    An Architecture for Coexistence with Multiple Users in Frequency Hopping Cognitive Radio Networks

    Get PDF
    The radio frequency (RF) spectrum is a limited resource. Spectrum allotment disputes stem from this scarcity as many radio devices are con confined to a fixed frequency or frequency sequence. One alternative is to incorporate cognition within a configurable radio platform, therefore enabling the radio to adapt to dynamic RF spectrum environments. In this way, the radio is able to actively observe the RF spectrum, orient itself to the current RF environment, decide on a mode of operation, and act accordingly, thereby sharing the spectrum and operating in more flexible manner. This research presents a novel framework for incorporating several techniques for the purpose of adapting radio operation to the current RF spectrum environment. Specifically, this research makes six contributions to the field of cognitive radio: (1) the framework for a new hybrid hardware/software middleware architecture, (2) a framework for testing and evaluating clustering algorithms in the context of cognitive radio networks, (3) a new RF spectrum map representation technique, (4) a new RF spectrum map merging technique, (5) a new method for generating a random key-based adaptive frequency-hopping waveform, and (6) initial integration testing toward implementing the proposed system on a field-programmable gate array (FPGA)

    Managing Distributed Cloud Applications and Infrastructure

    Get PDF
    The emergence of the Internet of Things (IoT), combined with greater heterogeneity not only online in cloud computing architectures but across the cloud-to-edge continuum, is introducing new challenges for managing applications and infrastructure across this continuum. The scale and complexity is simply so complex that it is no longer realistic for IT teams to manually foresee the potential issues and manage the dynamism and dependencies across an increasing inter-dependent chain of service provision. This Open Access Pivot explores these challenges and offers a solution for the intelligent and reliable management of physical infrastructure and the optimal placement of applications for the provision of services on distributed clouds. This book provides a conceptual reference model for reliable capacity provisioning for distributed clouds and discusses how data analytics and machine learning, application and infrastructure optimization, and simulation can deliver quality of service requirements cost-efficiently in this complex feature space. These are illustrated through a series of case studies in cloud computing, telecommunications, big data analytics, and smart cities

    Modelling and Co-simulation of Multi-Energy Systems: Distributed Software Methods and Platforms

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Secure Control and Operation of Energy Cyber-Physical Systems Through Intelligent Agents

    Get PDF
    The operation of the smart grid is expected to be heavily reliant on microprocessor-based control. Thus, there is a strong need for interoperability standards to address the heterogeneous nature of the data in the smart grid. In this research, we analyzed in detail the security threats of the Generic Object Oriented Substation Events (GOOSE) and Sampled Measured Values (SMV) protocol mappings of the IEC 61850 data modeling standard, which is the most widely industry-accepted standard for power system automation and control. We found that there is a strong need for security solutions that are capable of defending the grid against cyber-attacks, minimizing the damage in case a cyber-incident occurs, and restoring services within minimal time. To address these risks, we focused on correlating cyber security algorithms with physical characteristics of the power system by developing intelligent agents that use this knowledge as an important second line of defense in detecting malicious activity. This will complement the cyber security methods, including encryption and authentication. Firstly, we developed a physical-model-checking algorithm, which uses artificial neural networks to identify switching-related attacks on power systems based on load flow characteristics. Secondly, the feasibility of using neural network forecasters to detect spoofed sampled values was investigated. We showed that although such forecasters have high spoofed-data-detection accuracy, they are prone to the accumulation of forecasting error. In this research, we proposed an algorithm to detect the accumulation of the forecasting error based on lightweight statistical indicators. The effectiveness of the proposed algorithms was experimentally verified on the Smart Grid testbed at FIU. The test results showed that the proposed techniques have a minimal detection latency, in the range of microseconds. Also, in this research we developed a network-in-the-loop co-simulation platform that seamlessly integrates the components of the smart grid together, especially since they are governed by different regulations and owned by different entities. Power system simulation software, microcontrollers, and a real communication infrastructure were combined together to provide a cohesive smart grid platform. A data-centric communication scheme was selected to provide an interoperability layer between multi-vendor devices, software packages, and to bridge different protocols together

    An Architectural Framework for Performance Analysis: Supporting the Design, Configuration, and Control of DIS /HLA Simulations

    Get PDF
    Technology advances are providing greater capabilities for most distributed computing environments. However, the advances in capabilities are paralleled by progressively increasing amounts of system complexity. In many instances, this complexity can lead to a lack of understanding regarding bottlenecks in run-time performance of distributed applications. This is especially true in the domain of distributed simulations where a myriad of enabling technologies are used as building blocks to provide large-scale, geographically disperse, dynamic virtual worlds. Persons responsible for the design, configuration, and control of distributed simulations need to understand the impact of decisions made regarding the allocation and use of the logical and physical resources that comprise a distributed simulation environment and how they effect run-time performance. Distributed Interactive Simulation (DIS) and High Level Architecture (HLA) simulation applications historically provide some of the most demanding distributed computing environments in terms of performance, and as such have a justified need for performance information sufficient to support decision-makers trying to improve system behavior. This research addresses two fundamental questions: (1) Is there an analysis framework suitable for characterizing DIS and HLA simulation performance? and (2) what kind of mechanism can be used to adequately monitor, measure, and collect performance data to support different performance analysis objectives for DIS and HLA simulations? This thesis presents a unified, architectural framework for DIS and HLA simulations, provides details on a performance monitoring system, and shows its effectiveness through a series of use cases that include practical applications of the framework to support real-world U.S. Department of Defense (DoD) programs. The thesis also discusses the robustness of the constructed framework and its applicability to performance analysis of more general distributed computing applications

    Using a Multiobjective Approach to Balance Mission and Network Goals within a Delay Tolerant Network Topology

    Get PDF
    This thesis investigates how to incorporate aspects of an Air Tasking Order (ATO), a Communications Tasking Order (CTO), and a Network Tasking Order (NTO) within a cognitive network framework. This was done in an effort to aid the commander and or network operator by providing automation for battlespace management to improve response time and potential inconsistent problem resolution. In particular, autonomous weapon systems such as unmanned aerial vehicles (UAVs) were the focus of this research This work implemented a simple cognitive process by incorporating aspects of behavior based robotic control principles to solve the multi-objective optimization problem of balancing both network and mission goals. The cognitive process consisted of both a multi-move look ahead component, in which the future outcomes of decisions were estimated, and a subsumption decision making architecture in which these decision-outcome pairs were selected so they co-optimized the dual goals. This was tested within a novel Air force mission scenario consisting of a UAV surveillance mission within a delay tolerant network (DTN) topology. This scenario used a team of small scale UAVs (operating as a team but each running the cognitive process independently) to balance the mission goal of maintaining maximum overall UAV time-on-target and the network goal of minimizing the packet end-to-end delays experienced within the DTN. The testing was accomplished within a MATLAB discrete event simulation. The results indicated that this proposed approach could successfully simultaneously improve both goals as the network goal improved 52% and the mission goal improved by approximately 6%
    • …
    corecore