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ABSTRACT

AN ARCHITECTURAL FRAMEWORK FOR PERFORMANCE ANALYSIS: 
SUPPORTING THE DESIGN, CONFIGURATION, AND CONTROL OF

DIS/HLA SIMULATIONS

David B. Cavitt 
Old Dominion University, 2000 

Director: Dr. C. Michael Overstreet

Technology advances are providing greater capabilities for most distributed computing 

environments. However, the advances in capabilities are paralleled by progressively increasing 

amounts of system complexity. In many instances, this complexity can lead to a lack of 

understanding regarding bottlenecks in run-time performance o f distributed applications. This is 

especially true in the domain o f  distributed simulations where a myriad o f enabling technologies 

are used as building blocks to provide large-scale, geographically disperse, dynamic virtual 

worlds. Persons responsible for the design, configuration, and control o f  distributed simulations 

need to understand the impact o f  decisions made regarding the allocation and use o f the logical 

and physical resources that comprise a distributed simulation environment and how they effect 

run-time performance. Distributed Interactive Simulation (DIS) and High Level Architecture 

(HLA) simulation applications historically provide some of the most demanding distributed 

computing environments in terms o f performance, and as such have a justified need for 

performance information sufficient to support decision-makers trying to improve system 

behavior.

This research addresses two fundamental questions: 1) Is there an analysis framework suitable 

for characterizing DIS and HLA simulation performance? and 2) what kind o f mechanism can be 

used to adequately monitor, measure, and collect performance data to support different 

performance analysis objectives for DIS and HLA simulations? This thesis presents a unified, 

architectural framework for DIS and HLA simulations, provides details on a performance 

monitoring system, and shows its effectiveness through a series o f use cases that include
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practical applications o f the framework to support real-world U.S. Department o f Defense (DoD) 

programs. The thesis also discusses the robustness o f the constructed framework and its 

applicability to performance analysis o f more general distributed computing applications.
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1

SECTION 1 

INTRODUCTION

The evolutionary development o f distributed computing systems has been driven by, 

among other things, the need to share resources, increase interactions, and operate in 

wider geographical regions. The diversity in application domains includes systems for 

Automated Teller Machines (ATMs), air traffic control and airline reservations, 

interactive remote instruction, remote medical teleconferencing, and joint military 

operations training. The availability o f lower-cost, higher-performance computing 

networks continues to provide greater capabilities to solve new and bigger problems 

using increasingly sophisticated computer applications. Increased capabilities and more 

sophisticated applications can, however, lead to an increase in system complexity.

The number o f hardware and software components that must be considered complicates 

understanding and managing the complexity associated with state-of-the-art distributed 

computing systems. Typical systems consist o f hundreds or thousands of autonomous 

workstations connected by different kinds o f communication sub-networks. The myriad 

o f software must support, among other things, some or all o f the following: data access, 

data consistency, processor synchronization, system security, fault tolerance, and system 

transparency. Additionally, dynamic workload characteristics can cause large variances 

in resource demands, dramatically affecting system run-time performance. Real-time 

processing requirements contribute to the complexity o f distributed computing systems. 

Whether the application is a critical, hard real-time system or a non-critical, soft real-time 

system, understanding the effects o f task scheduling strategies, fault-toierance, 

communications delays, and clock synchronization are important factors for assessing 

and managing system performance. Detailed discussions on design issues and objectives

This thesis used the sty le guide model as presented in IEEE Transactions on Software Engineering; a 
publication o f  the IEEE Computer Society.
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relevant to distributed systems are presented in [1,2,3], Real-time systems are introduced 

in [4,5]. Although this thesis will not address it, advances in technology and increases in 

system complexity cause similar concerns for designing scientific and parallel computing 

systems [6,7],

Current trends will result in ever larger and more complex distributed, real-time systems. 

Understanding the behavior and effective exploration o f the performance capabilities of 

these systems are predicated on the existence of good analysis tools and methodologies. 

Distributed computing applications must be evaluated and tuned to perform efficiently 

for varying hardware configurations and problem sizes. Persons making decisions about 

these tasks need to be provided useful information about issues within their control and in 

terms they can understand. Achieving these goals requires understanding which particular 

parameters o f a run-time configuration are the most significant factors affecting 

performance of the application. The relationship among those factors is complex and the 

impact on performance can be significant.

The above discussion provides general motivation for the research presented in this 

thesis, namely performance evaluation o f distributed simulations used by the U.S. 

Department o f Defense (DoD). The goal is to provide decision-makers with an 

understanding of technology factors contributing to performance bottlenecks in DoD 

Modeling and Simulation (M&S) environments. Achieving this requires an architectural 

framework consisting of a definition o f run-time performance, an analysis methodology, 

and effective performance monitoring tools. Department o f  Defense distributed 

simulation environments are sufficiently complex to justify the thesis focus and provide 

representative case studies to address significant and real problems. This thesis asserts 

that, although some performance issues may be unique to distributed simulations, many 

are applicable to distributed computing applications in general and the expectation is that 

much of what is learned will be useful for performance analysis across a broad spectrum 

of distributed computing domains (as opposed to just distributed simulation). The 

remainder o f this introduction provides information on the evolution o f  distributed
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3

simulation technology used by the DoD and discusses the objectives o f this thesis 

research, namely the specification o f a unified architectural framework for monitoring 

and analyzing the run-time performance o f DIS and HLA simulations.

1.1 Problem Definition

United States DoD military capabilities are defined as readiness, modernization, 

force structure, and sustainability; they are discussed in [8], The DoD uses modeling and 

simulation technologies to enhance these capabilities. Applications include joint service 

training, development o f military doctrine and tactics, development and testing of 

operational plans, technology assessments, systems acquisition, systems development and 

force structuring. The effectiveness o f using simulation for these applications is in part 

determined by performance measures describing the run-time behavior o f the underlying 

components used in the simulation environment. An abstraction o f performance can 

provide guidance in defining the relevant performance measures and a monitoring system 

can gather the required data to derive the appropriate metrics (performance measures) 

during simulation execution. This performance information is used by various persons 

making decisions about the design and development o f system models and simulation 

infrastructure, the configuration and control o f simulation exercises, and overall 

management o f M&S resources to support the various application domains. Although a 

variety o f measures are used to assess the effectiveness o f different technologies used to 

support these domains, performance measures are among the most significant since they 

support direct assessments regarding the realism and validity o f synthetic environments. 

Performance measures are a key part o f any evaluation o f the technologies and as such, 

must convey information about the application domain and must be both meaningful and 

relevant to the appropriate decision-makers.

1.2 Application Domains

The use o f military modeling and simulation for decision making has a relatively 

long and diverse history. As enumerated above, the application domains are numerous
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4

and a formal taxonomy can be found in [9]. For this thesis, however, it is useful to 

provide some background on the relevant DoD application domains, the technologies 

used for distributed simulations, and the system complexity in terms o f run-time 

performance. The discussion clarifies the terminology for the ensuing text and serves to 

substantiate the claim that this research is addressing a significant issue to the DoD M&S 

community, as well as to other distributed computing domains.

Military training is one domain where modeling and simulation play a significant role. 

Training military personnel to function within complex systems has necessitated the use 

o f M&S to create Synthetic Training Environments (STE). STE provide realistic training 

environments that can reduce training costs, control personnel and training area 

requirements, and in potentially hazardous training environments increase safety. STE 

consist o f humans interacting with a virtual environment for the purpose of 

experimentation, study, or evaluation. Some STE rely solely on manned simulators or 

mock-ups to create the virtual environment. For some applications, having real-world 

entities (e.g., humans, aircraft) participate in or contribute to the virtual environment is 

feasible and adds to the effectiveness of the training environment. For STE that need 

many entities, a cost-reduction technique is to rely on computer simulations to create and 

populate much o f the virtual environment. Many STE incorporate all three components; 

virtual simulators (mock-ups and manned simulators), live participants, and computer 

simulations. Although technical issues and limitations still exist, the increased 

performance and reliability o f  computers, Local-Area Networks (LANs), and Wide-Area 

Networks (WANs) allow these components to be geographically dispersed, sometimes 

across continents, and still participate in the STE. Distributed simulation technology 

allows trainees to be immersed in a synthetic environment that accurately simulates real- 

world operational environments. Human (trainee) perception plays a significant role in 

training environments, and near-real-time feedback and after-action-review systems are 

used to provide analysis capabilities, to enhance the training, and to assess the 

effectiveness o f training exercises. The diversity (and consequent complexity) of 

integrated components used in an STE requires a significant amount o f  information
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5

regarding system performance and behavior to assess the validity and adequacy of the 

training environment.

The DoD also uses distributed simulations to create more effective environments to 

support analysis o f military systems (e.g., fixed-wing aircraft, Command and Control, or 

C: ) and subsystems (e.g., weapons control, radar). New and emerging technologies 

provide enhanced capabilities but also add to system complexity. Accurately testing 

and/or evaluating the cost/benefit of integrating these new technologies requires the 

support o f increasingly sophisticated real-time simulation environments; the objective is 

to create a higher fidelity synthetic air, land, and sea space for analysis o f military 

systems. Programs for Research and Development (R&D), Test and Evaluation (T&E), 

technology assessments, and systems acquisition, can utilize the same synthetic 

environments as the training community. These application domains, however, may 

require higher-fidelity models and have stricter timing constraints, necessitating better 

and more predictable performance guarantees. As in STE, requirements exist for tools to 

support decision-makers during the design, development, and use o f the M&S 

environment. Additional application domains include using simulations to support 

analysis of military logistics (materiel management, maintenance, and resourcing 

policies), and the analysis o f military force structure (composition o f military forces 

across different mission scenarios).

The technology used to create synthetic environments continues to emerge rapidly and as 

people create more complex, higher fidelity models, hardware and software limitations 

become restrictive. The technology choices that must be made to develop a realistic 

synthetic environment are numerous and add to complexity for the decision-maker. 

Manned simulators, typically large and expensive, are o f  limited use in large-scale 

environments. For training exercises that require many live participants the logistics of 

including the personnel can be significant. Computer simulations can provide the 

capability to consistently and accurately reproduce a synthetic environment for the 

purposes o f experimentation, evaluation, and analysis, and distributed simulation is
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6

widely used to create these environments, partitioning the simulation processing 

requirements among many independent simulation nodes.

1.2.1 DoD Modeling Issues

A significant benefit of using distributed simulation is its ability to enhance realism by 

populating the environment with simulated entities and by implementing selective model 

fidelity, defining and controlling the faithfulness with which real-world objects are 

represented. Distributed simulations must include models that provide an accurate 

representation of the real-world system at a level of realism sufficient for the goals of the 

training and/or analysis. These higher resolution, higher fidelity M&S environments can 

be characterized by increasing spatial and temporal complexity. In DoD simulation 

terminology, physical models typically represent real-world entities, objects, or 

subsystems. A physical model has a state that represents real-world properties and where 

applicable, defines an interface for interaction with other physical models. Consider an 

STE consisting of a virtual battlefield simulation. The virtual battlefield simulates tanks 

(real-world entities) and specifies their sizes, traveling speeds, and armaments (state and 

properties). Each tank model has weapons and sensor interfaces that allow these 

subsystem states to be used to make decisions about when detections and engagements 

with enemy vehicles occur (interactions with another physical model).

Behavioral models for synthetic environments are required to simulate collective or 

individual human behaviors that control the physical models. These behaviors may be 

responses to some change in state o f the virtual environment. In the above example, the 

execution o f a behavioral model simulating the engagement o f an enemy vehicle is a 

response to a simulation event detecting that vehicle. Since most real-world systems are 

not closed systems, distributed simulations used in synthetic environments will typically 

provide some form of environmental models to enhance realism. Again, using the virtual 

battlefield simulation example, including environmental models is necessary because in a 

real-world battlefield smoke, darkness, clouds, and dust contribute significantly to the
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7

effectiveness o f sensor systems, weapons systems, and vehicle movement, as well as 

affecting human perception and performance. These physical, behavioral, and 

environmental models must provide an adequate representation o f the real-world system 

with properties at the correct fidelity level and allow realistic perception, interaction, and 

interpretation by the people operating within or using the synthetic environment.

The modeling issues discussed above create many technical issues for the design and 

implementation o f distributed simulation software infrastructure. Many of these are 

driven by the requirements for real-time man-in-loop capabilities for geographically 

dispersed players and valid interactions among the live, virtual, and simulation 

components. Design decisions for the components (networking; databases; parametric 

data; timing and coordination; simulation management and control; graphics and user 

interfaces; tracing and data logging; and security and protection) affect many important 

aspects o f the system, performance being one o f those. The following two examples 

clarify this point.

Invariably tradeoffs must be made between system performance and model resolution or 

fidelity. In the context o f DIS and HLA simulations, terrain modeling is one o f the more 

fundamental considerations. Better performing hardware and the availability o f vast 

amounts o f very high resolution data have led to requirements for highly detailed terrain 

representations. The representations can include, among other things, curved 

representations o f large areas o f the earth (spanning deserts, mountains, etc.), river and 

ocean bathymetry data, and multi-state cultural features (e.g., damaged and undamaged 

representations o f buildings, roads, and bridges). Terrain attributes can include color, soil 

type, and texture. Mean high and low water marks can be represented for littoral regions 

along with sea walls and near-shore escarpments. One terrain representation used in a 

case study for this thesis contains over 289,000 sq. km. o f terrain, 89,000 sq. km. of 

bathymetry, 4,000 km. o f coastline, 30,000 km. o f roads and railroads, 4,000 km. of 

pipelines, 13,000 building structures, 11,000 powerline transmission towers, 90,000 date 

palms (trees), 9,460.000 desert scrub bushes, and 300 bridges, overpasses, and
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Fig. 1. The evolution of U.S. DoD distributed simulation.

causeways. Run-time processing of this high-resolution terrain and feature data can result 

in performance bottlenecks. For example, the run-time execution costs of intervisibility 

algorithms used to assess whether two simulated vehicles can see each other (i.e., line of 

sight calculations) can be dramatically slow when processing dense feature 

representations (e.g., trees, hills, buildings), and a complex road system representation 

can dramatically affect the processing requirements o f vehicle movement algorithms 

(e.g., shortest-path search algorithms). Providing run-time performance data to decision

makers regarding the impact of specific terrain representations is useful for considering 

design tradeoffs to meet M&S objectives.

Decision-makers must sometimes make design tradeoffs on non-technical issues and the 

impact can affect run-time performance. Consider a highly distributed design and 

development environment; a characteristic o f many DoD distributed simulations (i.e., 

many different government contractors and/or government agencies). Invariably the 

development process results in disparate model implementations and simulation 

architectures and the integration o f these simulations can exhibit invalid run-time
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interactions and resultant model behavior. It is possible to alleviate some of these run

time problems by taking a centralized approach for specific modeling workloads 

(functional). As an example, one real-world system resorts to a centralized ordnance 

server, a simulation responsible for simulating guided weapons in training simulations. 

The motivation for the centralized ordnance server is driven by the need for a level 

playing fie ld  with respect to guided weapons, meaning that all simulations use the same 

weapons models. In this system, within each simulation the guided weapons are 

employed a very small percent o f the time (relative to the real-time simulation). 

Simulating the weapons is computationally expensive and the existing implementations 

are compute and memory bound processes, so it makes sense to allocate dedicated 

compute resources in the form of a centralized ordnance server. This eliminates the need 

for each simulation to set aside enough compute resources to support guided weapons 

modeling and achieves the requirement for a level playing. The decision to centralize the 

guided weapons models however creates specific performance requirements for the 

ordnance server, namely to simulate all guided weapons in the synthetic environment 

(which can be large) while guaranteeing valid interactions with remotely simulated 

targets. Performance data was gathered and used to support network latency analysis of 

weapons firing messages sent to the ordnance server, and weapons detonation messages 

sent from the ordnance server. Timing data was also gathered on the ordnance server’s 

execution. The performance analysis output provided positive feedback to the decision

makers regarding the feasibility o f this centralized approach in the presence of realistic 

workloads.

This section has thus far presented some of the modeling requirements o f DIS and HLA 

simulation environments and discussed the importance o f providing performance 

information to support decision-makers. The remainder of this section provides relevant 

background information on the evolution of DoD simulation architectures and provides 

additional justification for this thesis research.
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1.2.2 DoD Distributed Simulation Architectures

Significant advances in simulation architectures have been made over the past 10 

years. Technology improvements have facilitated these advances and include lower-cost 

workstations, high-performance local and wide area networks, and high-resolution, real

time Computer Image Generation (CIG) and display systems. Advances in simulation 

architecture have also been driven by requirements for higher fidelity models and have 

proved useful across a greater range of applications, as discussed in the previous section. 

Additionally, policy directives from the U.S. government mandate the increased use of 

simulations by the DoD for procurement, test, and evaluation activities. The history of 

DoD distributed simulation is relatively short but follows a well-defined chronological 

path. Figure 1.1 shows the evolution in the context o f the most significant distributed 

simulation protocols and architectures. Its origins start with the Simulator Networking 

(SIMNET) project and proceed to the current technology thmst, the High Level 

Architecture, or HLA. The figure also shows significant simulation events and annotates 

some of the characteristics regarding system complexity and performance. These 

characteristics sound a recurring theme, namely, the need to observe and record system 

performance to better understand the simulation environment.

1.2.2.1 Simulation Network (SIMNET)

SIMNET was a research project sponsored by the Defense Advanced Research 

Projects Agency (DARPA) in partnership with the U.S. Army. Initiated in 1983. the goals 

o f the program were to develop technology for networking large numbers o f interactive 

manned simulators (i.e., combat vehicles and combat support elements). The objectives 

were to provide realistic training and practice for fully manned platoon-, company-, and 

battalion-level units to fight force-on-force engagements against an opposing force.

The SIMNET architecture networked individual manned tank simulators together using 

microprocessor-based workstations (one simulator per workstation) and 10Mbps 

Ethernet. Individual LANs were linked together to form a WAN connecting
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geographically dispersed simulators. This WAN was the precursor to the DoD’s Defense 

Simulation Internet, or DSL A terrain database was replicated on each simulator and 

provided a globally consistent view of the virtual battlespace. Low-cost, real-time CIG 

systems were used to provide the crewed simulators with a three dimensional view o f the 

battlespace. An application-level protocol was developed (SIMNET protocol) to allow 

simulators to communicate; consisting o f data packets for controlling simulator 

activation/deactivation, transmitting vehicle appearance data (entity state data), re

supplying and repairing simulated vehicles, weapons firing and detonations, and vehicle 

collisions. Another important component o f the SIMNET architecture is the data logger 

used to record, replay and support analysis o f simulation exercises.

The SIMNET architecture resulted in several significant distributed simulation design 

principles still in use today. Among them are I) object-based M&S design and 

development, 2) simulation autonomy (decentralized simulation control), 3) data 

transmission restricted only to that relevant and required by other simulations, and 4) 

dead-reckoning algorithms used to reduce network and processor loads.1 Additionally, 

performance studies done using SIMNET provided the foundations for understanding 

factors that impact distributed simulation performance in DoD application domains. The 

studies elucidated the [still relevant] tradeoffs in communication costs, simulation 

processing costs, and model fidelity. Another significant contribution o f the SIMNET 

program was the use o f Semi-Automated Forces (SAP), to populate the synthetic training 

environment. In the later part of the SIMNET program, the use o f SAF to populate the 

virtual battlespace significantly added to the realism o f the simulation exercises.

The SIMNET program was formally completed in 1991; however, the U.S. Army 

continues to use the SIMNET system. It provides real-time, interactive training, and

1 Dead Reckoning is a method for the estimation o f  the position/orientation o f  an entity based on a 
previously known position/orientation and estimates o f  time and motion. It is employed as a network 
bandwidth reduction technique to limit the rate that Entity State PDUs are issued.
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provides the capability to train and sustain collective (crew through battalion level) tasks 

and skills in command and control, communication and maneuver, and to integrate the 

functions o f combat and combat service support. SIMNET provides this training in an 

environment that is significantly lower in cost and risk than comparable “live” field 

exercises.

SIMNET proved that distributed simulation was a viable paradigm for meeting DoD 

simulation goals. Its architecture provided many key design principles used in more 

recent DoD distributed simulation systems (i.e., DIS). Detailed information about 

SIMNET, its architecture, and communications protocols is found in [10,11,12,13,14].

1.2.2.2 Distributed Interactive Simulation, Semi-Automated Forces, and 

Intelligent Agents

The successful use o f  SIMNET provided the impetus for using distributed 

simulation technology to create larger and more realistic synthetic training environments. 

It seemed practical to use this technology to support other DoD simulation environments 

as well, such as test and evaluation of new combat vehicle systems and subsystems. In 

1989 the first Distributed Interactive Simulation (DIS) standards workshop took place. 

The primary motivation in creating the DIS standard was interoperability. In the context 

of DIS, interoperability means linking dissimilar simulations together using a standard 

protocol to create a consistent and coherent view of a synthetic land, air, and sea space.

The SIMNET protocol provided the baseline for DIS and position papers and workshops 

evolved the standard throughout the early ‘90s. DIS is an application (i.e., simulation) 

protocol based on Protocol Data Units (PDUs) associated with entity state and entity 

interactions. The standard describes the form and type of PDUs making up DIS messages 

that allow communications among simulations. The PDUs include:

• Entity State PDUs communicating an entity’s state (e.g., identification, physical 

appearance, location, and orientation, and specific capabilities).
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• Fire and Detonation PDUs associated with the firing and impact/detonation of 

weapons rounds.

• PDUs associated with vehicle and weapons logistics (i.e., re-supply and repair).

• Collision PDUs associated with collisions between entities.

• Emission PDUs, Transmitter PDUs, Signal PDUs communicating information about 

electromagnetic characteristics o f entities.

• Exercise Management PDUs managing among other things, the creation and deletion 

of entities, and the starting, suspension, and termination o f a simulation.

There are other PDUs and a complete discussion of the DIS Standard can be found in 

[15,16.17], From an architectural standpoint, DIS-based simulations incorporate many of 

the basic principles used in the design and implementation of SIMNET, including entity- 

on-entity interactions, dead-reckoning algorithms to reduce network and processor loads, 

a common terrain representation, and a common protocol for sharing information. 

However, the evolutionary development o f DIS and its use by the DoD coincided with 

the integration of a larger number o f disparate simulations, geographically dispersed 

across wider regions (throughout the U.S. and other countries). The capability emerged to 

simulate larger numbers of entities interacting in more realistic synthetic environments 

(i.e., dynamic terrain objects and weather anomalies). Different models could execute 

with different fidelity levels and similar models could execute at varying levels of 

resolution. All of these factors add to the complexity o f DIS-based simulations and each 

can significantly impact run-time performance. Perhaps the most significant impact o f  the 

DIS evolution was the increased significance o f SAP in DoD distributed simulations.

Semi-Automated Forces were simulations originally developed in the late 1980s in 

SIMNET. They were used to generate a relatively small number o f  simulated combat 

vehicles to enhance the realism of SIMNET training exercises. Since the number of 

available manned training simulators was limited, using SAFs to populate the battlespace
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with opposition forces increased the number of manned-simulators available for training 

blue forces (U.S. military forces). The successful use o f SAP during SIMNET resulted in 

the recognition that S AF would play a significant role in the future o f DoD modeling and 

simulation.

Semi-Automated Forces represent a broader class o f Computer-Generated Forces (CGF). 

In the DIS environment, SAP can be characterized by an entity level representation of 

combat units. These entities act as credible surrogates for modeling the behavior of 

manned simulators. To achieve this, SAP have a wide and complex array of information 

requirements that includes:

• Physical battlespace data describing things such as vehicles, weapon and sensor 

systems, and other assets in the scope o f  the combat portrayed by the system.

• Physical environment data such as terrain databases and environmental effects such 

as smoke, weather, diurnal and seasonal effects, and electro-magnetic radiation.

• Hierarchical representations o f military units (e.g., platoons, companies).

• Data and mechanisms for commanding and controlling the SAP units to mimic the 

real-world approach to command and control.

• Effective human-system interface so operators can interact with and control the 

simulation.

Different mechanisms exist for implementing behavioral models in SAP. One common 

technique is called Taskframe Behaviors and utilizes a software method for encoding task 

models through the use o f finite state machines and arbitration methods. Taskframe 

technology allows simulation entities to exhibit simple autonomous behaviors (tasks), 

such as an aircraft flying to a waypoint. SAPs still require significant human management 

however when it comes to executing complex coordinated simulation activity (e.g., air- 

to-air engagements). In a densely populated synthetic environment, the human controlling
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the SAF can quickly become overwhelmed by the workload required to control entities 

(units). This deficiency led to the development o f Intelligent Forces (IFOR) for use in 

DIS exercise environments. IFOR represent another class o f CGF and are more highly 

automated than SAF, the goal being to use these intelligent agents to further reduce man

power requirements o f simulation-based training exercises. A specific implementation of 

IFOR called TacAir-Soar is used extensively throughout this thesis research. TacAir- 

Soar is based on the use o f Soar technology, an artificial intelligence technique initially 

developed at Carnegie Mellon University.2 TacAir-Soar was developed jointly by 

researchers at the University o f Michigan and the University of Southern California. 

TacAir-Soar enables fixed-wing and rotary-wing aircraft to be simulated as fully 

automated forces controlled by intelligent agents (simulated pilots). A rule-based logic 

engine controls the IFOR behaviors. These behaviors are specified as a set of goal 

hierarchies and are used to conduct doctrinal missions. A simulation control application 

can provide close control o f the intelligent agents and their behaviors. A spoken language 

interface using the grammars o f real-world pilots and controllers can also be used. A 

thorough overview o f IFOR is presented in [18, 19]. The new capabilities provided by 

DIS. SAF, and IFOR dramatically affect run-time workloads of simulations. The 

complexity created by integrating the various technologies used to implement DIS 

justifies a formal approach to understanding the impact o f using these technologies to 

assess and evaluate simulation performance.

1.2.2.3 Aggregate Level Simulation Protocol (ALSP)

The Aggregate Level Simulation Protocol is another DARPA research program 

that coincided with DIS development. The ALSP permits multiple, pre-existing warfare 

simulations to interact with each other over local or wide area networks. The grouping of

: Soar was originally an acronym for State, Operator, And Result (SOAR), which together constitute one 
basic search step in Soar. For some unknown reason the community has dropped the reference to the 
acronym and just uses the term Soar and references it as a general Artificial Intelligence (AI) architecture.
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simulations is called an ALSP Confederation. The ALSP program was initiated in 1989. 

The system architecture continued to evolve as experiences gained in real training 

exercises provided requirements for design and implementation changes. By 1994, the 

confederation consisted of five different simulations encompassing the full range of joint 

military operations including, air, land, and sea warfare. By 1997, the ALSP 

Confederation consisted o f twelve different interacting systems and the ALSP 

Confederation continues to support large-scale, joint military training exercises.

Like DIS, the ALSP architecture is based on the successful characteristics o f SIMNET, 

namely autonomous simulations capable o f interacting in a geographically distributed 

environment, and using a message-based communications paradigm (a standardized 

protocol). Due to the nature o f the pre-existing simulations, ALSP has some unique 

requirements not characteristic o f SIMNET. These are: 1) the individual simulations 

maintain and advance time in different ways so a mechanism is needed to synchronize 

time and coordinate simulation events. 2) each simulation uses its own databases so a 

standard representation of shared data is required, and 3) simulations have different 

design architectures so a method is needed to enable each simulation to exist within the 

ALSP Confederation despite its design and implementation differences.

The ALSP program addressed these issues by developing an extensible communications 

architecture consisting of several standardized protocols and processing components used 

for time and data management functions. Each simulation (called an actor) is tightly 

coupled with a translator component that is responsible for converting data into a 

common representation. The translator provides a bridge between an actor and the 

confederation by directly interacting with an ALSP Common Module (ACM). There is one 

ACM for each actor/translator pair. The ACM manage the joining and leaving of actors 

from the confederation, coordinate the actors’ local time with confederation time, and 

manage object and object attribute ownership and updates. An ALSP Broadcast Emulator 

(ABE) manages communications among all ACMs in the confederation. ALSP has two 

basic protocol layers; an actor-to-actor protocol and an actor-to-ACM protocol. The
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actual communications connections primarily use standard TCP/IP and Ethernet 

technology. The ALSP history, architecture, and design are discussed in [20,21,22,23].

As the size o f the ALSP Confederation increased, run-time performance problems 

became a significant factor in assessing the effectiveness o f ALSP to support training 

objectives. Similar performance problems were apparent when scaling DIS-based training 

exercises and the approach taken to improve performance was to reduce bandwidth 

requirements, message processing overheads by the actors, and code optimizations of 

critical simulation functions. These performance enhancements temporarily alleviated 

some performance problems. However, evolving requirements for greater simulation 

functionality and confederation capabilities continue to create performance bottlenecks 

that limit the quality o f the training experience.

1.2.2.4 High Level Architecture (HLA)

Prior to the early-90’s, the DoD M&S programs can be characterized as narrowly 

focused, stove-piped simulation design and development efforts, meaning the simulations 

were typically implemented and executed in an autonomous manner and provided very 

little interoperability with other systems. Many DoD simulation development efforts were 

plagued with cost-overruns, late deliveries, and limited reuse. To address these concerns, 

in 1991 the U.S. Under Secretary of Defense (Acquisition), established the Executive 

Council for Modeling and Simulation (EXCIMS). The council was tasked to provide a 

focused vision of modeling and simulation to support and enhance U.S. military 

capabilities. This resulted in the U.S. DoD Modeling and Simulation Master Plan 

(MSMP) completed in 1995. The plan outlines strategies for achieving future DoD M&S- 

based capabilities, defines an initial step in a process for developing M&S functional 

objectives, and attempts to foster the development o f  a common set o f M&S standards, 

processes, and methods among civilian and defense industries. The MSMP defines a set 

of objectives required to realize the DoD M&S vision; the first being to “Provide a 

common technical framework for M&S”. This objective is the basis for the design and 

development o f  the High Level Architecture (HLA), a facility that promotes the
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interoperability and reuse o f models and simulations. In September, 1996, HLA was 

adopted as the standard technical architecture for all U.S. DoD simulations. The HLA 

consists o f three principal components: I) the HLA Rules, 2) Interface Specification, and 

3) the Object Model Template.

The rules specify the key principles behind HLA and provide a basis for meeting the 

objectives of using HLA, namely reuse and interoperability. The rules can be partitioned 

into two groups, those that apply to a federation (a group of interacting federates with a 

common goal), and those that apply to individual federates (simulations). Federation 

rules require the development and use o f a Federation Object Model (FOM) that specifies 

what types of data are shared, and when and how the data is exchanged among federates. 

The federate rules require the development of a Simulation Object Model (SOM). The 

SOM specifies those objects, attributes, and interactions o f a federate that can be made 

public in a federation. Both the federation and federate rules discuss object ownership 

policies and provide rules that allow individual federates to have different time 

management mechanisms and still participate in the federation in a coordinated fashion.

The HLA Interface Specification provides a well-defined interface that allows federates 

to interface with the Runtime Infrastructure (RTI), invoke its services, and respond to 

RTI requests. The RTI is in essence a distributed operating system that provides services 

that support the federate-to-federate interactions. The principal service categories are: I ) 

Federation Management, 2) Declaration Management, 3) Object Management, 4) 

Ownership Management, 5) Time Management, and 6) Data Distribution Management. 

The HLA Interface Specification defines how a federate accesses these RTI services.

The Object Model Template, or OMT, is a standard form that provides common 

documentation to define the SOM and FOM. The OMT provides a structured format with 

commonly understood terminology and objects. It provides a source o f information for 

assessments about the suitability o f a federation for specific applications, or the 

suitability o f an individual federate for participation within a specific federation. The goal
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is to use the OMT as a means o f selective development and reuse o f HLA federates and 

federations. A more thorough overview of HLA can be found in [24,25],

The mandate for new simulations to be HLA-compliant is having a significant impact on 

DoD M&S community and will continue to do so. The current HLA specification 

provides a baseline for building distributed simulation environments that can be 

characterized by greater interoperability and reuse. Interoperability among different 

simulations is achieved by using the RTI to facilitate data sharing. The requirement to 

document characteristics o f object representations using the OMT enables consistent data 

interpretation among federates participating in a specific federation which also enhances 

interoperability. Initial implementations of the infrastructure, however, have had dramatic 

effects on run-time performance. Performance evaluations are presented in [26,27,28].

A likely artifact o f greater interoperability and reuse is increased complexity in terms of 

the static distributed simulation architecture and the dynamics o f the run-time 

environment. It is very difficult to anticipate all the run-time interactions among the 

various aspects (network topology, hardware, operating system, RTI, simulation 

infrastructure) that constitute a DIS or HLA simulation environment. The need to 

understand the impact o f current and future DIS and HLA design and implementation 

decisions provides additional impetus for the research presented in this thesis and 

reinforces its significance to people making decisions about the use o f distributed 

simulation technology.

1.3 Thesis Objectives

Sections l .l  and 1.2 characterize the complexity of DoD M&S environments and 

justify a well-defined framework of DIS/HLA performance. The discussion provides the 

motivation for the objectives o f this thesis. The original concept o f the research was to 

provide a generalized architecture for distributed simulation performance analysis. 

During the initial stages o f thesis development, however, it became readily apparent that 

the scope o f performance analysis within DoD distributed simulation environments was
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sufficiently complex and that focusing research objectives on DIS and HLA simulations 

provided a significant, yet reasonable, bound on research objectives. Further rationale 

regarding the refinement o f thesis objectives is found in the conclusions Section. The 

formally defined thesis objectives are the following:

• Define a framework useful for characterizing DIS/HLA simulation performance. The 

framework shall include a conceptualized view of performance in the context of DIS 

and HLA simulations, and a taxonomy of performance measures useful to different 

decision-makers involved with the DIS / HLA life-cycle.

• Develop a measurement, monitoring, and analysis infrastructure useful for supporting 

DIS and HLA simulation performance.

• Relate the costs o f obtaining the performance information for use in both dynamic 

and static performance analyses in terms of the intrusiveness o f run-time monitoring 

and measurements o f DIS/HLA simulations.

• Provide a baseline o f practical experiences for future work related to performance 

measurement and monitoring for the design, configuration, and control o f DIS and 

HLA simulations.

The significance and contribution o f the research are to:

• Provide a framework to identify and understand a set o f meaningful and useful 

performance measures for persons making decisions within the context o f DIS and 

HLA simulation environments.

• Provide a performance monitoring software implementation that is useful and 

extendible to support different modeling and simulation applications and domains and 

that could be used for other distributed computing applications where performance 

monitoring and evaluation are desirable .
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• Provide documented experiences useful for understanding the tradeoffs associated 

with gathering specific types o f performance information and metrics as they relate to 

data granularity, data collection rate, and the overall run-time intrusiveness o f the 

monitoring system.

• Present results from real simulation exercises that provide those persons making 

decisions about performance measures with meaningful and relevant data for 

understanding such things as the utilization o f simulation and network resources, 

partitioning the simulation workload to account for scenario effects, estimating 

hardware / software requirements, and understanding the impact o f inserting specific 

technology into a distributed computing environment.

The goal is to provide a set o f tools to effectively provide guidance for the diagnosis and 

analysis of simulation run-time performance. The metrics should provide information to 

model developers and programmers, exercise and configuration planners, system analysts 

and program managers, and other decision-makers who need to understand performance 

of a distributed simulation’s execution in high-level terms, relating the myriad of DIS and 

HLA simulation technologies to the objectives o f simulation studies. The maturity and 

scope of DIS and HLA simulation environments provide a realistic environment to 

develop this thesis and ensure that real performance issues are addressed. The 

expectations are that results o f this research and implementation will be reusable beyond 

the DIS and HLA domains; therefore, a secondary objective is to provide a performance 

analysis framework useful for other distributed simulation environments.

Run-time acquisition and analysis o f the performance information should provide 

feedback on the execution o f the simulation and allow decisions to be made about the 

efficiency of the current distributed simulation environment. The framework and 

monitoring infrastructure should support decisions about the configuration and control o f 

the available hardware and software resources for future distributed simulation exercises. 

It should provide information that lets a decision-maker anticipate problems which will 

invariably exist in any technically complex system (i.e., distributed simulation
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environment) and provide insight to where problems exist in the system. The information 

is useful to develop a timely resolution strategy, assess risks, and document and track 

problems. The performance information should also be useful to help remove biases from 

design, operational, or analysis viewpoints that different people bring to the table.

1.4 Thesis Approach

The thesis will clearly conceptualize the meaning of distributed simulation 

performance in the context o f DIS and HLA simulations and will present a mechanism 

for capturing performance data in the run-time environment. Meeting the research 

objectives requires a well-understood and controllable simulation environment, suitable 

for validating the performance monitoring and analysis methods presented in this thesis. 

An ideal case study was selected; the DARPA Synthetic Theater o f  War (STOW) 

program. STOW is an evolving Advanced Distributed Simulation (ADS) technology that 

has successfully demonstrated the capabilities of high-resolution simulation to support 

military' training, systems acquisition, analysis, and test and evaluation [29]. The origins 

of STOW technology are DARPA’s previous work in synthetic forces including the 

SIMNET program. STOW creates a realistic, distributed simulation environment where 

synthetic forces are modeled at the platform level and the synthetic environment includes 

representations o f real-world terrain, space, oceans, and environmental effects [30,31]. 

STOW has been successfully used to support U.S. Atlantic Command’s (USACOM) 

Joint Task Force (Tier III) training. STOW requirements included the ability to generate 

enough ground, air, and sea forces to simulate theater level operations. Additionally, it 

had to integrate real-world Command, Control, Computer, Communications, and 

Intelligence (C4I) systems to support component-level training requirements. The STOW 

component of this exercise consisted o f 500 computers generating up to 8000 simulated 

objects, distributed across sites throughout the United States and United Kingdom. To 

achieve the large-scale, networked requirements o f this exercise, a synthetic battlespace 

was created using HLA. The STOW program developed an advanced, high-performance 

networking infrastructure based on ATM and Multicast/IP technologies, the goal being to
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reduce bandwidth requirements and transmission latencies [32]. The showcase for 

DARPA’s STOW program was the STOW Advanced Concept & Technology 

Demonstration (ACTD) conducted in 1997. The performance abstraction, the taxonomy 

of performance measures, and the performance monitoring software presented in this 

thesis were initially developed to support the STOW ACTD. STOW technology is an 

excellent case study that:

• Provides a complex simulation environment with many run-time characteristics 

affecting performance, supporting the design and iterative refinement of an abstract 

representation of distributed simulation performance.

• Provides a large and sufficiently complex simulation environment (both run-time 

behavior and software architecture) suitable for designing, implementing, and 

analyzing different monitoring schemes and for understanding the cost/benefit of 

doing performance analysis in terms of the perturbation o f the analysis results.

• Allows assessments to be made regarding the impacts on performance of a dynamic 

simulation architecture and configuration and the framework’s flexibility to changing 

requirements in performance information.

• Supports real-world simulation exercises, with a diverse set o f decision-makers, and 

allows assessments to be made about the utility o f the performance framework and 

techniques for measuring and monitoring performance information.

• Is used in multiple simulation domains and supports a broad range o f requirements 

for different kinds o f performance information.

Interacting with the STOW program provided an opportunity to develop a baseline of 

knowledge regarding the kinds o f performance information that was meaningful and 

useful to different decision makers. An initial concept o f useful performance information 

was developed and the simulation application was instrumented. Data collected during 

real exercises was analyzed and used to provide feedback during model development,
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support workload partitioning during pre-exercise planning, run-time monitoring o f the 

distributed environment during the simulation exercise, and post-exercise analysis of 

distributed simulation performance. Experiences from the STOW ACTD supported 

iterative refinement and extensions to the initial performance abstraction and monitoring 

software. As STOW continued to evolve and its technology transferred to other DoD 

programs and M&S domains, the conceptual understanding o f what DIS and HLA 

performance means was refined. Additionally, the costs of monitoring have been 

quantified and weighed qualitatively against the value added by having run-time 

performance information available to make important decisions regarding the availability 

and use o f the different resources and assets in a distributed simulation environment.

Acceptability criteria for successful completion of this research is based upon meeting the 

research objectives and showing the utility and breadth o f application o f the performance 

framework which relates to the effectiveness with which the research contributions can 

be used and which is in large part a qualitative assessment of the successful completion 

of the validation requirements. Validation is based on examining the case studies 

presented in this thesis, understanding the positive impact the performance information 

has on real-world programs, and successfully initiating the transfer o f  the research and 

technology to the simulation community. This is significant as the crux o f the validation 

effort is getting decision makers to agree on the applicability and usefulness o f the 

performance measures as well as the methodology for capturing the data. The two most 

fundamental validation questions to answer are: does the performance information 

provided meet the user’s objectives o f analyzing simulation performance and does using 

the proposed framework significantly impact the performance analysis process 

(succinctly, what is the added-value o f using the proposed framework?).

The approach taken in this thesis will establish a clear, logical path from the 

conceptualization o f distributed simulation performance to the conclusions drawn about 

distributed simulation performance during the case studies.

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



25

1.5 Thesis Organization

The first section of this thesis has introduced characteristics o f typical distributed 

simulation environments and relates the complexity o f these environments with the 

enabling technologies underlying the system implementation. It also traces the evolution 

of U.S. DoD distributed simulations from the founding SIMNET program to the 

emerging HLA standards and discusses the components that make up the synthetic 

environments (dynamic virtual worlds) associated with the various military M&S 

domains. Section 2 discusses related research and further articulates the significance and 

contribution o f this thesis research. Sections 1 and 2 provide a foundation that justifies 

the need for a well-defined framework for performance analysis o f not just DIS and HLA 

simulations, but other distributed simulations in general and sets the context for the 

research presented in this thesis.

1.5.1 A Framework for Characterizing DIS and HLA Simulation Performance

Section 3 establishes the basis for the specification o f the framework presented in 

this thesis. It defines an abstraction that identifies the most significant factors affecting 

the run-time performance of DIS and HLA simulations. These factors are used to 

establish a taxonomy of performance measures useful for characterizing distributed 

simulation performance. This taxonomy is a helpful tool for persons trying to define a set 

of meaningful performance metrics useful to meet DIS and HLA performance analysis 

objectives. Requirements for a performance monitoring system to monitor, measure, and 

collect performance data is also discussed. Finally, the section introduces the crux of the 

thesis, a model that represents a unified, architectural framework for the performance 

analysis of DIS and HLA simulations. The notion o f “unifying” in this context means a 

framework that provides an identified set o f  performance measures common among DIS 

and HLA simulations, a mapping of those measures to a set o f metrics collected with a 

general performance monitoring infrastructure, and the transformation o f those metrics to 

meaningful information used by an array o f decision-makers involved in different

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

activities associated with a simulation life-cycle. This unified framework is depicted in an 

important graphic in Figure 3.4.

1.5.2 Performance Monitoring

Section 4 discusses the design and implementation o f the PerfMETRICS 

monitoring system, a software-based monitoring system created as a part of this thesis 

research. The system architecture and design are presented along with the motivation for 

specific implementation techniques. Details regarding the various logical and physical 

components of the software are discussed in detail including the instrumentation 

component, the collection daemon, and the graphical user interface component for 

displaying and logging the performance data.

1.5.3 Performance Monitoring Use Cases and Conclusions

Section 5 presents use cases associated with the application o f the framework to 

real-world M&S programs. The use cases are significant for demonstrating the relevance 

of the framework across a range o f performance study objectives to support the design 

configuration, and control o f DIS and HLA simulations used in different M&S domains. 

All o f the cases are based on the use o f PerfMETRICS and the underlying framework 

describing the relevant performance metrics. The use cases discuss in detail the use of the 

framework to support model design and testing, scenario configuration, monitoring o f the 

resources, dynamic load-scheduling, capacity planning, and technology assessment and 

insertion, support application design and development, and run-time control of DIS and 

HLA applications. Conclusions from this thesis research are presented in Section 6.
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SECTION 2 

RELATED RESEARCH

This section reviews literature related not only to the performance analysis and evaluation 

o f DIS and HLA-based simulations but also to other distributed simulations, applications, 

and computing environments. The objective o f this section is to show the need for an 

analysis framework suitable for acquiring and presenting performance information to 

people who design, configure, and control DIS and HLA simulations. This information 

must be presented at various levels o f abstraction depending on its intended use by 

decision-makers. Research and performance studies o f distributed systems are applicable 

across a variety o f applications and this section discusses issues relevant to performance 

evaluation and modeling o f distributed systems as well as distributed simulation. 

Although the emphasis o f this research is on developing an analysis framework and 

deriving suitable performance metrics for DIS and HLA simulations, this section 

introduces the monitoring, measuring, and presentation of performance information of 

different distributed application domains; each application exhibits aspects of 

performance studies that are integral to any analysis method. These existing and well- 

documented topics provide a basis for integration and reuse within the scope of this 

research.

2.1 Performance Analysis o f Distributed Systems and Other Distributed  
Simulations

Measurement and monitoring are integral components of any performance analysis for 

distributed simulation. The specification o f performance information and the data 

acquisition used to derive that information can significantly affect the feasibility o f the 

performance analysis. Additionally, the intrusiveness o f monitoring must be understood 

to assess whether the monitoring process has perturbed the results o f the analysis. 

Generally, monitoring o f distributed systems is considered an event-based activity. For 

simulation monitoring, the definition o f performance events o f  interest is based on the
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goals o f measurement, the events necessary to describe the behavior of the simulation, 

and the simulation instrumentation.

Typically, three fundamental design techniques exist for monitoring distributed systems. 

Hardware, hybrid (consisting of both hardware and software components) and software 

monitors each provide benefits that make them more suitable for specific applications, 

depending on the type of information required for analysis and the level o f intrusiveness 

that can be tolerated [33]. Hardware monitoring consists o f dedicated hardware that 

passively monitors the target application. It is a low-level monitoring system that fetches 

signals transmitted on system buses. Hardware monitoring is the least intrusive but can be 

limited in the kinds o f process-level events it can capture and use for performance 

analysis. In the context o f distributed applications this means data shared among different 

processes and transmitted via I/O channels. Another disadvantage is the cost and 

limitations o f hardware that is typically machine-dependent, a significant factor given the 

current trend toward more heterogeneous distributed computing environments.

Software monitoring is an approach that uses only instrumentation code to detect and 

process the target program’s run-time behavior. Since the instrumentation code is 

embedded within the monitored program, it consumes compute cycles that are otherwise 

used by application code. As a result, software monitoring can be intrusive. It does, 

however, provide the greatest flexibility in terms of detection, collection, and analysis of 

process-level performance information. A hybrid monitoring system relies on software 

instrumentation o f the target application but uses dedicated hardware to capture and 

process the performance data. This technique reduces monitoring intrusion by 

minimizing the overhead o f detecting and collecting the performance data. It does not, 

however, eliminate the cost o f executing the performance instrumentation code. The 

intrusive effects o f monitoring go beyond the timing errors induced by executing 

performance instrumentation code. Timing errors can induce the re-sequencing of 

simulation events, possibly leading to incorrect execution of the distributed simulation 

and misleading or incorrect analysis o f results. Training environments based on
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simulations are particularly susceptible to this since trainees’ interactions with the 

simulation are based on decisions and responses to the events they perceive happening 

during run-time. A complete discussion of the issues related to monitoring o f distributed 

and real-time systems is found in [33,34,35]. Examples o f software monitoring 

approaches for distributed applications and operating systems are found in [36-40].

Run-time monitoring is just one issue related to performance analysis. Performance 

visualization and prediction are two other areas o f interest for performance analysis. The 

distributed computing community has recognized the need for an integrated environment 

to monitor, visualize, and model the behavior o f distributed and parallel applications. 

Considerable interest exists in the development o f automated tools that can help isolate 

and correct performance problems o f distributed applications. However, existing tools’ 

capabilities raise many concerns. Typical complaints include the requirement to have a 

sophisticated understanding of the application to use the tool, widely varying interfaces 

and functionality in a heterogeneous environment, inability to reuse components of 

existing tools to build or extend other tools, and hand-coded instrumentation o f the 

application for data monitoring. Pancake, Simmons, and Yan provide a short overview of 

the issues surrounding parallel and distributed processing tools for both prediction 

(modeling) and measurement (monitoring) [41],

The importance o f the visualization of performance information for distributed and 

parallel applications is discussed in Heath, Maiony, and Rover [42]. This paper presents a 

clear and concise model for presenting performance information, based on the successes 

gained in the visualization o f scientific and engineering data relating physical systems 

and their behavior. The significance of this research as it relates to the performance 

analysis methodology presented in this thesis proposal is its emphasis on presenting the 

information at a level o f abstraction meaningful to its intended audience. Another 

interesting paper deals with the use of feedback from monitoring tools to assess and 

engineer program modifications [43]. Fickas and Feather introduce the idea o f using 

program requirements and assumptions to define what components of the software
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implementation should be monitored. The monitor detects violations of the system’s 

requirements and provides feedback to people responsible for maintaining or designing 

the system. Additional examples and case studies are discussed in [44,45].

Other approaches to performance evaluation o f parallel and distributed applications are 

based on modeling, both analytically and through the use o f  simulation. In [46,47] 

Dickens, Heidelberger, and Nicol illustrate the use o f simulation to provide a predictive 

model o f a parallel code’s performance. It is essentially a timing simulation to estimate 

the speedup/slowdown performance of a parallel code on an Intel Paragon. It has proven 

to be accurate to within 5 percent of the actual execution times when the application was 

run on native hardware. Although in this paper, the application’s domain was not a 

simulation, the paper illustrates the efficacy of using simulation to predict certain 

performance characteristics of a distributed program. Sarukkai and Mehra provide 

another example in [48] o f a predictive model used for scalability analysis o f parallel 

programs.

Research on the performance o f distributed simulations can be considered based on the 

type of simulation and its environment. Typically, the Parallel Discrete Event Simulation 

(PDES) community bases its performance analysis exclusively on speedup, since the 

primary goal is to get the simulation to execute as fast as possible, decreasing the time it 

takes an analyst or decision-maker to obtain output and analysis data. Often PDES are 

run on multi-processor architectures, but even in distributed environments the most 

frequent presentation o f performance results is the speedup relative to the number of 

processors participating in the simulation exercise. Another comparison is the speedup 

relative to the message density (number of messages per processor). Fujimoto presents a 

detailed discussion of PDES and its performance goals in [49]. Fujimoto and Falsafi 

present results o f PDES performance studies in [50,51]. Many aspects of PDES affect 

performance including models and their interactions, simulation infrastructure overhead, 

and distributed processing overhead. Although the metric o f speedup is measured relative 

to the number o f messages and/or processors used, other static characteristics and run
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time behaviors o f the PDES such as queuing disciplines and operating system overhead 

affect performance. Often the information reported is not adequate to assist people in 

making decisions and assessments about the configuration and run-time characteristics of 

the distributed simulation. In [52], Carothers, et al. present a visualization tool (PvaniM) 

for providing insight into the run-time performance o f a variant o f the Time Warp (TW) 

Operating System used to execute PDES in a distributed computing environment. The 

tool provides graphical views of the TW component, the middleware, or simulation 

infrastructure. Performance o f PDES has proven to be very dependent upon the 

communication patterns exhibited by an application and the PVaniM tool provides low- 

level information about the application’s time management and synchronization 

characteristics (i.e., rollback, aborted events, time-advance).

2.2 Performance Analysis o f DIS and HLA Simulations

Distributed Interactive Simulation is a distributed simulation based on entity-level 

interactions (as opposed to aggregate-level interactions among groups of entities). In 

some DIS-based applications it is desirable to simulate as many entities as possible to 

enhance the realism of the simulation environment. This makes scalability an important 

characteristic for DIS. Vrablik and Richardson present the results o f benchmarking a DIS 

that generates CGF for doing military training, doctrine development, and test and 

evaluations [53]. The paper emphasizes a performance metric o f entities per workstation 

(vehicle count), relating the metric to various software and hardware configurations. 

White reports the results o f a similar study but discusses the details and implementation 

of the software architecture, trying to further explain why certain configurations obtain 

differing levels o f performance [54], The discussion, however, relates execution times for 

certain functions in the simulation’s implementation and this low-level analysis o f why a 

certain vehicle count is achievable is meaningful only to a programmer or model designer 

knowledgeable and familiar with the simulation’s software architecture.
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Previous DIS exercises required the simulation o f up to 5000 entities on the DSI, a 

network of workstations geographically dispersed throughout the United States, England, 

and Korea. Prior to the evolution o f multicast technology, DIS relied on broadcast 

communication services; all hosts on a network received every other hosts’ data, 

regardless o f its interest level.3 The bandwidth requirements for sharing data in this kind 

o f DIS environment proved to be the limiting factor and past performance studies and 

evaluations focused on the networking and communications costs associated with 

operating in the local and wide-area networks. Smith, Schuette, Russo, and Crepeau 

proposed a mathematical model to characterize the performance of Distributed Synthetic 

Forces (DSF) [55]. It discusses how the major limiting factor in DSF is the costs of 

distributing (replicating) entity information throughout the simulation environment. It 

accounts for the networking costs (the protocol stack and data transmission) and 

discusses some experimentation done. Experiment results are used to verify a scalability 

metric. Once verified, the scalability metric could be used to assist people who need to 

make decisions about resource requirements and hardware configurations for future 

distributed simulation exercises.

Recent advances in communications services (e.g., multicasting, ATM, fiber optics) have 

relaxed bandwidth requirements associated with wide-area networks linking individual 

DIS LANs. Early bandwidth reduction techniques (e.g., dead-reckoning) significantly 

reduced the amount o f traffic seen at the interfaces to individual simulation hosts. The 

development o f the HLA RTI has further reduced bandwidth requirements using 

techniques such as relevance filtering. The cost, however, in the case o f the RTI is the 

overhead in making real-time decisions about how to route data among potentially 

hundreds o f hosts participating in a simulation exercise. Additionally, as the realism 

(validity) o f the synthetic environment increases, typically so does the density (number)

’ For many DIS-based exercises, entity count requirements would exceed achievable capabilities. One o f  
the most successful DIS-based exercises in terms o f  entity counts was DARPA’s STOVV-E (Europe) 
exercise; only achieving an entity count around 2800.
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of simulated objects. The models and algorithms that need data on the state of these 

objects will typically also require more processing time (CPU cycles). Many present day 

DIS and HLA simulations are actually CPU and/or memory-bound processes.

The models and studies discussed in the previous paragraphs are based on run-time 

monitoring and measurements o f existing parallel simulations. The results were obtained 

from monitored data in empirical performance studies. The DIS and HLA communities 

have also attempted to use predictive models to assess simulation performance. In [56] 

Guha and Bassiouni assert the use o f Petri-nets as a predictive analytical tool for the 

performance evaluation o f an HLA-based run-time environment. This is preliminary 

work, however, and the aim o f this tool is to identify reusable simulation components that 

can be combined into a single Petri-net module, reducing the size o f the net’s reachability 

graph, and thereby reducing the size and complexity o f the solution. The reduced size of 

the graph maps the resulting implementation into fewer software components and could 

enhance the run-time performance o f the simulation. Srinivasan and Reynolds propose 

simulation as an alternative technique to predict run-time performance [57,58]. They 

have developed a simulation model to allow HLA federation designers to conduct first 

order performance analysis before constructing the federation. The defining characteristic 

of their model is that the semantic information about individual federates is not part o f 

the model. The model focuses on resource usage and contention and ignores application 

level details. The system consists o f executing federate objects and their interactions 

based on probabilities. Similarly, overheads for communications (message transmission) 

and the RTI are accounted for using probabilities. The use o f probabilities can be a 

limiting factor when configuring the model for analysis since the use o f HLA is newly 

emerging and many of the run-time characteristics o f the model components are 

unknown. Additionally, the simulation model does not include semantic information 

about federate behavior which can dynamically change simulation performance based on 

the stochastic nature o f the federate object behaviors. What is needed is empirical data to 

validate the model’s execution probabilities; this need provides incentive for the 

performance monitoring proposed in this research.
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Different strategies have been proposed and used for the monitoring and measurement of 

distributed simulations. The goals o f the monitoring are often to observe performance in a 

very limited area o f interest, so the monitoring techniques tend to be tailored specifically 

to study only one aspect o f the distributed simulations behavior. Nair, McGregor, Root, 

and Barth present an architecture for the monitoring and analysis o f networking control 

components (software) used to control bi-level multicasting, Quality o f Service (QoS), 

and network overload management (flow-control) o f a DIS communications architecture 

[59], The relevant performance data gathered by an SNMP “sub-agent”, is passed 

throughout the network using SNMP.4 The paper suggests that reuse o f this architecture 

for communicating higher-level simulation performance data is feasible. Sudnikovich 

proposes the standardization o f two new Protocol Data Units (PDUs) in the DIS standard, 

a Global Data Query PDU and a Global Data PDU [60]. The formats are primarily 

intended for requesting and receiving entity level performance data as it relates to the use 

o f the lower levels of the network protocol stack (e.g., the transport layer, network layer, 

and down to the physical layer). Intrusiveness of the use o f these PDUs could be 

significant, as many requests for performance information will reduce network bandwidth 

available for the transmission of more critical PDUs. The paper does present some 

solutions and proposals for research to control the level o f  intrusiveness o f the new 

PDUs.

Unlike many PDES where success is based solely on the speedup attained, the diverse set 

o f DIS domains (e.g., training, test and evaluations, planning and control) typically use a 

broader set of success measures. Making decisions and assessments about the 

effectiveness or utility o f an exercise, or the hardware and software configurations o f the 

DIS. requires analyzing the many factors contributing to the run-time performance of the 

simulation. This need warrants the development o f a suite o f techniques and tools to

4 The Simple Network Management Protocol, or SNMP, is a network management protocol based on the 
exchange o f  information using messages to monitor and control network events (e.g., terminals or 
workstations joining or leaving a network).
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analyze such functions as simulation control, network and protocol analysis, and 

simulation event analysis. In [61], Stender discusses simulation management for large 

exercises. The paper defines exercise managers’ responsibilities including monitoring the 

exercise execution (performance information), identifying and resolving problems, and 

providing information and guidance to the program manager or exercise sponsor who, in 

turn, will provide guidance and instructions on assuring the exercise will meet its 

objectives. The paper also introduces an interesting high-level performance metric, a 

network breaking point that assigns a threshold to identify network saturation.

The need for an effective framework for DIS exercise management and review is 

significant enough that the IEEE has proposed a standard, the “IEEE Recommended 

Practice for Distributed Interactive Simulation - Exercise Management and Feedback”, 

that is presented along with some suggested improvements in [62,63]. A tool for DIS 

exercise support and feedback is discussed in [64], The tool requirements are for an 

effective real-time or near-real-time monitoring tool that is similar in functionality to the 

utilities used for DoD After-Action-Reviews (AARs). The tools should gather simulation 

trace data used for data analysis including assessment of resource utilization, simulation 

participation and interoperability analysis. This paper also concludes that the adoption of 

HLA/RTI (High-Level Architecture and Run-time Infrastructure), the Common Object 

Request Broker Architectures (CORBA), and multicasting, are going to significantly 

complicate performance monitoring tools and utilities. Information about CORBA is 

presented by Mowbray in [65].

Since the culmination of the DARPA STOW ACTD in 1999, related research has 

included initial design and development efforts for an HLA development tool suite, RTI 

performance studies, and other studies related to HLA federation performance. 

Designing, building, and using an HLA federation is complex and as in any software 

development project, a method for automating the data exchange among the various 

development activities is desirable. In [66], Hunt introduces a proposed suite of tools that 

are either being prototyped or have been identified as needed to support the complete life-
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cycle o f an HLA federation. Among them are: I) a performance modeling/prediction tool 

to support the design phase of federation development, 2) a test tool for federation 

testing, 3) monitoring, runtime management, and data collection tools to support 

federation execution, and 4) a data analysis/post processor tool to support the analysis 

activities phase.

Coinciding with HLA tool development, continuing concerns regarding HLA run-time 

performance resulted in a series of studies focused on understanding and defining HLA 

RTI performance [67. 68, 69, 70]. These studies are RTI-centric and focus exclusively on 

the throughput and latency characteristics in terms of HLA objects and interactions. The 

Defense Modeling and Simulation Office (DMSO) has initiated efforts to develop a 

Federation Execution Planners Workbook (FEPW); a developer framework that requires 

the articulation of distributed simulation environment characteristics including 

performance requirements. This data is used to support logical and physical resource 

estimates for an HLA federation [71,72]. Some commercial products 

(http: www.virtc.com/') are also starting to appear on the market and intend to automate 

the federation development process as well as provide run-time feedback regarding 

simulation execution.

2.3 Summary' of Related Research

Much of the related research presented in this section discusses the performance analysis 

and evaluation of distributed and parallel codes for scientific and engineering 

applications. Many of the problems associated with identifying, collecting, and analyzing 

performance information are similar, regardless of the type o f distributed application. 

However, the complexity and diversity o f components making up the software and 

hardware architecture o f distributed simulations justifies the need for a well-structured 

and unified framework for performance analysis. The complexity o f simulation models 

and the computer architectures on which they run makes the assessment o f  the costs and 

benefits o f distributed simulation a difficult task and requires a diverse range of
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performance information. Most performance studies of distributed simulations and the 

tools used for analysis have been loosely-coupled and focused on one aspect of 

simulation performance (e.g., network analysis or queuing performance, rollback 

performance). What appears to be missing from the literature is a unified framework for 

identifying the factors throughout the entire spectrum of system characteristics affecting 

distributed simulation performance and a model for deriving performance information at 

a high enough level so as to be meaningful and useful to simulation exercise managers, 

configuration planners, and other decision-makers.

Advances in enabling technologies continue to improve the already successful use o f DIS 

and HLA simulations. DIS and HLA objectives, specifically interoperability and reuse, 

result in increasingly Iarger-scale simulation environments exhibiting greater complexity. 

Changing technology also results in shifting performance bottlenecks among the various 

components comprising a distributed simulation environment. An example is the shift in 

bandwidth contention from the network media to the application-level algorithms that 

process shared data, a result o f faster transmission media, more efficient routing 

technologies, and more robust protocols (e.g., multicast vs. broadcast technology). There 

is one constant; the exercise scenario and associated workload is a driving factor behind 

simulation performance. As reported, most o f the research related to DIS and HLA 

performance analysis has been focused on very specific aspects and lower-level 

components affecting distributed simulation performance. This fact provides further 

justification for the research presented in this thesis, specifically the design and 

development o f a framework for performance analysis addressing the diverse set of 

physical and logical distributed simulation resources and suitable for acquiring and 

presenting performance information to people who design, development, configure, and 

control DIS and HLA simulation environments.
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SECTION 3 

A FRAMEWORK FOR CHARACTERIZING DIS AND HLA 
SIMULATION PERFORMANCE

The DoD distributed simulation architectures presented in Section 1 have proved 

effective for augmenting systems studies in research, systems acquisition, and training 

environments. We have also seen how the complexity o f these systems makes it difficult 

to understand the effect o f integrating new M&S technologies. What is needed to 

improve our understanding and management o f DoD distributed simulation environments 

is a framework for characterizing performance. This framework provides a performance 

abstraction; a set of performance measures that convey what is important from the 

decision-makers perspective. This section discusses, based on lessons learned during this 

research, those aspects of performance that are most meaningful and useful to different 

decision-makers involved with the distributed simulation life-cycle. It provides a 

taxonomy o f relevant performance measures and discusses issues regarding the 

monitoring and measurement o f DIS and HLA simulations to obtain the relevant 

information.

3.1 A DIS and HLA Performance Abstraction

During the different phases of the simulation life-cycle people assume various 

roles with different responsibilities. The roles include those o f model developers and 

simulation programmers, configuration and experimentation planners, and system 

analysts or program managers. Each role may require different kinds of performance 

information for decision-making. Performance information gathered and used by these 

people during the various phases o f the simulation life cycle differentiates between the 

distributed simulation’s different physical and logical components (i.e., hardware, O/S, 

application, models, experimentation). Table 3.1 provides examples o f questions different 

people might ask when trying to understand the performance behavior of a distributed 

simulation environment. For related questions (in each row o f  the table), the principle
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difference is the granularity o f the data needed to answer the question. Data aggregation 

or data fusion  may be required to present the information in a meaningful way. Referring 

to Table 3.1, a simple example of aggregation takes the data rates for different message 

types (useful to a model developer) and combines them to derive an average throughput 

(meaningful for a program manager). A more complex example combines interaction 

PDU rates (e.g., radio or sensor transmissions) with entity counts to provide a useful 

performance measure for persons trying to make decisions about how to partition a 

workload of interacting entities among different simulation engines. A systems analyst or 

project manager will generally be interested in performance information on the 

simulation’s capabilities, resource utilization, and bottlenecks as they relate to the 

simulation study goals. Performance studies can provide information to assist the analyst 

and managers in assessing the impact of decisions made about simulation requirements 

and exercise goals. A model developer or programmer can use some o f the same 

information but will most likely need additional measured data to derive more detailed 

information about the system’s hardware and software performance. Configuration and 

experimentation planners also need information that allows them to assess the 

performance of the simulation. With the recognition that the distributed environment 

imposes certain constraints on the simulation’s processing requirements, configuration 

and experimentation planners must have performance information at varied levels of 

granularity that allows them to understand the effects of computer, network, and other 

architectural components. Meaningful performance measures are useful to all o f these 

people when making assessments about how various hardware and software components 

used in distributed simulation impact meeting simulation objectives.
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TABLE 1
Example DIS and HLA Performance FAQs (Frequently Asked Questions)

Program Analyst and 
Managers

Model and Simulation 
Developers

Configuration /
Experimentation
Controllers

Networking / 
Connectivity

Is network performance 
sufficient in terms o f  data 
latency and throughput?

What are the data rates for 
specific messages using 
specific network services 
(e.g., best-effort. reliable, 
etc.)?

What are the transmit, 
receive, and error rates 
at the network 
interfaces?

Modeling

What model interactions 
are most expensive from 
the perspective o f  compute 
resources?

What are the run-time 
characteristics for specific 
model (e.g., entity) 
interactions?

What entity models can 
be efficiently simulated 
within the same 
simulation engine?

Simulation

What is the simulation 
workload (e.g.. entity 
count, terrain processing, 
etc.)?

What are the processing 
rates for different 
simulation components?

How idle is the 
simulation (i.e.. 
scheduler not 
processing simulation 
events)?

Scenario Design 
Workload Partitioning

Can enough entities be 
created to meet training 
objectives?

How many entities can be 
simulated per 
workstation?

How should the 
entity/object workload 
be distributed among 
available workstations?

Execution
How well are we using 
available compute 
resources?

What is the resources 
utilization for a specific 
workstation?

How many simulations 
are currently executing?

Analysis

Can we afford to collect 
specific types o f  data for 
AAR, Debrief, or other 
analysis?

What are the costs, in 
terms o f  simulation 
performance to collect 
specific kinds o f  data?

What are the costs, in 
terms o f  bandwidth to 
collect specific amounts 
o f  data at specific rates?

A performance analysis o f a DIS or HLA simulation, or some component therein, 

requires an initial specification o f the performance requirements o f the system and the 

consequent identification of relevant metrics for quantifying run-time performance. 

Although the analysis objectives for different DIS and HLA simulation environments 

invariably result in different sets o f useful metrics, experience has shown that a set o f 

metrics exists which have broad application to many decision-makers needs and is 

defined by the set o f physical and logical resources in a typical distributed simulation 

environment. The existence of, and the interactions among, these resources define metrics
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Fig. 2. Distributed simulation components used to define useful metrics.

useful for analysis, independent o f the application domain. Figure 3.1 presents a diagram 

showing a conceptual partitioning o f the major functional components required for a 

distributed simulation: I) a networking component, 2) a simulation infrastructure 

component, 3) a modeling component, and 4) a scenario or workload. Useful metrics 

might come from the union of all components, or just a subset o f the metrics (as defined 

by an intersection o f the components).

3.1.1 Network Performance Factors

Modem networks have been modularized and built into a complex, yet reliable, 

communications infrastructure based on a fairly mature set o f standards. It would be too 

costly to reconstruct this networking infrastructure for every distributed simulation 

project; therefore, current distributed simulation environments bank heavily on the reuse 

of these networking “toolsets” . The fact that the networking components are reused 

means many questions can exist regarding performance within the context o f a new 

application and workload, so network performance monitoring and analysis is useful to 

support decision-makers. Useful network performance data include bandwidth, latency, 

and error rates as they relate to any of the different low-level networking technologies 

(protocols) used in DIS and HLA environments: ATM, TCP/IP, Multicast IP, FDDI, or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

Ethernet, to name a few. A meaningful presentation o f the metrics (e.g., kilocells/sec., 

packets/sec., etc.) is dependent upon the level at which the protocol is being examined 

and by the end user o f the performance information (decision-maker).

For HLA federations, an RTI is a mandatory network component (often referred to as 

middleware) and metrics related to its performance are o f significant interest, especially 

in the context o f a large-scale distributed simulation exercise. From a performance 

viewpoint, the RTI acts as a conduit channeling and regulating the workload effects 

between the networking component, the simulation (federate) infrastructure, and the 

modeling component. For some HLA application scenarios, tens o f thousands o f entities 

may exist and require high throughput rates for attribute updates (or reflections). Entities 

may be dynamically created and destroyed at bursty rates, pushing the capabilities o f the 

RTI Declaration and Ownership Management services. Frequent calls to advance the 

simulation clock could have adverse performance impacts when using the RTI Time 

Management services. A common set of metrics useful for understanding the impact of 

an RTI implementation can be derived from measurements related to a) data 

transmission, and b) processing overheads associated with RTI. Throughput, bandwidth, 

and latency descriptions are also useful for characterizing the performance of data 

transmission at the RTI level. Additionally, packet and message loss data are important 

measures to support utilization assessments about the underlying network infrastructure 

and any potential resource contention within the RTI implementation (e.g., buffering, 

packet bundling, etc.). Timing data related to the relative processing costs o f an RTI are 

useful for persons trying to understand the overall costs associated with using HLA/RTI 

to share data. The RTI intrinsically maintains some performance information in its 

Management Object Model (MOM) data. MOM data can provide useful information on 

the operation o f the RTI, individual federates, and the integrated federation.

The bandwidth, latency, and error rates are relevant throughout the entire protocol stack 

of DIS and HLA simulations. Within the DIS and HLA, end-to-end delays (latencies) are 

especially significant due to the impact on valid object interactions (time delays and 

event reordering). Unacceptable end-to-end delays can be a result o f contention for the
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transmission media or in the case o f a wide-area network, the length of transmission (i.e., 

speed of light laws). Networked simulations have additional factors affecting network 

performance not directly related to the physical transmission o f the data. An example is 

the encoding and decoding (i.e., data packing, byte ordering, etc.) o f  messages passed 

among machines; a process adding to end-to-end delays and complicated by the nature o f 

heterogeneous networks and compute platforms used in DIS and HLA-based simulation 

environments.

The low-level functionality in the network component (as it relates to the protocol stack) 

provides a desirable place to filter and format data and provides control-flow 

mechanisms. Data rates and packet sizes are used to design buffer space and account for 

compute cycle requirements. Decisions must be made regarding interest management 

(filtering), bad data (sending and receiving), exercise control, timing requirements 

(synchronous vs. asynchronous), network partitioning (bandwidth reduction), and 

network configuration (hardware and software topology). Networking performance 

metrics are essential to provide meaningful and useful information to developers, 

configuration planners, and other persons addressing these issues to connect DIS and 

HLA simulations as well as other distributed applications.

3.1.2 Simulation Infrastructure Performance Factors

Metrics associated with simulation infrastructure help characterize the run-time 

performance of simulation processing overheads or the costs o f doing simulation. 

Typically, DIS and HLA simulations are scaled, time-stepped; or discrete, event-stepped 

implementations. DIS and HLA simulation environments (or federations) may consist o f 

simulations (or federates) having similar or dissimilar architectures. An example would 

be an HLA federation consisting o f engineering design models implemented as discrete 

event simulations interoperating with a fixed-time increment, analysis simulation used to 

assess the impact o f various design alternatives. Regardless o f the type o f simulation, a 

set o f common functional components is used for time management, events and event
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schedulers, entity management, simulation administration and control, graphics and 

visualization, and support routines for data collection (including performance 

measurements). DIS and HLA time management functions are complicated in that each 

o f the computers participating in the distributed simulation must invoke events in a 

globally coordinated or synchronized manner, assuring either correct program behavior 

or the recovery from errors induced by uncoordinated activity. The schedulers must 

execute efficiently, independent o f the number o f events that must be serviced as the size 

of the simulation experiment is scaled up or down. As is the case for most simulations, 

maintaining event lists, entity databases and other data structures used in DIS and HLA- 

based simulations can greatly affect performance so the cost o f maintaining, 

synchronizing, and accessing these structures must also be considered when 

characterizing performance. Graphics displays and visual systems capabilities must be 

weighed against the modeling and scenario complexity. Performance measures related to 

rendering and displaying graphical images, as well as any network traffic associated with 

remote visualization are useful.

All simulations have some cost associated with initialization and start-up, termination and 

cleanup operations, and general simulation administration, control, and reporting. Having 

these services replicated, executing concurrently, and coordinating operations and 

decisions, affects performance. The control o f a distributed simulation is a characteristic 

that is pure overhead, part o f the cost of doing simulation, and must be considered when 

understanding the performance of a distributed simulation. Additionally, for some 

simulations, graphical displays and high levels o f user interaction and intervention can be 

intrusive to the simulation; the impact on performance must be considered. Lastly, the 

library and utilities associated with data collection in a distributed simulation 

environment are diverse and application dependent. The effect on performance can be 

dramatic depending on the granularity or volume of data collected.

When used in conjunction with performance data from the other defined components, 

simulation infrastructure metrics provide an intuitive feel and, at some level, a
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quantitative assessment for whether the workload is too excessive for a given simulation 

implementation. This is useful as feedback for testers and configuration and workload 

planners. Specific metrics such as number of events processed per second, state update 

rate, scheduler idle time, and total simulation time are useful for developers to identify 

implementation deficiencies or problems, and to provide real-time feedback regarding the 

health of the simulations executing in a distributed simulation environment.

3.1.3 Modeling Performance Factors

The previous two subsections describe lower-level, quantifiable measures that 

most directly relate to the performance of specific components o f the simulation 

architecture. Performance measures related to these components provide useful 

information for assessing the utility o f  certain enabling technologies (networking) or the 

reasonableness o f a specific implementation (simulation infrastructure); however, to 

support assessments about the success or achievement o f  simulation goals, networking 

and simulation infrastructure performance data must be interpreted in the context of 

specific modeling and scenario workloads using terminology meaningful to decision

makers. Performance assessments at this level can be complicated because o f the multi

variate relationships among interacting simulation components and non-linear 

performance behavior in the presence o f changing model and scenario workloads.

DIS and HLA-based simulations are predominately used by the U.S. DoD, so most o f the 

scenarios consist o f entities (e.g., tanks, aircraft, dismounted infantry) and environmental 

(e.g., clouds, dust, rain) models used to create a synthetic battlespace. The CGF and 

Synthetic Natural Environments (SNE) may have different levels o f fidelity and 

resolution leading to very different run-time performance characteristics. CGF model 

design and implementation issues affecting run-time performance include physical 

modeling o f entity motion (within its own coordinate system and within a world 

coordinate system), sensor modeling, weapons handling, behavioral modeling, and 

visualization. Entity motion model performance is dependent upon whether the models
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are physics-based or state-based. When different or multiple axis coordinates are used to 

simulate entity dynamics (i.e., body-axis coordinates for equations o f motion and earth- 

axis (world) coordinates used to describe the kinematics), consistency and accuracy 

among algorithms and databases for entity position and orientation transformations are 

critical. Frequent transformations can significantly impact model performance.

Another factor that can affect run-time performance is related to dead-reckoning. 

Different thresholds may be required for vehicle models that exhibit very different 

movement characteristics (i.e., slow-movers vs. fast-movers). High-performance DR 

algorithms lead to more accurate representations with greater computational costs. Lower 

DR algorithms provide lower computational costs but can lead to anomalous or invalid 

simulation performance in terms o f visualization, simulated collisions, and other model 

aspects. Factors affecting CGF sensor modeling include the capabilities o f the simulated 

sensors, the size and complexity (temperature, density, humidity, weather, dynamic 

environmental effects, etc.) o f the synthetic environment, and the number o f sensors the 

simulated entity is modeling. The same factors are relevant to any simulated weapons 

processing as well.

Cognitive and other behavioral modeling is another performance factor. It has been 

recognized that an essential aspect o f CGF realism is the use of accurate behavioral 

representations that provide context for CGF physical representations. Different 

behavioral models will have different computational requirements (performance), as is 

the case, for example, between the SAF taskframes (lower cost) and the TacAir-Soar 

mechanisms (higher cost) discussed in Section 1.2.2.2. Taskframes are based on a finite- 

state machine mechanism and TacAir-Soar uses the Soar architecture and programming 

language, an actual Artificial Intelligence (AI) cognitive model [73].

Environmental modeling is the representation o f the simulated world or the gaming area 

in which entities operate and interact. Terrain modeling (land and ocean) can have 

extensive processing and memory requirements; dependencies include the number o f 

static versus dynamic representations that are used to create the terrain, the consistency
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requirements within the distributed simulation environment (network performance 

impact), and the internal representations within a specific simulation implementation. 

SNE run-time performance measures can be related to algorithms (temporal) or data 

(spatial) and are affected by such design decisions as a homogeneous (globally consistent 

environmental state) or gridded (e.g., different weather conditions in different regions of 

the simulation playbox) models, or the fidelity o f physics-based implementations 

(barometric pressure effects; viscosity and water movement; energy propagation such as 

shock waves, sound, light, medium variability; and discontinuities such as temperature or 

salinity).

Important performance considerations must be given to the interaction among the CGF 

and SNE models. The complexity o f the interactions is the principal reason why assessing 

or predicting performance of DIS and HLA simulations is so difficult. Possible 

interactions between entities/environment and environment/environment must be defined 

and performance measures used to determine the impact on performance. Examples 

include line-of-sight algorithms critical for air/land/entity interactions, and traffic models 

to support realistic movement o f entities on terrain including effects such as slope, 

surface type, and effects o f recent weather. Other factors affecting performance can 

include the use o f dynamic terrain (e.g., craters, tidal flow) and multi-state objects used to 

show the results o f weapons interactions and create animation sequences for the visual 

system (e.g., buildings blowing up).

3.1.4 Scenario Factors

The use o f performance measures related to the conduct o f a scenario is useful for 

many purposes including: 1) utilization of existing resources in the synthetic 

environment, 2) planning for growth in the presence o f changing technologies, and 3) 

evaluation o f “level playing fields” among interoperable simulations. DIS and HLA 

scenarios are necessarily constrained by the technologies (capabilities and limitations) of 

any existing network, models, and simulation infrastructure. Consequently, scenario
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rehearsal is a critical factor in determining the “proof o f the total system” (architecture 

and configuration). This requires making sure the available resources are sufficient and 

the run-time performance of all components is adequate for a given simulation exercise. 

Performance information characterizing network, simulation infrastructure, and modeling 

capabilities support assessments by decision-makers regarding the feasibility o f a specific 

scenario and the workload resulting from that scenario. Useful performance metrics 

related to run-time performance o f  the distributed simulation environment include overall 

processor and network utilizations, bandwidth characteristics (network and application 

protocols), minimum and maximum model update rates, and sensitivity metrics 

addressing the impact o f changing workload due to the scenario.

Two significant factors to consider during scenario design are the types of simulated 

entities to be used and their expected interactions. Performance data can be captured and 

used to provide insight on the processing requirements o f specific entity types. 

Performance assessments can then be made to estimate overall scenario performance 

based on the number of entities and their expected interactions. This approach allows the 

capabilities o f the networked system (network, simulation, modeling capability) to be 

properly paired with scenario objectives and supports evaluation o f scenario design 

compatibility with the physical and logical configuration o f the DIS and HLA 

environment. As an example, in a SAF-based simulation various models o f real-world 

physical systems (hull, sensors, weapons, etc.) are combined as sub-models to make up 

the entity representation o f a vehicle. Each of the sub-models will have known processing 

requirements and when combined in a run-time context will define the overall processing 

requirements of the entity representation. A real ship has a number o f sensor systems and 

the associated SAF representation of that ship will have the corresponding number of 

sensor sub-models. If the ship model is used in a large-scale scenario, the model may 

spend all of its time processing the shared (distributed) data inputs to the sensor models 

(e.g., emissions, radio packets), which limits the number of ships that can be simulated on 

a single simulation engine. As a result, tradeoffs must be made in scenario design
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regarding the size o f the synthetic environment (number of entities) and the types of 

entities that are a part of the scenario.

In WAN environments or environments that integrate DIS and HLA simulations with 

real-world systems, networking limitations can also constrain scenario design. For 

example, in one recent distributed simulation exercise, a transoceanic, 128K.byte ISDN 

line was used to link an HLA federation with the combat systems used onboard a U.S. 

Navy AEGIS class ship. The HLA federation modeled a Theater Ballistic Missile (TBM) 

threat and passed the simulated entity position and orientation data over the ISDN line as 

input to the ship’s sophisticated tracking radar and fire control systems. To properly 

stimulate these real-world systems, the model was required to update the simulated 

TBM’s position and orientation state data at a minimum 5 Hz rate. In this case, the 

constant, known size (data volume) of the ground truth data (TBM position and 

orientation), the specified model update rate, and the limited capacity o f the network 

were all factors that imposed constraints on the size and complexity o f the scenario used 

for this simulation exercise. In this case, by previously monitoring and understanding the 

processing requirements of the TBM model, it was determined that a maximum o f two 

TBMs could be successfully simulated at any instant in time..

Performance measures related to the conduct o f a scenario can also be used to assess the 

adequacy of the synthetic environment in providing a “level playing field”; otherwise 

interactions between entities may be invalid. An example could involve the interaction o f 

a CGF Fixed-Wing Aircraft (FWA) and a virtual FWA simulator (man-in-loop) acting as 

an opposing force (air-to-air threat). If the performance o f the network and CGF 

simulation engine is such that latent entity state data is used to update the image 

generator in the virtual cockpit simulator, it is possible that the trainee in the virtual 

cockpit will have an incorrect perception of the actual position o f the CGF FWA, while 

the CGF FWA has a more accurate perception o f the virtual cockpit simulated FWA. 

This creates an unnatural advantage favoring the CGF FWA and invalidates any 

interaction the two entities might have in the synthetic environment (e.g., decision to
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engage). Performance information (real-time and post-analysis) can be useful for 

assessing the validity of certain scenario workloads and can be useful for adjudicating 

invalid interactions similar to the example described above.

3.1.5 Generalization

Typical hardware and operating system performance information in distributed 

simulation applications, like CPU and network utilization, are easy to identify and 

measure using traditional tools. Obtaining other meaningful application specific 

performance information requires alternative methods, deriving the information from the 

composition o f data characterizing run-time performance o f individual simulations and 

global data on the structure and performance o f the entire distributed simulation 

environment. The perception o f both local detail and global structure provides both fine 

and course-grained views o f distributed simulation performance and can be used to 

understand the effects of decisions made regarding model design, implementation, and 

scenarios (run-time workload). Traditionally, most performance measurement and 

analysis methods for distributed simulations have been application specific and primarily 

focus on providing information meaningful to the software developer. For non-DoD 

applications, the goal of simulation speedup dominates most o f the literature. For many 

DoD applications (e.g., synthetic training environments), the number o f entities per 

workstation (where an entity is defined as some simulated real-world object) is also used 

as the singular metric. These two metrics are based on a set o f criteria that indicate 

achievement, or not, of a particular performance goal but do not articulate the reasons for 

the observed performance and behavior. Decision-makers need a broader array o f 

performance metrics than speedup or entities per workstation, yet the number of 

components that make up a distributed simulation and the complexity of interactions 

among the components make identifying all the performance factors a difficult task.

Consider a hypothetical case o f an HLA exercise manager being told that a simulation 

engine modeling five aircraft is performing poorly. The following metrics convey 

increasingly greater amounts o f  information:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



51

• Entites per workstation - not meaningful in this case because the number of locally 

simulated entities is low and the number and the types of remote entities is variable.

• Packets per second - useful for detecting the overload condition but does not provide 

the manager with enough information to help resolve the problem.

• Reflections per second - allows the exercise manager to know if the RTI is passing a 

large amount of state information to the application models and is able to associate 

the performance degradation with model activity.

• Radio updates per second -  indicates the rate a specific model, a radio in this case, is 

receiving and processing data.

• Radios per aircraft -  indicates that number of radios an aircraft has associated with its 

representation.

The exercise manager could use the above metrics to detect and identify performance 

problems due to a specific aircraft receiving inordinately large amounts o f radio traffic. 

This information could be used to make judicious decisions about how to partition the 

workload (simulated aircraft) to minimize the impact o f radio traffic. An important point 

about the metrics listed above is they are presented in terms meaningful to the exercise 

manager who needs to understand the performance impact o f a specific scenario 

workload.

To improve the benefit o f distributing a simulation’s computations and run-time 

environment, it is necessary to understand the simulation’s performance characteristics in 

the context of the distributed environment. The characterization o f distributed simulation 

performance is multi-faceted. Decisions about concurrent execution o f simulation models 

using replicated resources and services are based on abstract models o f computation, and 

performance characterizations o f this system can be difficult to understand. Speedup and 

entities per workstation, however, are not sufficient for a full characterization o f 

distributed simulation performance. This is especially true when distributed simulation is
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used in training and other man-in-loop environments. Performance information relates 

not just to the speed of computation, but to the efficiency and effectiveness of the 

simulation in utilizing the shared resources and services within the distributed 

environment. Performance information characterizing concurrency, scaling, availability, 

reliability, and interactivity can articulate the simulation’s ability to meet the many goals 

of a simulation study.

Characteristics o f simulation architectures, simulation models, scenarios, and distributed 

systems provide a basis for identifying factors affecting distributed simulation 

performance. A well-defined framework for performance analysis can provide techniques 

to establish relationships among these factors and the constructs and abstractions used in 

the simulation's design and implementation. The intended use o f the performance 

information defines which metrics are useful to develop an understanding of the 

simulation’s performance. The level at which the performance information is presented is 

determined by the role and intended use of the information. This establishes the 

motivation for the development of an effective framework for analysis of distributed 

simulation performance.

3.2 A Taxonomy of DIS and HLA Performance Measures

The previous section highlighted the significance o f different components affecting 

distributed simulation performance. At run-time each of these components manifest 

themselves as a set o f diverse, yet interrelated, performance measures and for this 

discussion it is useful to classify and organize the performance measures into a 

meaningful hierarchy. The taxonomy shown in Figure 3.2 is not necessarily inclusive o f 

all measures but provides a logical organization based on the conceptualization discussed 

in the previous section. The organization o f these measures is useful for persons trying to 

understand the scope of analyzing the run-time performance of DIS and HLA 

simulations. It provides an initial definition of performance measures useful for making 

decisions about designing, configuring, and controlling the simulation environment.
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Fig. 3. A taxonomy of DIS and HLA simulation performance measures.

These measures, when considered with the capabilities and limitations o f enabling 

simulation technologies and scenario effects, provide a model for structuring the

Meaningful performance information related to the components discussed in Section 3.1 

is associated with performance measures in three top-level categories: I) modeling, 2) 

simulation infrastructure, and 3) system. Modeling performance measures are related to 

simulated entities (e.g., vehicles, platforms, etc.) and simulated environment (e.g., terrain

5 Depending on the objectives, the analysis may consist o f  a series o f  interacting or collaborative activities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

monitoring, data collection, and analysis process.5



54

representations, bathymetry, etc.). Specific to entity modeling, it is important to provide 

an Entity- Count, the number o f each entity or vehicle type (air, ground, and water 

vehicles, mines, etc.) in the simulation environment. This count data should be available 

on a per application basis, and as a set o f global metrics (the entity count o f the entire 

simulation environment). Entities (vehicles) are a natural data point for persons involved 

with DIS and HLA simulations because o f their direct correlation with the real-world 

objects and activities, especially in the context of DoD and military environments. 

Related to each run-time instance o f a simulated entity, is its sub-model processing 

requirements. A frequent question asked by persons developing or configuring DIS/HLA 

simulation exercises is what are the processing costs associated with a specific entity 

type. The Sub-model Processing Times provide timing data that characterize the 

processing costs of each component used to represent specific entities. For DIS and HLA 

simulations, experience has shown that it is reasonable to view the synthetic environment 

as a set o f entities that may or may not move around, sensing and interacting with their 

environment, and that are potentially capable o f engaging other entities with weapons. 

This view allows an entity sub-model categorization of: 1) position and orientation 

models (dynamic representation o f the entity such as flight dynamics or kinematics), 2) 

sensor models (e.g.. visual, radar), 3) weapons, 4) behaviors (e.g., following a route, 

flying a formation), and 5) graphics and visualization. A meaningful way to present sub

model processing times is as a relative percentage o f the over-all simulation processing 

time for some specified time interval, including the elapsed simulation time. It is possible 

to collect the sub-model timing data on a per entity basis or on a per application basis, 

depending on the level o f  detail required for the analysis.

Modeling SNE entails providing realistic representations o f the ground, air, sea, and 

space domains. High-fidelity SNE can improve the fidelity of entity modeling but can 

also adversely impact application processing and network performance. In the context o f 

DIS and HLA, dynamic high-fidelity SNEs are an emerging technology. A proven 

paradigm for architecting environmental models within a distributed simulation system is 

to have a centralized network server [31]. An environmental server typically uses
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compute-intensive, physics-based volumetric modeling techniques. Performance 

measures related to environmental modeling include basic timing measurements used to 

understand the compute costs o f  specific environmental models (e.g., fractal-based cloud 

models, smoke models, and water-column models). More important performance 

measures are related to the impact that environmental modeling has on the overall 

distributed simulation environment; specifically, how the receiving entity models and 

their respective sensors process the environmental inputs, and the effect the potentially 

voluminous data has on the network resources. The real-time (or faster-than-real-time) 

constraints o f many DIS and HLA simulations may further hinder performance. 

Important environmental performance measures related to entity modeling are the time it 

takes entity sensor models to perform intervisibility (Intervisibility Lookups) and collision 

avoidance (Collision Lookups) calculations. These can be potentially expensive 

algorithms and timing data supports decisions regarding modeling tradeoffs in terrain 

fidelity and entity model processing requirements. Other performance measures related to 

environmental models and their performance impact are the Total Number o f 

Environmental Objects Transmitted (uniform- and gridded-weather). Environmental 

Object Update Rate and Variance, Average Time to Transfer (bytes/sec), Average Object 

Size Transmitted, Re-transmit Requests (specifically for new simulation joins), Total 

Number o f  Bytes Transmitted, and static measures dealing with the Size and Extents of 

the environmental data sets.

Performance measures suitable for describing simulation infrastructure include 

characterizations of; I) the simulation scheduler or executive, 2) the networking and 

Inter-process Communications (IPC), 3) data and list management, and 4) general timing 

information. Scheduler Idle Time provides a measure o f the scheduler workload as it 

relates to servicing events. Slack in the Entity Tick Rate6 provides a relative measure of

" A metric derived from the notion o f  real-time process scheduling. This metric is applicable to simulations 
requiring periodic updates to all entities within a specific time period. Slack is the time remaining in the 
time period after all entities have been updated. As processing times for entities and other state information 
increase, the amount o f  slack decreases.
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the amount of available room for additional entity state processing. The two metrics 

above are especially important as they relate to DIS-based real-time or scaled, real-time 

simulations. They provide quantitative measures that can be used to relate scenario 

workload to the perceived run-time performance o f the synthetic environment. If 

workload becomes too great such that the simulation processing cannot keep up, the 

scheduler will not be able to keep up and simulation time will begin to lag behind the 

wall-clock (real-world time). Entity Tick Rate describes the average update frequency for 

each instance of entity and Entity State Update Performance provides a measure o f the 

overall update performance for all simulated entities within the simulation. Metrics 

related to interprocessor communications using the HLA RTI include RTI Tick Time 

(time spent in the RTI), RTI Tick Rate, Attribute Updates/Reflections (per second), 

Object Interactions (per second). Average Size o f  Attribute Updates, Attribute Update 

/Interaction Delay, and Time Advance Request Delay.

System-level performance measures are related to the utilization and performance of the 

operating system services and hardware resources on the computers running the 

simulations (applications). These measures map to the processing, memory, and 

networking components used in any general distributed computing environment and 

provide a low-level performance characterization o f the simulation process and the 

computer on which it is executing. Metrics include relative CPU and Memory 

Utilizations for the application and the system. One potential artifact o f the high fidelity, 

high-resolution representations used in many DIS and HLA simulations is very large 

storage requirements to manage data (e.g., terrain databases) in physical memory and on 

disks. DIS and HLA simulations can be memory bound processes so additional 

performance measures include the amount o f physical memory (Resident Memory) 

consumed by the simulation as well as the amount in virtual memory {Swap). Hard disk 

activity (blocks or bytes per second) metrics extend the notion o f memory hierarchy 

performance measures. These measures are useful for identifying applications or 

simulations with inefficient working sets or memory leaks. Simulation workload 

characteristics such as fast-moving platforms (e.g., theater ballistic missiles) can
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sometimes induce thrashing situations, as the interactions between the entity and the 

terrain require rapid and large-scale memory updates. Networking performance measures 

are used to assess the impact o f the simulation workload on the available bandwidth as 

seen on the transmission media and as seen at the computer network interface card. 

Standard metrics include the Transmission and Receive Rates (packets/sec.), Error Rates, 

and Collision Rates.

3.3 Performance Monitoring

An important component o f any framework for performance analysis is the 

monitoring system used to collect data. Many issues must be considered when designing 

a performance monitoring system. Monitoring in the DoD distributed simulation 

environment requires additional considerations. The size and complexity o f  current 

distributed simulation environments require a person designing and implementing a 

monitoring system to be intimately familiar with many aspects o f the simulation 

architecture. A key objective is to locate where in the simulation environment the data 

can be obtained for the required data abstraction level. Non-invasive monitoring gathers 

data only from the network and is not comprehensive due to the limited content available 

by looking at the network packets. Invasive monitoring allows for a more complete 

evaluation by looking at the internals o f the simulation. Distributed monitoring systems 

that rely on instrumented simulation source code collect raw performance data on 

individual simulations; effective techniques are required to collate this information into 

an aggregated characterization o f global simulation performance. Another difficult 

problem is the large number o f hardware and software interactions in distributed 

simulations masking the direct causal relationships among specific simulation activities, 

model behaviors, and observed system performance. This necessitates identifying the 

significant factors affecting simulation entities and interactions and establishing a 

mechanism for correlating the run-time events with simulation outcomes.
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From a practical perspective, system administration issues affect the usability, reliability, 

and transparency o f a distributed simulation performance monitoring system. It is 

important and necessary to understand the status o f all monitored and monitoring 

components. For example, if a simulation or monitor crashes, the system should be aware 

of and log the event. For monitoring systems where location transparency is an issue (a 

good characteristic for any distributed system), daemon processes can provide a 

mechanism to manage shared performance data. Heterogeneous simulation networks are 

the de facto  result o f the evolution o f distributed simulation technology and its use in 

cooperative simulation design and development programs. As such, an important 

characteristic for a monitoring system is portability and/or interoperability, byte ordering 

being a significant case-in-point. A harder issue surrounding the interoperability of a 

performance monitoring system is the specification of a common class of shared 

performance information useful among dissimilar simulation architectures and system 

components; the dependency being related to any protocols associated with the 

monitoring system.

Specific to an HLA environment, distributed monitoring is complicated by, among other 

things, the interest management mechanisms intrinsic to the RTI. The specifications that 

restrict the visibility o f certain entities and/or their attributes mean that it is possible for 

inconsistencies to exist among simulations’ global view o f the simulation execution 

space.7 Another important issue is related to current RTI implementations: modular 

libraries linked with a simulation application (federate) during the executable build 

process. A standardized RTI Application Programming Interface (API) provides logical 

points for instrumentation to gather RTI timing data. Since access to RTI source code is

In the context o f  HLA, interest management is also referred to as “relevance filtering” or Data 
Distribution Management (DDM ). The HLA RTI implements DDM as a run-time services that reduces 
network and processor bandwidth requirements by restricting the transmission o f  shared data to only those 
federates that explicitly express and interest in receiving the data. Any distributed monitoring system that 
wants to have a global view  o f  the entire synthetic battlespace will have explicitly declare its interest in the 
relevant performance information from all federates, which might not necessarily be available in certain 
segments o f  the network topology.
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typically restricted, performance data related to the internal operation o f the RTI has to be 

included in the HLA MOM data, transmitted periodically by each RTI during federation 

execution.

Another important characteristic o f DoD M&S environments is the ability to scale the 

size of the simulations. This is especially true in the training environments where 

populating the virtual battlespace with more entities can enhance the realism of the 

synthetic environment. A performance monitoring system for DIS and HLA 

environments must exhibit similar scalability characteristics.

Finally, perhaps the most significant issue concerns the costs associated with obtaining 

meaningful performance information. Collecting performance data can be intrusive to 

system performance and if monitoring is required for other than the development and 

testing phases of the simulation life-cycle (i.e., for experimentation or production use), 

the cost of monitoring might be prohibitive. Therefore, a compromise must be made on 

run-time measurements necessary to obtain performance data, the objective being to 

establish a balance between the adequacy of measured data (for the purpose of analysis) 

and the intrusiveness o f  the monitoring system (and its perturbation o f the performance 

analysis). The value of the data depends on analysis goals (performance problem) and 

what is currently understood or not understood about the run-time environment. As such, 

a mechanism to tune and control the data collection process is desirable. Timing delays 

induced by executing simulation code instrumented to detect and collect performance 

data potentially affects the correct execution of the simulation. These timing delays can 

be measured and their impact on simulation performance assessed. A more difficult 

timing error to account for is the potential reordering of simulation events among 

workstations participating in a simulation exercise. Assessing the impact of performance 

monitoring is required to establish a compromise between the volume of performance 

data collected and acceptable simulation run-time performance.
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TABLE 2 
Summary o f Performance Measures

Simulation Infrastructure System M odeling
Scheduler CPU Entity
Time Memory Vehicle / Entity Counts
Data and List Management Disk Position and Orientation
Networking and IPC Network Sensor

Weapons
Behaviors
Graphics and Visualization

Environment
Terrain
Ocean
Atmospheric
Space

3.4 Summary: A Unifled Architectural Framework for Analysis

Although performance analysis goals may be unique for different kinds of 

decision support, experience has shown that some common objectives exist among DIS 

and HLA performance studies that support the specification o f the framework presented 

in this thesis. The commonality o f analysis objectives lies in the fact that DIS and HLA 

simulation can fundamentally be viewed as a set o f  simulated real-world objects 

interacting within some kind o f simulated time/space analog to the real-world 

environment where those objects exist. Understanding the run-time performance of these 

objects and the synthetic environment in which they exist means characterizing the 

simulations in terms o f  the number o f objects (or synonymously, the number o f entities), 

the level of activity and interaction among the objects, and their impact on the physical 

and logical resources used to create the distributed simulation environment.

Reemphasizing the previous discussion, a general DIS and HLA performance 

characterization is useful in many contexts. Performance monitoring can provide valuable 

information to persons trying to design and implement application models and simulation 

infrastructure. They use performance data for making decisions related to such things as 

algorithms, model fidelity, data communications patterns, network topology, timing
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Fig. 4. Performance analysis activity process.

requirements and policies, and system scalability issues. Many DIS and HLA 

applications have soft, real-time requirements so performance data (i.e., timing data) is 

useful for testing and debugging activities, especially in the context o f a complex, 

distributed run-time environment. Coinciding with model design and development are 

issues surrounding the planning and execution of DIS/HLA exercises so decisions must 

be made regarding hardware and software configurations. Simulation performance 

information is also useful to support run-time assessments regarding the simulation 

environment and for making near real-time assessments about the validity o f the current 

simulation activity. Depending on the information provided, decisions can be made that 

include dynamic load balancing, diagnosis o f simulation performance, and validity of 

perceived simulation activity.

The performance abstraction presented in Section 3.1 discusses the most significant 

factors that affect DIS and HLA performance and provides a basis for the taxonomy of 

performance measures that delineate the boundary o f logical and physical components
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used to create a distributed simulation environment. The set o f  performance measures 

(summarized in Table 3.2) provide a basis for metrics selection useful for characterizing 

DIS and HLA run-time performance as it relates to the low-level resource and services 

used in a distributed simulation environment.

The process o f metrics selection must also consider the capabilities and limitations of 

enabling technologies as well as the workload impact o f specific scenarios. The 

relationship between low-level system and simulation performance, and the scenario 

workload is a critical factor to provide meaningful information to persons making 

decisions about the configuration, control, and management o f DIS and HLA simulations 

and for those who might not be able to interpret lower-level performance data. Figure 3.3 

shows a process model (IDEFO [74])8 that represents the taxonomy of performance 

measures, scenario (workload) effects, and enabling technologies (hardware, software, 

and architectural) as constraints on the performance analysis activity. Based on the 

analysis objectives, a set of meaningful metrics is selected and collected using the run

time monitoring system.

Figure 3.4 depicts the notion o f a unified architectural framework for the design, 

configuration, and control o f DIS and HLA simulations. At the core o f the framework is 

the taxonomy of performance measures discussed in this section, specifically the 

measures related to modeling, simulation infrastructure, and the systems (compute 

platforms) on which they are instantiated. Data (metrics) that capture these performance 

measures are collected at simulation run-time by a monitoring system. This monitoring, 

measurement, and data collection system embodies the knowledge about the run-time 

execution of HLA and DIS applications. The performance information related to the run

time performance of the simulation environment is useful during the entire life-cycle of 

the simulation; during modeling and simulation design and development activities,

s Equivalent representations could be created using other IDEF representations such as IDEF4 (object- 
oriented design methods for client-server architectures).
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Fig. 5. The unified, architectural framework for performance analysis o f DIS and HLA 
simulations.

configuration of simulation exercises or studies, and for run-time monitoring and control 

of the simulation environment (especially in the context of large-scale and geographically 

disperse environments). The outer ring in the framework depiction represents the various 

M&S domains (training, analysis, acquisition, and operational) using DIS and HLA 

simulations that require decision support regarding the impact o f simulation run-time 

performance. Fundamentally, the only aspect o f  the framework not relevant to non-DIS 

or non-HLA distributed simulations is the performance measures associated with physical 

and behavioral representations of military entities (i.e., sensor and weapons sub-models). 

As such, the DIS and HLA performance characterization presented in this thesis is a 

useful characterization in general since it is based on a high-level abstraction of 

components relevant to most distributed simulation environments.

The next section in this thesis continues the discussion o f an integral part o f the 

performance analysis framework; the PerfMETRICS monitoring, measurement, and data 

collection component. The design and implementation of this software was a significant
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portion of this thesis development and its role in DIS and HLA performance analysis is 

discussed in the follow-on section on use cases.
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SECTION 4

THE PERFMETRICS MONITORING SYSTEM

As discussed in the previous section, a limited number o f data collection tools 

exist to support DIS and HLA performance evaluations and most o f the tools that do exist 

are focused on providing low-level, application specific performance data (e.g., network 

traffic). To meet the objectives o f this thesis, a tool was developed to monitor and collect 

performance data useful for decision-makers when analyzing simulation and system 

performance. The tool embodies knowledge about the run-time execution o f HLA and 

DIS applications. It is capable of identifying performance bottlenecks that can lead to 

errors in terms of application behavior and its interactions with the systems on which they 

run. PerfMETRICS is a performance monitoring tool developed to meet the following 

requirements: 1) provide capabilities to monitor, record, and report simulation 

performance data, 2) provide real-time analysis o f simulation performance, 3) provide 

logging capabilities for post-mortem analysis o f simulation data, 4) provide an 

infrastructure for monitoring and controlling a diverse set o f HLA and DIS applications, 

5) provide an implementation that is flexible and extensible, 6) provide a mechanism for 

controlling the monitoring process, and 7) limit the intrusiveness of the system. 

PerfMETRICS can be used to collect performance information to guide persons making 

decisions related to model fidelity and resolution, the design and implementation of 

simulation infrastructure, and the control and configuration o f simulation scenarios and 

their run-time environments. A tool like PerfMETRICS is required to allow decision

makers to better understand the complexity of the DIS and HLA distributed simulation 

environment.

The data PerfMETRICS collects relate to the simulation model components, the 

simulation infrastructure, and the operating system and its application interfaces. 

PerfMETRICS gathers timing data from individual model components and correlates the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66

data with specific entities or entity types. Performance data gathered on simulation 

infrastructure includes timing information for implementation mechanisms such as the 

event scheduling, idle time, entity state update performance (tick rates), and data sharing 

(e.g., time spent in the RTI). Operating system performance information includes CPU, 

memory and network utilization metrics. A detailed description of the data 

PerfMETRICS currently collects is found in the appendix.

Real-time analysis o f simulation performance information includes the capabilities to 

look at the performance o f individual workstations and to view multiple machines 

concurrently to assess the aggregate performance of all machines participating in the 

simulation exercise. PerfMETRICS provides a Graphical User Interface (GUI) that 

provides a numeric/tabular display of the relevant performance metrics and a means of 

showing the data as it changes during simulation run-time (time-series analysis). 

PerfMETRICS provides logging capabilities for post-mortem analysis o f simulation data. 

The performance data of each o f the individual simulations is saved so fine-grained data 

analysis, if desired, is possible. The data from all simulation/applications can be collated 

to provide a more global view of simulation performance. A mechanism (i.e., external 

utility) for reading the performance information is implemented and is capable of 

formatting the data so it can be imported into a diverse set o f analysis software. A subset 

of available performance information can be selected for analysis since typically large 

amounts o f data are available but are not relevant to the current problem of interest. This 

capability, the use o f compiler directives to statically include or exclude instrumentation 

code, and the run-time capability to dynamically start and stop data collection supports 

tuning the monitoring and collection process to meet analysis requirements.

To provide a flexible and extensible monitoring system, the design o f PerfMETRICS is 

loosely-coupled with the applications it is monitoring. Data links used to pass 

performance information are independent o f the simulation application and protocols. 

Doing so enhances the monitoring system’s usability in both DIS and HLA simulation 

environments. Ideally, a monitoring systems architecture should generalize to make it
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useful for a broad range o f distributed applications used in distributed simulation 

environments. PerfMETRICS has been used to monitor and control various DIS and 

HLA applications. An artifact o f application diversity is the use o f  the monitoring system 

within a heterogeneous distributed simulation environment. This results in the need for 

data marshalling and PerfMETRICS is designed to deal with byte-ordering differences 

among big-endian and little-endian workstation architectures. The PerfMETRICS 

implementation is written using the C programming language and uses standardized X- 

Windows and M otif toolkits and libraries. This makes PerfMETRICS a readily portable 

application on any processor/compiler architecture with an operating system that supports 

the use of shared memory.

As requirements for simulation performance information and simulation control change, 

a monitoring system should be implemented in a way that allows the relevant simulation 

performance and control information to be transmitted as needed throughout the 

distributed simulation environment. The underlying application and network protocols 

the monitoring system uses should be able to support the data exchange. Also, the 

architecture must be able to support increasingly stringent performance requirements (in 

the context o f the monitoring system’s run-time execution). As the size o f the distributed 

simulation environment scales, the volume of performance information collected by the 

monitoring system must scale respectively. PerfMETRICS provides capabilities to 

control the rate o f performance data collection, manage the hierarchy o f simulation 

engines that are reporting and/or collecting performance data, suspend and resume the 

collection and reporting process, and define what low-level network resources the 

monitoring process uses (e.g., TCP/IP service ports, multicast group addresses).

4.1 System Architecture

The PerfMETRICS architecture (see Figure 4.1) consists o f DIS and HLA applications 

interfacing with the PerfMETRICS monitoring system via a shared memory interface. 

The monitoring system has a daemon process on each workstation running a DIS or HLA
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Fig. 6. PerfMETRICS architecture.

application. The daemon processes transmit control and performance information 

throughout the LAN and WAN networks using multicast/IP. One or more workstations 

designated as monitoring control stations receive the PerfMETRICS control and 

performance data packets and log and display the relevant information. Performance data 

is obtained from the application and stored in a shared memory segment, either through 

periodic processing or on the occurrence of specific events. This shared memory segment 

is implemented using standard System V IPC. The performance data in shared-memory is 

a static structure used by the DIS or HLA application and the PerfMETRICS collection 

daemon. As mentioned, the PerfMETRICS collection daemon runs on each workstation 

executing a monitored application (may or may not be a simulation). The collection 

daemon is implemented as a simple state machine. Depending on whether or not a 

simulation or other monitored application has attached to the shared-memory segment, 

the collection daemon will either be transmitting (send state) or receiving (receive state)
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performance data. Every daemon process has a global view of the PerfMETRICS control 

information being transmitted on the network. As mentioned, the daemon gets 

performance data from the application by reading the shared memory segment. At a 

periodic interval, the daemon will transmit the performance data over the network.

The PerfMETRICS system supports dynamic analysis o f simulation performance by 

using a Graphical User Interface to display relevant performance data. Simulation 

performance is conveyed as entity, simulation infrastructure, and system (i.e., operating 

system) information. The interface can display data in time-series to help visualize the 

complex relationships among different factors that affect simulation performance. The 

PerfMETRICS system is capable of logging all performance data it receives to a binary 

file. The file structure is well defined; it is identical to the performance data packet 

structure transmitted by the PerfMETRICS collection daemon. Logging is done by the 

workstations designated as the monitoring control stations (whose PerfMETRICS 

collection daemons are in a receive state). If logging is turned on (it is optional), as the 

collection daemon receives a performance data packet it will write the packet to a binary 

file.

4.2 System Design

The design of PerfMETRICS can be viewed as three principal components: I) the 

application instrumentation, 2) the collection daemon, and 3) the user interface 

(facilitates the presentation and display o f the performance information). Performance 

data is obtained by hand-instrumenting the application source code. This requires specific 

knowledge about the application’s implementation. The performance measures discussed 

in Section 3 are used as a guide to determine what data is to be pulled out o f the 

application and where the instrumentation code is inserted. A library (PerfMETRICS 

API) is compiled and linked into the application that provides the functional interface to 

the shared memory segment used by the application and the collection daemon. The 

interface consists o f  both function calls and macros that may be used for things such as
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starting and stopping timers or writing performance event data into the shared memory 

segment. The instrumentation code is either turned on or off using compiler directives. 

This mechanism results in PerfMETRICS either being turned on or turned off at compile 

time but avoids the additional overheads o f doing run-time conditional checks to 

determine whether or not the instrumentation code should be executed. As mentioned, the 

application type and defined performance metrics define the structure of the performance 

data in shared memory. An example C data structure used for the use cases presented in 

this thesis looks like:

typedef struct {
/* structure containing the Entity Statistics Data */ 
ENTITYSTATS emetrics; /* queue of vehicles */
/* structure containing the Simulation Statistics Data */ 
SIMSTATS simmetrics;
/* structure containing the System Statistics Data */ 
SY3STATS sysmetrics;
/’* contains simulation's version, host, exercise, PO 
database id, and terrain database version */
EXSTATS exstats;
/* contains HLA «  DIS Gateway performance data */ 
HLAINTERFACE_STATS hlainterface_stats?

} METRICS, *METRICS_PTR;

During initialization the application attaches to the shared memory segment via the 

PerfMETRICS API, registers to use a semaphore controlling access to shared memory, 

and then clears the data structure. This data structure in shared memory acts as a buffer, 

holding the most recent performance data until the PerfMETRICS collection daemon is 

ready to transmit the data to the monitoring station(s). Additionally, at initialization time 

the application uses the PerfMETRICS API to set up signal handlers used to notify the 

collection daemon o f the status o f the application. For instance, at startup the application 

sets a shared variable with an enumeration defining its application type (e.g., 

HLAINTERFACE is an enumeration used to indicate an HLA<=>DIS Interface
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Fig. 7. Data flow diagram of the PerfMETRICS collection daemon.

application) and then sends a signal to the collection daemon indicating it is ready, 

meaning the PerfMETRICS component o f  the application has been properly initialized 

and is ready to write performance data to the buffer. The application also catches 

operating system signals that cause the application to terminate, crash, or abort. This 

allows PerfMETRICS to properly manage the 1PC and to send a control message that the 

application is no longer running.

4.2.1 Collection Daemon

Figure 4-2 is a data flow diagram illustrating the functional components o f the 

PerfMETRICS collection daemon. The key daemon functions are: 1) gather the 

performance information from the application and operating system, 2) transmit, receive
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and process control and performance data, and 3) process and manage the information for 

logging and run-time display. The shared memory buffer provides the conduit for data 

flow. Shared memory was selected because o f its better performance compared to other 

IPC mechanisms. Traditional pipe and named pipes (FIFOs) are subject to performance 

overheads since they are implemented using file I/O and system calls. Other drawbacks 

associated with pipes include the number o f pipes that must be created for a client/server 

architecture consisting o f multiple clients, explicit deletion of pipes after process 

termination, and the fact that data passing through the pipe can only be viewed as a byte 

stream that has no persistence once read. Other IPC mechanisms such as message queues 

and the STREAMS/socket interface offer better performance than pipes because they are 

implemented in the operating system kernel. However, they still are generally slower 

mechanisms than shared memory IPC; multiple copies and buffers of data must be 

managed by the kernel as the data is shared among processes.

A shared memory interface provides a fast mechanism to share data. Access to the shared 

region is like any other memory access, requiring no system calls to read or write data 

and in terms of implementing a software-based performance monitoring system it is the 

least complex in terms of instrumentation code. One limitation o f shared memory is the 

lack of any intrinsic synchronization for processes reading and writing data to the shared 

memory. To address this problem, PerfMETRICS uses a semaphore mechanism to 

coordinate access to the shared memory segment. Logical communications between the 

application and the collection daemon are via software interrupts and data stored in the 

shared memory region. The software interrupts (signals) are used to establish a logical 

connection between the monitored application (typically a simulation) and the collection 

daemon. This requires their Process Identification (PID) numbers be placed in the shared 

memory segment. These PIDs are used by the signaling mechanism to notify either o f  the 

two processes that some event has occurred related to control o f the monitoring process 

(e.g.. change the frequency o f reporting data). Table 4.1 lists the notifications that are 

currently used in the PerfMETRICS monitoring system. The actual signal sent and 

delivered via the kernel is a POSIX defined SIGUSR1 interrupt. Upon receipt o f this
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interrupt, the collection daemon or application will examine a Control Command field in 

the shared memory segment that specifies the particular notification type. The daemon or 

application will then execute the required processing.

Communications between the collection daemon and the lower-level networking facility 

use I/O multiplexing to know when data can be read from the networking service ports 

without blocking. The multiplexing mechanism is implemented in the collection daemon 

by using a select system call, allowing the daemon to know which service ports are ready 

to be read from or written to without blocking. The use o f I/O multiplexing in the 

PerfMETRICS design is significant because when reading or writing data from the shared 

memory segment, the daemon acquires a semaphore lock on that region. If the daemon 

blocks while trying to read or write to the network service ports, the semaphore it is 

holding prevents the application from accessing the shared memory region. If this is the 

case, then the application could spend an inordinate amount o f time blocked while 

waiting for the semaphores, increasing the overall intrusiveness o f the monitoring 

process. Using shared memory, signals, and I/O multiplexing reduces the overhead o f the 

PerfMETRICS monitoring process by decreasing the time it takes to access shared data 

and making the most o f event-driven IPC.

The PerfMETRICS collection daemon is implemented as a simple state machine capable 

of either sending or receiving performance data depending on the type o f application with 

which it has established communications. The collection daemon states and transitions 

are illustrated in Figure 4.3. The transitions are shown as condition/action pairs. After 

creating and initializing the shared memory segment and its networking service ports, the 

collection daemon enters an initial Sleep state where it waits for an interrupt from an 

application that wishes to use the daemon process. When an application wakes the 

daemon process the Ready state is entered. In the Ready state the daemon transitions 

either to the Sender, Receiver, or Sleep state depending on what kind of application or 

process, if  any, has established a logical connection with the collection daemon via the 

shared memory segment. If the daemon determines a monitoring control GUI or an
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TABLE 3
PerfMETRICs Monitoring Event Notifications.

Notification Generated by (at) Seen and /  or U sed by

New Collection Interval Monitoring Control GUI AH collection daemons

Suspend Collection Monitoring Control GUI All collection daemons

Resume Collection Monitoring Control GUI All collection daemons

Simulation Start Simulation All collection daemons

Simulation Stop Simulation All collection daemons

Simulation Suspended Simulation All collection daemons

Simulation Resumed Simulation All collection daemons

Simulation Crash Simulation All collection daemons

Start Data Logging
Monitoring Control GUI Monitoring Control collection 

daemon

Stop Data Logging
Monitoring Control GUI Monitoring Control collection 

daemon

Configure HLA Interface Monitoring Control GUI All collection daemons

HLA Interface Control Monitoring Control GUI All collection daemons

HCI Interface Control HCI Application Simulation

application that needs to send or receive performance data has awakened the daemon, the 

daemon transitions into the Receiver or Sender state accordingly. Once in the Sender 

state, the collection daemon will transmit system and application performance data along 

with control information. Some applications may have requirements to receive 

performance data, which is also possible in the Sender state. All relevant performance 

and control data is transmitted to members in the PerfMETRICS multicast groups. The 

data is transmitted at the rate specified by the collection interval, a parameter specified 

during daemon initialization and may be modified during run-time. Upon receipt o f a 

monitoring control interrupt (SIGUSERl), the collection daemon transitions out o f the 

Sender state, processes the control command and returns to the Ready state. Transitions 

between the Receiver state and the Ready state are the same as from the Sender to Ready 

state.
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Application or 
Monitoring Control 
Process Terminated

Command Control 
Interrupt

Monitoring or Application 
Command Processed

Monitoring Control 
Station Connected

Application Connected

Transmit and/or Receive 
Pertbrmance Data

Command Control 
Interrupt

In itia liz a tio n

R ece iv e r

R eady

Monitoring or Application 
Command Processed

Fig. 8. State transition diagram o f the PerfMETRJCS collection daemon.

The PerfMETRICS protocol consists o f event-based transmission o f monitoring control 

packets and periodic transmission of performance data packets. The two packet types are 

transmitted via service ports associated with different multicast groups. Using multiple 

multicast addresses provides the flexibility to create a hierarchy o f reporting groups, 

allowing the monitoring system to scale more easily. The monitoring control packet is 

used to disseminate information about the monitoring process such as applications 

starting, stopping, or abnormally terminating, Control packets are also used to suspend or 

resume the transmission o f performance data and to change the interval in which the data 

is collected and transmitted. Application control can be implemented as well, using the 

PerfMETRICS control packet. An example is the HLA<=>DIS Interface application 

discussed in the use cases presented as part o f this thesis. PerfMETRJCS is able to control 

the startup and shutdown of the interface application as well as control the flow of 

specific DIS PDUs and HLA data packets. Additionally, another extension to the 

monitoring control packets allows application specific data to be transmitted and received
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by the daemon and used by an HLA federate to make dynamic load scheduling decisions. 

Details on this application are also found in the use cases.

The monitoring control packet acts as the header for the PerfMETRJCS performance data 

packet; the performance data packet, therefore, consists o f a control packet and a copy of 

the shared memory buffer (described early in this section) containing the performance 

data. One drawback to the current implementation o f this protocol is that it does not allow 

for only application specific data to be passed, meaning that, depending on the number 

and types o f applications using PerfMETRJCS, all data packets have the same structure, 

regardless o f the type of monitored application. The current implementation should be 

modified to allow for variable length data packets whose contents would only contain 

data relevant for the application type sending the packet. The collection daemon uses the 

External Data Representation, or XDR, to perform data marshalling. The decision to use 

XDR was a tradeoff between the flexibility o f XDR for porting applications across 

different platforms, and the constraint o f requiring other applications to use XDR to 

translate the data from a PerfMETRJCS data packet into a usable format. A detailed 

description o f the PerfMETRJCS monitoring control packet and the performance data 

packet is found in the appendix.

An important component o f the PerfMETRJCS collection daemon is the logging 

capability. The daemon process logs information related to the entire run-time monitoring 

environment. It logs important initialization information as well as monitoring control 

information. Figure 4.4 shows a sample log file and provides a time series example of the 

collection daemon processing as discussed in this section. This particular listing indicates 

a successful initialization o f the daemon process; the signal disposition is set, IPCs and 

Multicast/IP communications is initialized, access to the kernel statistics is initialized, 

and then the daemon enters the Sleep state. When the application (in this case, a Human 

Computer Interface, or HCI, on a workstation called pseudo_l) attaches to the shared 

memory segment and is ready to send and receive performance data, it sends a signal 

waking the daemon from its Sleep state. The daemon enters the Sender state (referenced
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TueJun 8 15:18:27 1999 Hostname: pseudo l (192.5.11.54)
TueJun 8 15:18:27 1999 Starting perfcollectd (pid=28479) daemon.
TueJun 8 15:18:27 1999 Signal disposition set.
TueJun 8 15:18:27 1999 Removed existing shared memory segment U 1
TueJun 8 15:18:27 1999 Removed existing shared memory segment # 2
TueJun 8 15:18:27 1999 Removed existing semaphore set # 1
TueJun 8 15:18:27 1999 Removed existing semaphore set # 2
TueJun 8 15:18:27 1999 IPC initialization complete.
TueJun 8 15:18:27 1999 Data Group: FD=4 PORT=6000 G RO UP=224.0.1.255 
TueJun 8 15:18:27 1999 Data Group: FD=5 PORT=6000 G RO UP=224.0.1.255 
TueJun 8 15:18:27 1999 Control Group: FD=6 PORT=6002 GROUP=224.0.2.255
TueJun 8 15:18:27 1999 Control Group: FD=7 PORT=6002 GROUP=224.0.2.255
TueJun 8 15:18:27 1999 Comm, initialization complete.
TueJun 8 15:18:27 1999 System data initialization complete.
TueJun 8 15:18:27 1999 Going to SLEEP.
TueJun 8 15:20:10 1999 Entering SIM STATE
TueJun 8 15:20:10 1999 pseudo_l:cl:HCISTART:TueJun 8 15:20:10 1999 
TueJun 8 15:20:10 1999 HCI Connected.
TueJun 8 15:21:31 1999 pseudo_4:cl:SIMSTART:TueJun 8 15:21:22 1999 
TueJun 8 15:21:41 1999 pseudo_7:cl:SIMSTART:TueJun 8 15:21:37 1999 
TueJun 8 15:24:11 1999 pseudo_4:c2:SIMCRASH:TueJun 8 15:24:02 1999 
TueJun 8 15:24:18 1999 pseudo_l:c2:HCISTOP:TueJun 8 15:24:18 1999 
TueJun 8 15:24:18 1999 Going to SLEEP.

Fig. 9. PerfMETRJCS collection daemon log file.

in the figure as SIM STATE) and is able to send and receive performance data. As seen 

in the figure, the daemon logs monitoring control information. The figure shows two 

other workstations (pseudo_4 and pseudo_7) each starting up a simulation. Pseudo_4’s 

simulation terminates abnormally (SIMCRASH) and then the HCI process on pseudo_l 

terminates normally, transitioning the daemon back into the Sleep state. This kind of 

information is valuable for assessing not only the collection daemon’s processing but also 

provides a way of analyzing the entire performance monitoring environment.
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4.2.2 Data Presentation (GUI)

PerfMETRICS uses a Graphical User 

Interface (GUI) to display data collected at 

run-time. The interface provides a tabular 

display of the performance information 

collected from each application reporting 

data during an exercise. Figure 4.5 

provides an illustration o f the main 

PerfMETRICS window. The data 

presentation is partitioned into three 

sections displaying the entity metrics, 

simulation metrics, and system metrics 

discussed in Section 3. Data unit 

conversions are handled within source 

code. The appearance of the data labels 

and notes on the display is controlled via 

the X I 1 resource files. The display is initialized to show performance information for the 

application associated with the first data packet received by the collection daemon. 

Performance information for different applications (different workstations on the 

network) can be selected by pressing the right mouse button anywhere in the GUI 

window and selecting the desired workstation from the pull-down menu. It is possible to 

view multiple workstations at the same time by selecting the “New View” option from 

the main “Admin” menu. The windows can be tiled on the monitor screen allowing 

performance comparisons o f multiple machines at run-time. Logging of the performance 

information to disk for post-exercise analysis is also controlled via the PerfMETRICS 

GUI.

The window shown in Figure 4.5 is the default window for showing performance 

information. The user interface however, is designed to show alternative views depending
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Fig. 10. PerfMETRICS GUI
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on the kind of application being monitored. An example is the view developed to 

specifically show performance data for an HLAODIS interface discussed in detail in 

Section 5. When a user selects a machine that is reporting performance data from a 

different kind o f application (e.g., an HLA Interface), the view will automatically change, 

triggered by an “application indicator flag” in the data packets associated with that 

machine. Using the “Config” menu option it is also possible to readily integrate 

customized windows to provide, among other things, exercise or application control 

functions. This capability was utilized to implement a control function for the 

H LA ^D IS interface; turning on and off the flow o f different DIS and HLA data packets 

through the interface.

Similar to simulations instrumented for PerfMETRJCS, the GUI process communicates 

with the PertMETRICS collection daemon through a shared memory interface (refer to 

Figure 4.1). Constraints are programmed into the collection daemon to prevent the GUI 

from connecting to the collection daemon if a simulation is already connected. A signal 

(software interrupt) is sent to the GUI indicating the daemon process is being used by 

another process. The GUI traps the signal and then terminates with an error message. The 

collection daemon logs the condition of the GUI failing to connect with the daemon 

process. Depending on the hardware / software configuration and analysis objectives this 

constraint may or may not be desirable and is readily removed, although the collection 

daemon has not been tested for concurrent reading and writing o f performance data.

An important point to emphasize is the design and development focus for PerfMETRJCS 

was not on the GUI. The intent was to concentrate efforts on other aspects o f the 

monitoring system such as data semantics and communications infrastructure. The GUI 

provides basic capabilities for a user to monitor, control, and log data.

4.2.3 Data Analysis

Data analysis associated with DIS and HLA exercises can be considered from two 

aspects: real-time and post-exercise analysis. The graphical interface used to present real
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time data was discussed in the previous section. Its practical application to real-time (or 

near, real-time) data analysis for DIS and HLA simulations is more closely related to 

exercise monitoring and control, the objective being to support timely decisions regarding 

the conduct o f a given simulation study or exercise. The GUI provides a means to 

observe system-level, application-level, and model-level performance characteristics of 

individual workstations (i.e., simulation engine or other DIS/HLA application). The 

collection daemon can be configured to control the rate that performance information is 

collected and determines the timeliness and accuracy of the data on which decisions are 

based. It is possible to make comparative assessments regarding the performance of 

different or similar applications when multiple windows are tiled on the monitor screen.

For post-exercise analysis, the current PerfMETRJCS implementation logs all 

performance data to a file. The file format is simply a binary dump of the PerfMETRJCS 

protocol data packets. This provides a simple and fast method for saving the data with the 

least impact on run-time performance of the collection daemon. A separate process is 

used to extract the desired data, perform data or unit conversions (if required) and 

redirect the processed data to another file in an ASCII format. Figure 4.6 shows a 

segment o f the configuration file used to specify exactly what data is extracted (data 

mining) from the binary data file and for which workstation (application). Figure 4.7 

shows a segment o f an ASCII output file generated by the data selection process. The 

resultant performance information can be imported into a suitable analysis application 

(e.g.. Minitab, Microsoft Excel, SAS).

PerfMETRJCS provides the capability to observe the workloads from each major 

component of the simulation architecture. Time-based analysis of performance data from 

individual workstations provides detailed information on simulation (application) 

performance over a narrow aspect o f the overall distributed simulation system. The same 

process used to extract the desired performance data also aggregates utilization data for 

all workstations reporting PerfMETRJCS data (data fusing). This operation allows global 

simulation metrics to be generated and helps decision-makers to understand how well
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** convert.config - configuration files to specify which PerfMETRJCS 
output variables to print **/

hostid 3
input usrl/_082598083l 13.airl5 
output gw 3_l.txt 
starttime 00:00:00 
stoptime 24:00:00
month 0 i*  month */
day 1 /* day o f  month *1
time I /* time o f  day */
host 1 /* simulation hostname */
exid 0 /* exercise id */
poid 0 /* po database id */
collint 0 /* data collection interval */
seqnum 1 /* data packet sequence number */
Iveh 0 i*  n o f  local vehicles * /

lmis 0 /* # o f  local missiles */
lstr 0 /* # o f  local structures */
lstl 0 /* #  o f  local stealths */
lenv 0 /* #  o f  local environmentals */

Fig. 11. PerfMETRJCS data selection configuration file.

available resources (in this case, workstations) are being utilized. The next section of this 

thesis provides greater detail regarding data analysis and includes examples o f how data 

collected using the PerfMETRJCS monitoring system can be used to analyze and assess 

the run-time performance of different distributed simulation environments.

4.3 Instrumentation Costs

If performance monitoring is required for other than the development and testing 

phases of the DIS/HLA life cycle (i.e., for experimentation or production use), a software 

monitoring architecture could be too intrusive on system performance. A compromise 

must be made on run-time measurements necessary to obtain performance data, the 

objective being to establish a balance between the adequacy o f  measured data (for the 

purpose of analysis) and the intrusiveness o f the monitoring system (and its perturbation 

o f the performance analysis). Prerequisites for determining the appropriate compromise 

(tradeoffs) include assessing the value o f the performance data as it relates to the analysis 

activity, developing an intuition regarding the potential impact o f  monitoring on model or
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day time host seqnum lairveh rairveh sns_int tsk_ int cp>_slack cp_ratio
ltk_rate rtk_:rate tktm_int wttm_:int :rtitm_:int

8 18:06:34 PSEUDO_3 138 23 50 12.97 5.12 396.90 100.00
5 .87 6.18 59.42 0.12 5.11

8 18 :06:39 PSEUDO_3 139 23 50 12.97 5 .12 396.90 100.00
5 .87 6 .18 59.42 0.12 5 .11

8 18 :06:44 PSEUDO_3 140 25 50 18.19 6.14 396.90 100.00
7.28 7.36 74.95 0.00 4 .93

8 18 : 06:49 PSEUDO_3 141 25 50 18.19 6 .14 396.90 100 .00
7.28 7.36 74.95 0.00 4 .93

8 18:06:54 PSEUDO_3 142 25 50 17. 93 5.98 396.90 100.00
8 .02 7.99 77.75 0.00 4 .63

8 18 : 06:59 PSEUDO_3 143 25 50 17.93 5.98 396.90 100.00
8 . 02 7.99 77.75 0.00 4 .63

8 18:07:04 PSEUDO_3 144 25 50 18.19 6.11 361.06 100.00
8 . 02 8 . 08 76.63 0.00 4 .89

8 18:07:09 PSEUDO_3 145 25 50 18.19 6.11 361.06 100.00
8 .02 8 . 08 76.63 0.00 4 .89

8 18:07:14 PSEUDO_3 146 25 50 17.68 5.89 361.06 97.68
3 .23 8 . 17 76.70 0.00 4 .53

8 18:07:19 PSEUDO_3 147 25 50 17.68 5.89 361.06 97 .68
8 .23 8 . 17 76.70 0.00 4 .53

Fig. 12. PerfMETRICS data selection output file.

simulation behavior, and understanding the monitoring effects (perturbation) on the 

analysis results. Perturbations in performance analysis may be caused by the delays 

induced from executing performance measurement code (instrumentation); this also 

conditionally affects other low-level resources such as memory caches, pipelines, and 

register allocation. Other perturbations that occur when monitoring distributed 

simulations are created when the execution of instrumentation code results in delays 

causing a re-sequencing o f simulation events; event reordering can potentially lead to 

incorrect execution o f the simulation.

Analysis o f the run-time performance o f a distributed simulation must, at some 

level, account for the perturbations due to performance measurements. An estimate o f  the 

costs o f performance measurements must be determined. These costs can be accounted 

for during the presentation o f performance information.
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Fig. 13. Instrumentation costs for SAF “high-frequency” function.

The above discussion motivates the need to understand monitoring and measurement 

overheads so choices can be made regarding monitoring system design and 

implementation. Early on in the PerfMETRICS development process, studies were 

conducted to understand the costs associated with the instrumentation component of the 

PerfMETRICS architecture; the most intrusive component since it directly affects the 

simulation's run-time execution path. Figure 4.8 presents results from a timing analysis 

done on a SAF application instrumented to use PerfMETRICS. The results show the 

percentage of the total CPU time used by a “high-frequency”, run-time function, 

specifically the SAF sub-scheduler responsible for invoking the execution of each 

entity’s sub-models. The data shows the worst-case overhead induced by the 

instrumentation is less than twelve percent. This instrumentation cost was deemed 

reasonable considering the value o f the sub-model performance data gathered in this 

function. The relative instrumentation costs in this function decrease as the number o f 

entities increase. This is an artifact o f  the larger entity count creating a greater simulation
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TABLE 4
Sample Instrumentation Costs for a SAF Run-time Function

Instrumentation Code System Calls
times semop

36.24 +/- 1J  % 41.74 +/- 1.0 % 22.08 +/- 0.08 %

workload in other functional areas o f the processing, resulting in fewer calls to the sub

scheduler function. This example illustrates the dependency between instrumentation 

costs (intrusiveness) and data frequency. Other dependencies exist in terms of the 

granularity o f the data that is captured and the volume of performance data that is 

monitored and/or collected.

Another significant factor affecting run-time costs of monitoring and data collection is 

the design and implementation o f the instrumentation code itself. Alternative designs and 

implementations should be considered in conjunction with the data design issues 

discussed above. Consider the impact o f  making frequent calls to the operating system to 

get the value o f the system clock or some other function. Table 4.2 presents more data 

from the timing analysis discussed in association with Figure 4.8. The table shows the 

relative costs associated with the instrumentation code and the system calls it invokes. 

The expense o f making frequent calls to the operating system (in this case time-of-day 

and requests to acquire a semaphore) is obvious. An alternative implementation to using 

kernel semaphores is to implement “user” semaphores by using a shared variable.9 This 

was implemented in a Linux-based version of PerfMETRICS using a machine-level 

instruction intrinsic to Intel-based processors, specifically an exchange word (xchgw) 

instruction. The required semaphore lock and unlock functionality was implemented 

using in-line assembler and the xchgw instruction. The code segment was as follows:
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#define Locklnit(p) 
^define UnLock(p) 
tfdefine Lock(p) 
(♦define lock t

(p=0)
(exchange(&p, 0))
while (exchange(&p,1)) while (p) 
volatile int

inline  int exchange(volatile * addr, int reg)

int oldbit;
asm volatile ( LOCK_PREFIX

"xchgw %0,%1"
:"=q" (oldbit), "=m" (*(addr)) 
: "m" (*(addr)), ”0" (reg));

return oldbit;

The resulting implementation eliminates the overhead associated with the _semop system 

call and reduces the costs o f the instrumentation code (user-defined) by almost fifty 

percent. These results illustrate the significant effect o f certain implementation decisions 

on the costs associated with performance monitoring. In some instances, executing 

instrumentation code for inordinately large amounts o f time is tolerable. An example is 

the time spent executing the instrumentation code for measuring scheduler idle time. 

Since the simulation is obviously not busy (i.e., its idle waiting for an event to occur), 

there are no adverse effects on executing the instrumentation code because it is using 

compute cycles that are otherwise unused for real simulation events.

To summarize, software-based performance monitoring systems such as PerfMETRICS 

mandate a careful balance between the volume and accuracy of the data. Excessive 

amounts of instrumentation and a poor implementation will perturb the monitoring 

process and analysis results; not enough instrumentation limits the accuracy o f the data 

used to characterize system behavior. Lacking perturbation models to quantify the effects 

o f instrumentation costs relative to data requirements, intuition and trial-and-error must 

be used to develop a monitoring system that adequately meets performance analysis 

objectives without being too intrusive on system performance.

This is possible provided there are guarantees that writing to the shared variable (the semaphore) is an 
atomic operation (no-preemption) from the operating system kernel perspective. Note that this mechanism  
is generally non-portable since it relies on the explicit use o f  a processor-specific instruction set.
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SECTION 5 

PERFORMANCE MONITORING USE CASES

This section presents use cases containing performance monitoring and analysis 

results from real-world programs. The examples illustrate the utility o f performance 

monitoring during the design, development, and use o f DIS and HLA-based applications 

in different M&S environments including military staff- and unit-level training, 

technology research and development, and system acquisition and procurement. The use 

cases are imbued with the framework presented in this thesis, and demonstrate its 

practical application to support model and simulation design, as well as the configuration 

and run-time control of different applications in DIS and HLA simulation environments.

The common theme among all the use cases is the general applicability o f PerfMETRICS 

to collect data useful for decision-makers. Each use case involved the monitoring and 

data collection from a STOW application as discussed in the thesis approach (Section 

1.4). The first case made use o f the framework during the complete simulation life-cycle 

o f the DARPA STOW ACTD. This involved using PerfMETRICS to monitor and collect 

performance information useful for model design and testing, scenario configuration, and 

overall monitoring o f  the resources used in the air component o f  the synthetic 

environment during the ACTD. The second case discusses how PerfMETRICS is used to 

provide dynamic load-scheduling o f the entity workload in the U.S. Navy’s Battle Force 

Tactical Trainer (BFTT) Air Management Node (AMN). The next use case presents 

results from performance studies done to make technology assessments about different 

modeling techniques for use in the U.S. Army’s Aviation Combined Arms Tactical 

Trainer -Aviation (AVCATT-A) program, the underlying objective being to provide 

capacity planning data for system procurement. The final case study presents an 

application o f the framework during an experimental technology insertion program 

conducted under the aegis o f the U.S. Air Force’s Distributed Mission Training (DMT) 

program. The goal was to understand the performance impact of integrating DIS-based 

virtual cockpit simulators using HLA-based STOW technology, the principal
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performance objective being to minimize latency and maximize throughput o f the M&S 

data used by the image generators in the simulator visual displays. During this 

experiment, PerfMETRICS was also used to support application design and development 

and provide run-time control of the integration mechanism, an HLAODIS Interface 

application.

5.1 Synthetic Theater o f War (STOW ) and DARPA’s Advanced Concept
Technology Demonstration (ACTD)

As mentioned, the ACTD was a technology demonstration. The primary focus 

was the development o f new models that enhance the realism o f the synthetic 

environment. Over 270 models and software libraries were designed and implemented by 

different model developers. In this kind o f simulation development environment, 

different understandings o f model requirements invariably led to different levels of 

resolution among interacting models. Additionally, model implementations frequently led 

to inordinately high processing costs that were intolerable in terms o f  execution costs. 

The timing requirements o f the DIS/HLA real-time applications only exacerbated the 

problem of controlling these costs. Performance monitoring during the ACTD simulation 

development and pre-exercise testing provided feedback to model developers and 

assessments were made about the performance impact o f certain modeling design and 

implementation decisions.

The principal simulations used during the STOW ACTD were SAF variants of Modular 

Semi-Automated Forces (ModSAF), a simulation system designed to meet the DoD’s 

distributed simulation training requirements. The SAFs were originally implemented 

using the DIS protocol but to satisfy DoD requirements the architecture, design, and 

implementation evolved into an HLA-based simulation. PerfMETRICS was used to 

support technical and operational tasks associated with the Air Synthetic Forces (AirSF) 

component o f the ACTD. AirSF simulates Fixed-Wing Aircraft (FWA), Rotary-Wing 

Aircraft (RWA), and the munitions employed by these aircraft. The FWA and RWA were 

primarily simulated using the TacAir-Soar (hereafter, also referred to as just “Soar”)
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technology described in Section 1.2.2.2 and the simulated actions o f each entity type are 

based on its real-world capabilities and military doctrine.

S. 1.1 Model Design and Testing

The entity performance data monitored from AirSF consists of count data for 

local and remote entity types and the time spent ticking the sub-model components used 

to model each entity type (i.e., FWA, RWA). The AirSF architecture is implemented so 

that every entity in the system is ticked at a periodic interval. During each entity tick, a 

sub-scheduler is called that executes each sub-model used to construct the overall 

representation of the aircraft. A radar sensor model is one example o f a sub-model used 

by an aircraft. Most simulated aircraft representations include common sensor, munitions, 

and flight dynamics sub-models. Therefore, the only significant difference among aircraft 

representations is the behavioral models. With this realization, PerfMETRICS was used 

to collect relative execution times for entity sub-models including hull modeling (e.g. 

FWA flight dynamics), weapons modeling, sensor models (e.g., radar and visual), and 

vehicle tasking and behaviors (e.g.. Close Air Support, or CAS, and Combat Air Patrol, 

or CAP). Critical simulation metrics were derived by collecting run-time data from the 

appropriate libraries used in the AirSF implementation. Data collected consisted of, 

among other things, timing data for entity state update rates (i.e., tick rate), idle scheduler 

time, and time spent in the RTI. The RTI timing data proved to be of special interest 

because people were looking for critical feedback on the costs/benefits o f migrating to 

HLA-based simulation environments. The need to characterize performance of the RTI 

component has resulted in previous performance studies that made assessments about 

throughput and latency characteristics [56]. These studies provided feedback for RTI 

developers by characterizing the performance of algorithms, protocols, and software 

implementation. Meaningful information for application developers, however, requires a 

characterization that is indicative o f the RTI performance impact on DIS/HLA federate 

modeling and development. Figures 5.1 -  5.2 illustrate the wide variance in RTI 

processing requirements among different Fixed-Wing Aircraft (FWA) missions simulated
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in AirSF during the ACTD. The figures provide moving averages of data taken from 

three scenarios executed during the first three hours o f the exercise. Each scenario was 

executed on a different simulation engine.

Figures 5.1 and 5.2 reveal very similar workloads among the scenarios in terms of the 

amount of network traffic and the volume of remotely simulated vehicles. Figure 5.3, 

however, shows a distinct difference in the number o f remote radio entities that the 

Electronic Support Mission (ESM) receives. The impact is shown in Figure 5.4. Due to 

the comparatively large number of remote radios the RTI requires a significantly greater 

proportion o f simulation processing time for ESM than for CAS or CAP missions. The 

correlation values for the three mission scenarios are shown in Table 5.1; note the much 

stronger correlation of RTI tick rate with remote radios than with remote vehicles. The 

data reinforces our conclusion that the number of radios to which the ESM platforms 

subscribe significantly affects performance of the simulation in terms of the time required 

to manage simulation data. This information is useful to DIS/HLA developers when 

considering a different design of the radio spaces (i.e., repartitioning o f the subscription 

space). As an alternative, ESM modelers could modify the requirement for certain radio 

frequencies. Regardless, this data provide insight into the impact o f the RTI 

implementation and its effects on modeling FWA and certain mission scenarios.
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TABLE 5
STOW ACTD AirSF Correlation O f Performance Factors

Remote
Vehicles

Remote
Radios

RTI Tick

Remote Radios 0.266
RTI Tick 0.403 0.887
IP Packets 0.434 0.118 0.303

As another example, AirSF showed drastic and unexpected performance degradation late 

in the testing process (prior to the STOW ACTD). Initially, the only reliable correlation 

the development team was able to make with this degradation was high entity counts on 

the network. When the PerfMETRICS system was used to monitor performance, 

developers were able to observe the impact o f the high entity counts on specific 

simulation models. The real-time feedback PerfMETRICS provided allowed the 

developers to test various mission and aircraft types and to quickly isolate the specific 

model(s) causing the problem; in this case the sensor model. Correcting the deficiency 

was a non-trivial problem involving several iterations o f code changes. During each 

iteration the capability of PerfMETRICS to provide detailed information in real time 

allowed the developers to assess the impact o f the code changes made to the model 

designs and simulation infrastructure.

5.1.2 Scenario Configuration

An important objective for using ADS technologies like DIS and HLA to support 

military training is to minimize the number o f persons required to support a simulation 

exercise or study. The SAFs used during the ACTD did not require user intervention to 

control the low-level behaviors o f the physical and logical models. Operators were 

required to make the high-level decisions regarding the design o f  mission scenarios and 

entity behaviors. SAF operators can override entity behaviors if  required to do so.
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DIS/HLA exercises frequently incorporate dynamic free-play in terms of the training 

audience’s interaction with the simulation. However, the exercises are most commonly 

structured around the execution o f pre-scripted events that reflect training objectives and 

represent scenarios for real-world military operations. Thus workloads are in part 

predetermined; this provides an opportunity for configuration planners and simulation 

operators to more effectively utilize available hardware and software resources. As 

mentioned, accurate assessments about the number of people required to support the 

simulation exercise are required. Performance monitoring can be used to provide 

guidance during these activities.

In the past, developing pre-scripted events typically relied on estimates o f an initial 

number o f entities (vehicles) that could be simulated on a workstation. In the case of 

ModSAF, these estimates were made using a benchmark based on simulating tanks. 

However, different vehicle types have significantly different processing requirements 

depending on the activities (missions) in which they engage. Specifically, the simulation 

of fast moving aircraft over a large area o f the synthetic battlespace has very different 

performance characteristics than that for slower moving tanks on a more restricted area of 

the battlespace.

Additionally, the dynamic behaviors o f vehicles during the simulation can result in large 

fluctuations in workload, depending on the level o f interaction with other simulation 

entities. By monitoring DIS/HLA simulations, metrics can be established that allow the 

workload on available workstations to be managed based not only on vehicle type but 

also on the type o f activities they are assigned and the entity interactions expected with 

each scenario. This information is then used to make accurate assessments about the total 

number o f machines and persons needed to support the simulation o f  specific scenarios 

during a DIS/HLA exercise. For the STOW ACTD, PerfMETRICS provided the 

simulation site test director with valuable performance information useful for making 

decisions about AirSF scenario design and workload configuration. This process involved
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incremental test phases, the goal being to achieve the best possible utilization and 

performance of the available resources.

The first phase included tests with only one or two workstations simulating a “best guess” 

number of entities (based on model developers’ recommendations). During this phase 

expected entity (FWA) behaviors and interactions were verified and the general 

performance of the simulation was observed. For the AirSF component o f the STOW 

ACTD. performance measures gained during this first phase were especially useful since 

the simulation o f FWA was implemented using TacAir-Soar. The existing TacAir-Soar 

implementation can have severe processing requirements depending on the number of 

agents and number o f interactions with remote entities. Gaining preliminary performance 

estimates was critical for exercise planning. Preliminary studies done by Soar developers 

resulted in a goal to update an agent’s entity state at a 3 to 4 Hz. rate. Achieving this goal 

allows the agents to simulate what is considered “good cognitive behavior.” Using 

PerfMETRICS to monitor the entity state update rates during the initial test phase 

resulted in better estimates o f the maximum number of Soar agents per machine. The 

numbers, dependent upon the type o f mission the agent performs, were as follows: CAS -  

2 agents, CAP -  4 agents, ESM -  2 agents.10

Initially, it made sense to group different missions together when Soar agents exhibited 

extensive interaction. An example is Defensive Counter Air (DCA) missions and 

Airborne Early Warning (AEW) missions. Using PerfMETRICS to monitor overall 

simulation performance revealed that combining these two missions on the same 

simulation engine resulted in excessive paging activity (poor working set size 

characteristics) and consequently very poor performance. This resulted in early 

repartitioning of the agent workload based on missions. Phase one tests provided a good 

baseline for assessing simulation and Soar agent performance.

10 Critical workstation parameters were: 200 MHz Intel Pentium processor; 256 Mbytes RAM.
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Subsequent test phases increased the number o f simulation entities and agent interactions. 

In the case o f DCA testing (CAP is a specific kind of DCA), the number o f air-to-air 

interactions was increased until the Soar agents’ behaviors were determined to be invalid. 

Subject Matter Experts, or SMEs, made this determination based on visual perception of 

agent behavior and the update rates provided by PerfMETRICS. This established limits 

for the number of simulation entities, Soar agents, and their interactions that could be 

expected to not adversely affect the perception o f valid simulation behavior. The final test 

phase involved the execution o f different scenarios in a fully populated battlespace on the 

STOW WAN. These tests exposed the individual HLA federates (AirSF simulations) to 

the workload demands expected during the ACTD. Specifically, as many as 5,000 

simulation entities and network traffic at the LAN interface averaging between 300 and 

800 packets per second.

Using PerfMETRICS during these test phases helped determine the maximal number of 

Soar agents per workstation that still allowed the achievement o f realistic behaviors 

during the ACTD. This allowed the AirSF test director to make decisions regarding 

scenario workload and configuration. Using the performance information described 

above and estimates about the expected number o f FWA sorties (missions) during the 

STOW ACTD exercise, the test director was also able to provide an estimate o f the 

number o f AirSF simulation engines (Intel-based PCs) required to meet the exercise 

objectives. As mentioned, DIS/HLA simulation training exercises are to some extent pre- 

scripted with well-defined scenarios and objectives. For the AirSF component, SMEs 

estimated the Air Tasking Order (ATO) that lists missions to be executed, would require 

a maximum number (at any one point in time) o f the following basic mission types: DCA 

(includes CAP) -  3 missions (12 agents), Strike (includes CAS) - 10 missions (40 

agents), and Intel (includes ESM) - 5 missions (10 agents). The number o f required

simulation engines, m is a specific mission type, Em is the number o f entities for mission

m

engines was then estimated as where N  is the number of
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type m, S„, is the number of scenarios o f mission type m, and Pm is the number agents per 

engine for mission type m (derived using PerfMETRICS).

5.1.3 Resource Monitoring

Based on the process discussed in the previous section, it was estimated the AirSF 

component for the STOW ACTD would require (at any one period) 26 simulation 

engines, 3 for DCA, 20 for Strike, and 3 for Intel. The WISSARD facility at NAS 

Oceana, Virginia Beach, VA (the air simulation component o f the STOW ACTD) was 

issued 36 workstations designated as simulation engines. Figure 5.5 shows the actual 

utilization o f the engines during the STOW ACTD (also derived using data gathered with 

PerfMETRICS). The median values for backend (simulation engine) utilization over the 

three days were 72, 75, and 61 percent, respectively. The original estimate o f 26 

simulation engines is 72% of the 36 issued for AirSF simulations, corresponding closely 

with the actual usage.

It is important to note that the median values reported above reflect the average time 

spent executing Soar scenarios. An additional factor can be considered and includes the 

number o f simulation engines that are at any point in time either in a simulation startup 

mode or in a quiescent mode waiting for the Soar agents to begin their missions. 

Interestingly enough this factor is representative o f overlaps in real world FWA flight 

operations. When this factor is taken into account the actual backend utilization during 

the ACTD approaches 100%.

Figure 5.6 provides the average entity state update rates for the principal Soar mission 

types discussed throughout this paper. It shows that the prescribed update rates were 

probably met for most o f the Soar missions except in cases where more agents were 

loaded onto a single workstation than were deemed reasonable by the pre-exercise tests.
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Fig. 18. STOW ACTD AirSF simulation engine utilization.

Using PerfMETRICS provided valuable performance information to model developers 

and testers. It helped them make reasonable assessments about the capabilities of existing 

hardware to provide credible entity-on-entity level simulation to augment operational 

testing. By gradually introducing critical factors in a controlled test environment and 

using PerfMETRICS to measure their impact on performance, scenario design and 

configuration planning for the STOW ACTD became a more quantifiable process. The 

test director and site manager were provided with information needed to make tradeoffs 

in hardware, software, and personnel requirements.
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The DARPA STOW ACTD provided an excellent opportunity to use the framework 

presented in this thesis. This use case was the first time PerfMETRICS was used to 

support a real-world application. Performance information was successfully collected and 

used to support decision-makers during model design and testing, and during scenario 

configuration and planning. It was also used during the simulation exercise to provide 

overall monitoring of the resources in the air component o f the synthetic environment.

5.2 U.S. Navy Battle Force Tactical T rainer (BFTT) A ir M anagem ent Node
(AMN)

The U.S. Navy has developed the Battle Force Tactical Training (BFTT) system 

to provide shipboard training across the full spectrum of mission scenarios from unit 

level, small team training (Tier I), to theater level joint training exercises (Tier III). Since 

peacetime constraints have limited the funds available for adequate mission training
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using live forces to maintain an adequate level o f  military readiness, the DoD is exploring 

the increased use o f simulation to augment live training. The principal technical objective 

of BFTT is to create a network of coordinated training using ADS to stimulate shipboard 

sensors. The BFTT system provides immediate feedback regarding the performance of 

trainee(s). The implementation o f BFTT consists o f a collection o f  hardware and software 

components used for training scenario generation, stimulation/simulation control, data 

collection, and performance monitoring. Shipboard and shore-based BFTT networks may 

be interconnected to provide a larger, WAN-based synthetic battlespace.

An important BFTT training capability is Air Traffic Control (ATC). The BFTT Air 

Management Node (AMN) is designed as a training tool to help keep air controllers 

proficient with ATC terminology and control procedures. Principal goals in developing 

the AMN are to improve upon the ATC training capabilities of the BFTT Combat 

Simulation Test System (CSTS), including an improved HCI and enhanced simulation 

and modeling capabilities (i.e., fidelity). An additional objective is to initiate a migration 

path for BFTT using the Defense Modeling and Simulation Organization’s (DMSO) High 

Level Architecture (HLA). To achieve these goals, the Naval Sea Systems Command’s 

(NAVSEA) Performance Monitoring, Training, and Assessment Program Office 

(PMS430) proposed the use o f simulation technologies developed during the STOW 

ACTD. Various technical challenges existed regarding the integration o f STOW 

technology with the BFTT system but doing so would provide a more robust and realistic 

synthetic environment capable o f supporting U.S. Navy training requirements.

The AMN architecture and design (both hardware and software) is influenced by many 

factors, among them the physical and environmental shipboard constraints found on U.S. 

Navy combat vessels. Given these constraints, the actual AMN implementation was 

limited to a total o f nine processor boards to service all the application needs o f the 

AMN, including simulation engines, Human Computer Interface (HCI) applications, an 

HLAODIS interface to integrate the AMN with the existing shipboard training 

simulation network, and a special interface application for communicating and sharing 

data with shipboard consoles used to control the simulation training environment. The
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Fig. 20. BFTT AMN dynamic load scheduling using PerfMETRICS.

final design consists o f only four processor boards designated as simulation engines and 

creates performance issues related to hardware/software capabilities meeting processing 

requirements o f a highly dynamic AMN scenario workload (based on TacAir-Soar 

technology). The run-time architecture o f the AMN is complicated by requirements to 

support dynamic creation, deletion, and control o f  Tac-Air Soar agents. Operator control 

of the agents is via the AMN HCI, displayed as a GUI at the BFTT Operator Console 

(BOPC). What is needed is the ability to make good use o f the processing cycles on the 

available processors (the 4 simulation engines). One technique to achieve this is static 

load scheduling based on the existing processor and memory workload at any given 

instant in time.

PerfMETRICS was selected to provide the AMN load scheduling algorithms with 

requisite performance data. Using the existing communication infrastructure provided by
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PerfMETRICS to manage the agents simplified the AMN design and reduced the amount 

o f new code development required to implement dynamic agent creation. This was an 

important consideration given the strict AMN development schedule. Figure 5.7 shows a 

Data Flow Diagram (DFD) of the AMN dynamic agent control architecture. The 

PerfMETRICS collection daemon was modified to buffer application requests to create 

and delete TacAir-Soar agents. Run-time performance data from the application related to 

entity update rates, number o f existing entities, and other low-level operating system and 

hardware performance is passed into the agent scheduler process residing in the AMN 

HCI process. Initial work was done to develop different scheduling algorithms. 

Development and test scheduling constraints, however, resulted in a simple round-robin 

scheduling algorithm being used in the fielded system. The data infrastructure to support 

different scheduling algorithms was kept in the source code and can be used to provide 

performance information for future, more sophisticated scheduling algorithms.

5.3 Aviation Combined Arms Tactical Trainer-Aviation (AVCATT-A)

This case study examines the use o f PerfMETRICS to monitor, collect, and 

analyze performance information to make assessments about system design and 

procurement for the U.S. Army’s Aviation Combined Arms Tactical Trainer-Aviation 

(AVCATT-A) trainer, a re-configurable manned simulator system. It is a dynamic, 

alternative instructional concept to train and rehearse using networked simulations and 

simulators in a collective and combined arms simulated battlefield environment. The 

systems principal objective is to provide unit-level proficiency training for rotary wing 

(helicopter) aircraft. The AVCATT-A system is currently under development and will 

provide a fair fight, realistic, high intensity, task-loaded combat environment composed 

of attack, reconnaissance, cargo, and utility aircraft platforms; SAF workstations; an 

After Action Review (AAR) capability; a Battlemaster Control (BMC) console; and 

workstations for ground maneuver, Fire Support (FS), CAS, logistics, battle command, 

and engineer role players. The benchmark testing presented in this use case was intended 

to help decision makers assess the use of different behavioral modeling technologies (i.e.,
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TacAir-Soar, SAF Taskframes), their impact on run-time resource requirements and 

performance, and their relationship to the expected training scenario workload.

The discussion and data presented thus far clarify the fact that in typical DIS and HLA 

simulation environments, large entity counts require significant computer and network 

resources such that the simulation workload and its impact on run-time performance must 

be carefully considered in system development. Computer and network resources must be 

determined based on workload requirements of representative exercise scenarios 

identified by subject matter experts. As military programs such as AVCATT-A continue 

to mature, users will demand increasingly complex training scenarios; therefore it is 

important to understand the simulation resource requirements. To support AVCATT-A 

system design and procurement and to gain insight into the problem o f defining resource 

requirements, benchmark testing was done using semi-automated and fully automated 

Joint Semi-Automated Forces (JSAF) fixed and rotary-wing aircraft representations."

The goals o f the test were to provide estimates o f the number of TacAir-Soar agents and 

SAF taskframe-based entities that can effectively be simulated on a specified computer 

configuration. Objectives included: 1) creating a synthetic battlespace with representative 

ground and air forces, 2) creating and executing SAF scenarios to generate realistic 

workloads on the simulation engines, and 3) measuring the run-time performance of the 

simulations while executing the SAF scenarios. Initially, the aircraft types were to 

include Fixed-Wing Aircraft (FWA) and Rotary-Wing Aircraft (RWA). However the 

results presented here only include FWA due to the lack of availability o f Soar-based 

RWA at the time the benchmarking was performed.

The tests consisted o f  populating the synthetic environment with up to 532 ground 

vehicles placed in a standard JSAF terrain representation. The ground vehicles consisted

11 JSAF is the new name for the CGF application (SAF-based) developed during the STOW ACTD. JSAF 
functionality continues to evolve and is used to support various DoD M&S domains.
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of Friendly (Blue) and Opposition Forces (Red). For the TacAir-Soar testing, two series 

of test were run, one with the 532 ground vehicles and a second series with 270 ground 

vehicles. During the tests, some o f the ground forces were given simple missions 

involving entity movement. The computing platforms used to test the FWA were 400 

MHz Pentium II-based personal computers configured with 384 Mbytes o f RAM and 700 

Mbytes o f swap space. The computers used to generate the ground forces were 200 MHz 

PH-based PCs with 256 Mbytes of RAM. The computers were connected using lObase-T 

Ethernet in a network topology designed to optimize network traffic in a WAN/LAN 

HLA environment. The JSAF applications used for the tests were run in HLA mode (as 

opposed to DIS mode) using the STOW RTI-s, the RTI implementation specific to the 

STOW application environment.

5.3.1 Taskframe Testing

The capacity tests for taskframe-based FWA consisted o f a SAF scenario with 

fifty taskframe entities o f different aircraft types. The aircraft were assigned missions 

normally associated with their aircraft type and included tanking, EW, DCA, CAS, etc., 

the goal being to provide realistic (representative) interactions among ground and air 

entities. Initially, all fifty aircraft were loaded, but were idle in the battlespace. This 

means the simulation was updating the state information for each entity. Since the entities 

were idle, the workload generated by each was minimal. At periodic intervals each 

aircraft (or section o f aircraft) initiated its mission, increasing the simulation workload on 

the test platform. After all entities were launched, the simulation was allowed to run in a 

steady state for approximately ten minutes. The taskframe entities were then deleted from 

the simulation at regular intervals until the FWA entity count was zero. The total time for 

a single execution was approximately 60 minutes. This test was repeated five times and 

the results recorded.
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Fig. 21. Entity state update (tick) rate for FWA taskframe test.

The results o f the testing indicate that between 40 and 50 taskframe entities (FWA) can 

be simulated on a single JSAF simulation engine operating as a backend (i.e., no GUI). 

Performance data from the five executions were analyzed using Analysis of Variance 

(ANOVA) to determine the mean tick rate and entity state update performance of the 

simulation for the given workload. For the purpose o f the results presented here, Tick rate 

is defined as the number of times per second (Hz) that an entity has its state information 

updated. Entity State Update Performance is defined as the percentage o f the total 

number o f  entities that are meeting their prescribed update rates over a window of time: 

in this case the prescribed update rate is 2 Hz and the sampling window is 60 seconds. 

For the set o f execution samples, ANOVA assumptions were verified by examining the 

residuals output. In some cases the sampling assumptions were marginally acceptable. 

More important, however, is the practical significance o f the observations presented in 

Figure 5.8 Specifically for all five samples (executions), the observed entity tick rates 

were similar.
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Fig. 22. Entity state update performance and update (tick) rate for a sample FWA 
taskframe execution.

Figure 5.9 shows the entity tick rates and the entity state update performance for one of 

the executions. Active entity count is shown along the right-hand Y-axis. Entities were 

considered active while executing their missions. Note that the active entity count only 

went to forty for the tests because ten of the fifty total aircraft were RWA that sat idle 

because they could not be assigned missions. These idle RWAs however, were still ticked 

and therefore did contribute to the simulation workload. The large drop in update (tick) 

rate and the corresponding drop in the entity state update performance coincide with the 

peak levels o f interaction and aircraft activity during run-time. The data shows that, 

assuming the highest levels o f  entity activity and interaction, it is possible to simulate as 

many as forty active FWA (and additionally tick ten low activity aircraft) and still 

maintain acceptable update rates (4 HZ) and overall entity state update performance 

(ninety percent). The statistical analysis indicates that, with 95 percent certainty, one can
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TABLE 6
Update Rate and Entity State Update Performance For TacAir-Soar Scenarios

532 Remote Ground V ehicles 260 Remote Ground Vehicles

4  agents 6 agents 8 agents to
agents

4  agents 6 agents 8 agents 10
agents

Update (Tick) 
Rate

5.7 Hz 4.0 Hz 2.6 Hz 1.7 Hz 5.3 Hz 3.8 Hz 3.1 Hz 2.3 Hz

Entity State
Update
Performance

99.8 % 89.3 % 73.0 % 37.0 % 99.8 % 96.3 % 82.4 % 61.5%

expect an average tick rate o f between 6.6 and 6.8 Hz. The average entity state update 

performance will be between 92.64 and 93.65 percent.

5.3.2 TacA ir-Soar Testing

The capacity tests for the TacAir-Soar agents consisted o f scenarios with four, six, 

eight, and ten agents per machine. All aircraft were initialized to execute Strike missions 

(i.e., attacking ground targets) since these missions are known to generate the greatest 

simulation/Soar workload for a given entity count. The aircraft (F-16Cs with laser-guided 

bombs) were placed at initial points approximately ten minutes (real-time) from the 

targets (ground OPFOR). They would fly to the targets and after dropping their ordnance, 

would egress back to the initial point. As mentioned, for the TacAir-Soar testing, two 

series were run with the same scenario just described. The first series consisted of 532 

ground vehicles and the second series consisted o f 260 ground vehicles. The objective of 

running the second series was to assess the impact of the ground entity count on 

simulationySoar performance. The time for a single execution was fifteen minutes and 

each execution was repeated five times for each test series.

The results o f the TacAir-Soar testing are presented in Table 5.2. There appeared to be a 

marginal improvement in run-time performance for the case with fewer ground vehicles;
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For 532 ground vehicles, six TacAir-Soar agents per simulation engine appear to be the 

optimal number given the compute resources employed. For the case with 260 ground 

vehicles, six to eight agents can be run on the same simulation engine. It is important to 

note the agents still continue to run their missions despite overloading and that in some 

overloaded cases agent behavior may still be valid.

The problem is we cannot be confident in the validity o f the interactions because of the 

possibility of reordering and delays in simulation. Although anecdotal in nature, 

observations made during the tests did indicate better simulation and agent behavior 

during the test series with 260 ground vehicles and it appeared that the Soar agents 

actually achieved a higher ratio of kills when delivering ordnance. These observations, 

however, were not quantified. Performance data from the five executions of each 

scenario, from both test series, were analyzed using ANOVA to determine the mean tick 

rate and entity state update performance o f the simulation for the given workload. For the 

set o f execution samples, ANOVA assumptions were verified by examining the residuals 

output. In some cases the sampling assumptions were marginally acceptable. As shown 

during the discussion o f the FWA taskframe test results. Figure 5.10 illustrates how the 

observed entity tick rates are strongly correlated among sample executions. This 

particular plot shows the execution samples for eight agents with 532 remote ground 

vehicles.

Figure 5.11 shows a time series of update rates o f  the Soar agents from one execution of 

each test with 260 remote ground vehicles. The plotted data are actually the moving 

averages o f the update rates over the duration o f the execution. The pronounced drop in 

the tick rate is indicative o f the final approach after acquiring the target, the release of the 

ordnance, followed by the start of the egress from the target area (where the tick rate 

starts to raise).
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Fig. 23. Entity state update (tick) rate for 8 TacAir-Soar agents;
532 remotes ground vehicles.

The results o f the study clearly show the increased computational costs associated with 

more sophisticated Soar mission behavior modeling. But for training systems with 

constrained numbers o f operators/trainers (such as in AVCATT-A), fully autonomous 

behavior modeling using technologies such as TacAir-Soar can significantly reduce 

operator workload. This fact becomes even more critical given the goals to create larger 

and more realistic training exercises, translating to higher entity counts and increasingly 

complex simulation environments. AVCATT-A can benefit from both behavioral 

modeling technologies by using benchmark studies as presented here, to determine an 

appropriate ratio o f fully autonomous and semi-autonomous entities during scenario and 

system design. TacAir-Soar intelligent agents can generate highly realistic RWA and 

FWA representations while significantly reducing the required number o f simulation 

operators to meet exercise objectives. Less costly taskframe-based entities can then be 

used to provide greater density to the synthetic battlespace, enhancing the realism of the 

synthetic environment.
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Fig. 24. Entity state update (tick) rate for TacAir-Soar agents;
260 remote ground vehicles.

The benchmark testing results obtained during this use case provided useful information 

to decision-makers trying to make reasonable assessments about the capabilities o f 

existing hardware and software to provide credible entity-on-entity level simulation to 

augment the AVCATT-A training system. By varying critical factors in a controlled test 

environment and measuring their impact on performance, scenario design and 

configuration planning for CGF becomes a more quantifiable process.

5.4 U.S Air Force Distributed Mission Training (DMT)

The last use case for the research presented in this thesis is to support assessments 

related to technology insertion, specifically to understand the impact o f using STOW 

technology to link virtual cockpit (human-in-loop) simulators. The U.S. Air Force is 

currently defining requirements for a new training system and plans to use emerging 

distributed simulation technologies to enhance the effectiveness o f the training
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environment. The U.S. Air Force has previously relied on aircraft as the primary 

mechanism for mission training. Peacetime constraints have now limited the funds 

available for adequate mission training using real aircraft. To maintain an adequate level 

o f military readiness, the DoD is exploring the increased use o f simulation to support 

operational training, such as the Air Force’s Distributed Mission Training (DMT) 

program. DMT is a shared training environment comprised of live, virtual (manned), and 

constructive (computer generated) simulations. The principal technical objective of DMT 

is to create high fidelity manned simulators networked with other air, ground, and sea 

forces in a realistic synthetic battlespace. The simulators will support the full spectrum of 

training from unit-level, small team training, to theater-level joint training exercises, and 

can potentially be employed to support analyses, and test and evaluation.

5.4.1 Technology Insertion

Following the successful completion of the STOW ACTD, DARPA initiated follow-on 

work to enhance and improve the SAF implementations, increase overall STOW system 

performance, and transition STOW technology to other programs. One such effort was 

the Distributed Mission Training (DMT) Experiment. Various technical challenges exist 

regarding the integration of constructive, virtual, and live simulations intended for use in 

the DMT program and were discussed in Section 1. One technical issue is interoperability 

among DIS- and HLA-based systems. The key implementation component to integrate 

STOW technology with existing DIS-based virtual cockpit simulators is an HLA 

Interface. DARPA developed the interface to share virtual and constructive simulation 

data; translating between the HLA/RTI-based data packets associated with the STOW 

synthetic battlespace and the DIS-based data packets used by the Air Force Research 

Laboratory (AFRL) virtual simulators located in Mesa, Arizona.

A primary goal of the DMT Experiment was to characterize the impact o f integrating 

STOW technology (i.e., HLA-based synthetic forces and synthetic environment) and a 

DIS-based virtual training environment, specifically, the throughput and latency as seen
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by the virtual component of simulation state data generated by the synthetic forces and 

synthetic environment components o f the STOW federation. The principal performance 

objective o f the integration was to provide federate state data to the virtual simulation 

hosts at a sufficient rate to maintain the quality o f the training experience. Assessing the 

success or failure o f meeting this objective required evaluating run-time performance by 

identifying the system’s shared hardware and software resources, understanding the 

utilization and contention for these resources, and quantifying the delays imposed by 

using these resources.

The data update rate requirements for the virtual simulator’s image generator had an 

upper bound estimated to be 60 Hz, however, the data rate at the virtual simulator’s 

network interface was significantly less than the image generator’s access. Thus, to meet 

the performance objectives, HLA Interface updates needed to occur at a rate that was 

consistent with the data requirements for the virtual simulation host. The performance 

criteria for this evaluation required measuring the speed and utilization o f the D IS^H LA  

data interface. Metrics were latencies, throughputs, and effective bandwidth at various 

levels in the protocol (communications) stack. End-to-end performance was important 

and timing data was aggregated to provide a measure o f the overall communications 

performance. The principal mechanism chosen to support this performance analysis was 

PerfMETRICS. Its functionality was extended to provide remote control of all HLA 

interfaces and display the relevant performance information.

5.4.2 Assessing the Performance Impact -  High-level

Original test plans were extensive but contention for the virtual cockpits by other tasks 

within the DMT Experiment and other programs required restricting the test time. Two 

test scenarios were designed to characterize latencies through the HLA Interface as a 

function o f workload (i.e., data packet throughputs, the number o f virtual cockpits, and 

the number o f Computer-Generated Forces, or CGF). The latency measurements include
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transport delays, delay across the RTI (HLA publications/subscriptions), data packet 

translation delays, and end-to-end delay (as seen at the HLA Interface).

The first scenario was designed to capture data throughput rates representative of 

different levels o f pilot activity during air-to-air engagements. Specifically, low, medium, 

and high-levels o f maneuvering providing different rates o f changing aircraft position and 

orientation. The second scenario was designed to observe the impact o f ground CGF and 

STOW synthetic natural environments on the relevant performance metrics. Ground CGF 

consisted of Blue and Red forces laid down in a region of high-resolution terrain. 

Buildings, tank ditches, and other STOW dynamic terrain objects were also used to 

populate the synthetic battlespace. The test scenario consisted of sending TacAir-Soar 

agents on a strike mission and having the virtual cockpits ‘chase’ the agents to observe 

the environmental enhancements provided by STOW SE. The premise o f the scenario 

design was that the SE would induce the additional processing and communications 

overheads desired for this performance study.

The PerfMETRICS monitoring system was extended to specifically measure network 

latencies and data throughputs for the DMT Experiment and also provides feedback to 

and control o f monitored applications. PerfMETRICS was used to gather all data except 

the LAN and WAN transport delays and the bandwidth utilization on the HLA network. 

For the transport delay measurement, a program was implemented using an echo-based 

measurement mechanism representative o f multi-cast communications up to the point 

where the RTI receives data from a multicast port. Two instances o f the program were 

run, one instance collecting WAN traffic from virtual cockpit simulators located at the 

Theater Air Command and Control Simulation Facility (TACCSF) in Albuquerque, New 

Mexico, and another collecting LAN traffic at AFRL. Bandwidth utilization on the HLA 

network was captured using a PC-based network analyzer.

Results from data collection at one o f the HLA Interfaces during the air-to-air tests are 

depicted in Figures 5.12 -  5.15. Note that data for all HLA Interfaces were similar, as 

was expected. The data presented are from the third air-to-air test where pilot activity was
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Fig. 26. Latency description (Air2Air).

representative of close-in combat such that the aircraft exhibits rapid changes in position 

and orientation. Note that this level o f activity was not sustained throughout the test. The 

data as presented in Figure 5.12 indicates that, for the given scenario and workload (up to 

102 entities), end-to-end delays as seen by the interfaces are loosely correlated with entity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



114

60 H
To DIS PortQ.a

co 48

Q.
36 -

24 -

S, To RTI
f '  i » 1 1. /  'u V '

5:17:11 PM 5:4212 PM

Fig. 27. Entity state throughputs (Air2Air).

count. Figure 5.13 provides descriptive measures o f end-to-end latency as defined for this 

study, namely the time it takes a packet to be transmitted between the DIS ports of any 

two HLA interfaces linking the associated virtual cockpits. One significant observation of 

the data in this figure is the deviation in latencies, where over fifty percent o f the values 

range between six and ten milliseconds. This is inconsistent with preliminary studies 

where deviations about the mean latency were relatively ‘tight’. In the broader scope, the 

update rates provided to the simulators were sufficient for providing the pilots with a 

good visual perception o f the synthetic airspace.

The data presented in Figure 5.14 and 5.15 are useful for examining interface 

performance. For the given scenarios, entity state data dominated the throughput at the 

HLA Interfaces. Figure 5.14 shows the expected increase in throughput as a result o f 

increasing numbers o f entities. The throughput from the cockpit is fairly constant; the 

plot shows correlation between the DIS and RTI throughputs (observed as spikes in the 

plot’s moving averages). This is most likely an artifact o f the pilots reacting to each
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Fig. 28. Avg. access to DIS port (Air2Air).

other’s maneuvers, creating an increased rate o f change in aircraft orientation and 

position and resulting in increases in the entity state outputs at both interfaces.

The significant point about this is the run-time performance of the HLA Interface did not 

degrade as throughputs increased during these tests. The current implementation o f the 

HLA Interface is configured to read the DIS UDP port at a 500 Hz rate (every 2 msecs.). 

Figure 5 .15 shows the average access delay for reading the port, which deviates only on 

the order o f microseconds despite an increasing load o f traffic through the interface. This 

indicates that for the given workload the HLA Interface is able to complete all other 

processing and return to read its DIS port within microseconds o f its scheduled time.
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Figure 5.16 shows data gathered from Viper 3 (one o f the F-16C virtual cockpits) during 

the last air-to-ground test. This test consisted o f a workload generated by seven TacAir- 

Soar agents, two virtual cockpits, over ninety ground-based CGF companies o f Red and 

Blue tanks, and SE data that included dynamic terrain (buildings, road craters, etc.), 

diurnal effects (night and day changes), smoke plumes, and road craters. The data shows 

total. Entity State, and environmental PDU throughputs to the HLA Interface DIS port. 

Additionally, the plot shows the influence of the STOW CGF. The end-to-end latency, as 

seen by the interfaces, is better than the air-to-air test. Measures are presented in Figure 

5.17 and 5.18. The data show a mean end-to-end latency of 4.3 milliseconds and ranges 

between three and six milliseconds. It is possible that the lower latency in this test could 

be attributed to the lack o f additional traffic from TACCSF, which was also conducting 

tests during the air-to-air tests.

5.4.3 Assessing the Performance Impact -  Low-level

LAN transport delays are presented in Table 5.3. The results reinforce the point that in a 

LAN environment most o f the data latency is introduced at the application level. For
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STOW federates that means processing and queuing delays in the RTI and application 

code. For the HLA Interface, that predominately means processing and queuing delays 

within the RTI since processing time associated with the data translation is on the order 

o f microseconds. Transport delays for the network connection with TACCSF are reported 

in Table 5.4. As expected, the ‘time o f flight’ on the WAN is significantly greater than on 

the LAN, averaging around twelve milliseconds during all the tests. TACCSF was 

simulating an AW ACS aircraft and only reported data during the air-to-air test. The 

average latency across the RTI was 32.4 milliseconds. However, this was derived from a 

very small sample set during one test and should not be used as an estimate o f expected 

application latencies given workloads similar to these tests.

Table 5.5 presents the bandwidth utilization on the HLA network during the four test 

scenarios. The significant point is that the scenarios used in this study did not generate 

traffic that came even close to taxing the 10 Mbps network; the air-to-air scenarios 

exhibiting close-in combat maneuvering generated bandwidth that approached the 

capacity o f the T1 data link used to connect sites on the WAN (ARFL and TACCSF). 

The higher numbers associated with the air-to-air test are most likely a result o f the 

additional test traffic generated from TACCSF and the higher entity state throughputs 

associated with the virtual cockpits and CGF.

One of the primary concerns associated with this use case was the performance o f the 

HLA Interface, since it had stringent requirements for providing state data at a rate that 

would not adversely impact the visual systems used in the virtual cockpits. The data 

presented is significant because of widespread skepticism about integrating HLA and the 

RTI with virtual cockpits having stringent real-time processing requirements (driven by 

the man-in-loop visualization requirements). The data gathered during the study show 

that even in the presence of increasing simulation workloads and network traffic, the 

HLA Interface can adequately translate and transmit STOW/HLA data to the virtual 

cockpits. Data translation times are on the order o f microseconds, and the interface 

implementation reduces latency by servicing its DIS and RTI ports at a 500 Hz rate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



119

TABLE 7
LAN Transport Delays (msecs.) -  HLA Network

Test Avg. Min. Max.

AirZAir -H igh  Movement .22 .20 .54

AirZGmd -n o  CGF, no SE .22 .21 .37

AirZGmd -n o  CGF, SE .27 .21 1.84

AirZGmd -CG F, SE .32 .21 3.6

TABLE 8
WAN Transport Delays (msecs.) -  HLA Network

Test Avg. Min. Max.

AirZAir -  High Movement 12.99 11.01 35.51

AirZGmd -  no CGF, no SE 12.02 11.08 15.93

AirZGmd -  no CGF. SE 12.94 11.15 39.91

AirZGmd -  CGF, SE 13.15 11.10 25.43

TABLE 9 
Bandwidth Utilization -  HLA Network

Test Percent Usage (%)

Air2Air -  High Movement 11.81

AirZGmd -  no CGF, no SE 3.37

AirZGmd -  no CGF, SE 2.62

A irZ G m d-C G F, SE 5.4
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The performance monitoring and measurement framework presented in this thesis was 

successfully used as a basis to develop the test and measurement methodology for the 

DMT Experiment. The raw performance data was presented at a level of abstraction 

sufficient for detailed analysis o f resource utilization to relate federation performance to 

scenario workload so as to be meaningful to persons making decisions about the 

suitability of STOW technology for integration with real-time virtual cockpit simulators.

5.5 Use Case Sum m ary

This section has presented a series of case studies, each highlighting the use o f the 

PerfMETRICS monitoring system to gather data meaningful to different decision-makers 

for different aspects o f a distributed simulation environments including model 

development, exercise configuration and control, resource utilization assessments, and 

capacity planning. The monitoring has included simulations and other applications that 

integrate live, virtual, and constructive (simulation) components. The variety of relevant 

performance information includes system level (hardware and operating system) 

performance metrics, performance measures associated with simulation infrastructure, 

modeling performance, and networking performance metrics. The execution 

environments include training, operational, analysis, and acquisition for the U.S. Navy, 

U.S. Army, and U.S. Air Force.

Table 5.6 provides an abbreviated list of the performance metrics used to support 

performance analysis and assessments during these case studies. The application of the 

framework presented in Section 3 and the PerfMETRICS monitoring system described in 

Section 4 support the performance analysis activities during these case studies and also 

support the conclusions for this thesis research in the next section.
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TABLE 10 
Use Case Metrics Summary

MODEL DESIGN AND TESTING

1) IP PPS as F(time)
2) Remote Vehicle Count by Mission Type
3) Remote Radio Count by Mission Type
4) RTI Tick Processing by Mission Type
5) Correlation Values for above

SCENARIO CONFIGURATION

6) Available workstations
7) Mission types
8) Entity count
9) Number o f  Missions

RESOURCE MONITORING

10) Average Utilization o f  available simulation engines
11) Average Entity Update Rate by Mission Type

LOAD SCHEDULING

12) Entity Update Rate
13) Entity Count
14) Memory Utilization

TECHNOLOGY ASSESSMENT & CAPACITY PLANNING

15) Local Entity Count by Behavioral Model Type
16) Remote Entity Count
17) Entity State Update Performance by Behavioral Model Type
18) Entity Update (Tick) Rate by Behavioral Model Type

TECHNOLGY INSERTION IMPACT

19) Entity Count as F(time) by Mission Type
20) End-to-end delay as F(time) by M ission Type
21) Average Latency and Variance as F(time) by Mission Type
22) Entity State Throughput as F(time) by Mission Type
23) Average Network Access Rate
24) Total Throughput
25) Environmental Throughput
26) LAN Transport Delays
27) WAN Transport Delays
28) Bandwidth Utilization
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SECTION 6 

CONCLUSIONS

The origins o f this research stem from the practical need to understand the run

time behavior of an inherently complex distributed computing domain, specifically that 

of advanced distributed simulations. The complexity exists due to the proliferation o f 

enabling technologies used in ADS environments, the abstract nature of modeling real- 

world environments, and the interaction of various factors that affect the run-time 

behavior o f distributed computing applications. Different persons associated with the 

design, configuration, and control o f distributed simulations need to understand the 

impact o f decisions made regarding the allocation and use o f the various logical and 

physical resources comprising the distributed run-time environment. Characterizing run

time behavior is a key aspect to providing decision-makers with an understanding of 

technology factors contributing to performance bottlenecks in these environments, and 

providing a mechanism to monitor and collect run-time performance data supports 

meaningful assessments about the degree to which simulation objectives are achieved.

The original proposal for this research maintained a hypothesis that there exists a 

generalized framework for performance analysis o f distributed simulations. The 

objectives intended to define an abstract representation o f all distributed simulations and 

to present a series o f formal techniques that support a direct mapping from the 

performance abstraction to a set o f performance metrics. In reality, this proposition far 

exceeds the scope of this thesis research. Although such an abstraction may in fact exist, 

the diversity of application domains for distributed simulations and an almost infinite 

number of goals for the evaluation o f run-time performance make the proof o f this 

hypothesis a daunting task. The specification of a credible, generalized abstraction of 

distributed simulation performance and the definition o f a robust set o f  related 

performance metrics would be a difficult goal to achieve in any time period.
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However, one achievable aspect o f the original proposal was the use o f DIS and HLA 

simulation environments as a case study for demonstrating the utility o f a framework for 

the analysis of distributed simulations. Initial research, focused on the original thesis 

objectives, quickly led to the realization that DIS and HLA simulations were sufficiently 

complex M&S environments and provided boundary conditions for a practical 

specification of a performance analysis framework. The well-defined and formalized 

DoD functional areas that use M&S applications and the common set o f real-world 

representations manifesting themselves within DIS and HLA simulations delineate the 

characterization o f distributed simulation performance to those run-time performance 

factors related to the simulation o f real-world objects and some space/time analog of the 

real-world environments in which they interact. The description o f real-world objects, 

object interactions, and environments is meaningful to persons making decisions about 

the design, configuration, and control o f DIS and HLA simulations. These three 

activities and the recurring focus on objects and their interactions provide the basis for 

proposing an architectural framework for the performance analysis o f DIS and HLA 

simulations. The research objectives presented in Section 1 o f this thesis are modified 

from the original proposal only in the context of constraining the definition of a 

performance analysis framework to its application in a M&S domain that demands 

practical solutions to time-critical problems.

The use cases presented in Section 5 illustrate the utility o f a unified framework (defined 

in Section 3) to provide a cohesive process for DIS and HLA performance analysis; 

specifically to be able to: I) delineate the system boundaries based on the execution 

domain (e.g., training, analysis) and analysis objectives (e.g., model design, exercise 

control), 2) select the appropriate performance metrics, 3) consider the impact o f different 

workloads (scenarios) on run-time performance, and 4) analyze, interpret, and present the 

performance information to decision-makers. The remainder o f this section provides an 

evaluation of the work accomplished during this thesis research as it relates to the 

research objectives presented in Section 1.3 and concludes with a discussion o f its 

significance and the future direction in which this research should move.
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6.1 Evaluation

Objective 1. Define a framework useful for characterizing DIS/HLA simulation 

performance. The framework shall include a conceptualized view o f performance in 

the context o f DIS and HLA simulations, and a taxonomy o f performance measures 

useful to different decision-makers involved with the DIS / HLA life-cycle.

The framework defined in Section 3 and represented in Figure 3.4 provides a 

unified architecture (conceptualized view) for performance analysis o f DIS and HLA 

simulations. The framework considers relevant execution domains (training, analysis, 

acquisition, and operational) as outlined in the U.S. DoD Modeling and Simulation 

Master Plan which employ, or are candidates for employing DIS and HLA-based 

simulation technologies. Although not explicitly shown in the framework diagram, the 

manner in which simulation technologies are applied within each domain manifests itself 

as an actual scenario workload, another significant aspect affecting run-time performance 

and explicitly considered in the analysis framework. Refinement o f the framework as it 

applies to each domain results in a definition of the principal activities associated with 

any simulation life-cycle, specifically the design (and development), the configuration 

(and planning), and the run-time control (and monitoring) o f the simulation 

environment.12

The framework considers performance measures relevant to DIS and HLA-based 

environments based on the physical and logical resources and services used to implement 

a distributed simulation environment. The performance measures are categorized by 

architectural layers (abstractions) o f different simulation components and result in the 

definition of system level metrics to capture lower levels o f system performance (network 

and operating system), simulation infrastructure metrics to capture overheads associated

i: Requirements and project management activities can also be considered principal activities in a 
simulation life-cycle (or more generally any software development life-cycle), but they are not considered 
in the framework because o f  their obscure, indirect influence on run-time performance o f  a simulation 
environment.
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with executing simulation models (the implementation costs of using simulation), and 

model performance metrics (object-based physical and behavioral representations) to 

characterize the run-time performance of the different model implementations. The 

framework establishes the linkage between the identified performance measures and their 

intended use (analysis to support design, configuration, and control activities) by defining 

an interface (the PerfMETRICS implementation in the context o f this research) to provide 

a conduit for run-time acquisition o f the relevant performance metrics and their 

aggregation into meaningful information for decision-makers.

Regarding framework utility, DIS are based on an IEEE standard that specifically embeds 

the notion of physical and behavioral representations into an application-level protocol. 

This facilitates the applicability o f the framework’s taxonomy of performance measures 

to all DIS-based environments and when considered in conjunction with a common set of 

analysis objectives (i.e., supporting design, configuration, and/or control activities), 

provides a flexible architecture for performance analysis. The HLA embodies the latest 

evolution o f distributed simulation protocols (within the U.S. DoD) and a generally 

accepted view is HLA is a surrogate for legacy and new simulation environments that 

would otherwise be using DIS. As such, the objectives for performance analysis between 

DIS-based and HLA-based environments will be similar, except for additional 

requirements to understand the costs associated with the HLA RTI and the intrinsic 

services it provides for managing the distributed simulation environment. This fact 

suggests the framework is also generally applicable to HLA environments. Finally, from 

a pragmatic standpoint, and perhaps most significantly, the conceptual soundness o f this 

framework is demonstrated by its continued acceptance and use to support real-world 

DoD M&S-based exercises; providing a standard set o f DIS and HLA performance 

measures that are relevant and useful for analysis in different simulation domains, 

examples o f which have been presented as use cases (that span a four year duration) in 

Section 5 o f  this thesis report. Table 6.1 summarizes the programs and applications that 

have utilized the framework, and specifically PerfMETRICS, to support modeling and 

simulation design, configuration, and control activities.
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TABLE 11
Summary of Framework and PerfMETRICS Utilization

DARPA STO W  ACTD (U.S. DoD R&D program)
JSAF -  Air Component
JSAF -  Marine Corp Component

DMT Experim ent (U.S. Air Force -  Constructive and Virtual Environment)
JSAF
H L A ^ D IS  Interface

BFTT A ir M anagem ent Node (U.S. Navy -  Constructive and Live C4I Environment)
JSAF
HCI (Human Computer Interface process)
H L A ^ D IS  Interface

AVCATT-A (U.S. Army -  Constructive and Virtual Environment)
JSAF
ModS A F
OTBSAF

Objective 2. Develop a measurement, monitoring, and analysis infrastructure useful 

for supporting DIS and HLA simulation performance analysis.

This thesis research has resulted in the design and development o f the 

PertMETRICS monitoring system. PerfMETRICS satisfies basic requirements for 

software-based monitoring in a real-time distributed simulation environment. It provides 

centralized or distributed monitoring of networked simulation engines, the workstations 

hosting those simulations, and the specific models executing inside the simulation 

engines. It supports data collection and provides mechanisms to support data analysis, 

and data presentation. The PerfMETRICS communications infrastructure also supports 

dynamic control o f the monitoring environment, error notification and logging, and 

execution control o f  applications (including simulations) instrumented with the 

PerfMETRICS monitoring code.

From the beginning, the PerfMETRICS design included the same basic taxonomy of 

performance measures presented in this thesis. The architecture has proven to be 

extensible and the implementation robust enough to meet changing analysis requirements 

for programs such as the STOW ACTD, the DMT Experiment, BFTT AMN, and
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AVCATT-A. Since the collection daemon is loosely-coupled with the monitored 

applications, it does not have an architectural dependency meaning that PerfMETRICS is 

readily amenable to monitoring DIS or HLA-based applications, or both within the same 

exercise (when a D IS^H L A  Interface is present to support this configuration).

The PerfMETRICS monitoring system does not contain sophisticated data analysis 

mechanisms or data visualization tools, and in itself cannot be considered a decision- 

support tool. It is best viewed as a “lightweight” , yet robust monitoring and data 

collection tool sufficient for providing timely performance information to persons trying 

to make decisions about how to design and implement simulation models, configure the 

simulations and associated scenarios, and monitor and control the run-time execution 

environment. PerfMETRICS is but one alternative to support DIS and HLA run-time 

performance analysis but it proved to be very effective in its application to the “real” 

environments presented in the use cases. Research results from its use are not only 

reported in this thesis, but have also been disseminated to a broad simulation 

development community via conference publications, after-action reviews, and technical 

interchange meetings.

Objective 3. Relate the costs o f obtaining the performance information for use in 

both dynamic and static performance analyses in terms o f the intrusiveness o f run

time monitoring and measurements o f DIS/HLA simulations.

Discussing the intrusiveness o f run-time monitoring really means assessing the 

cost of data collection weighed against the value o f that data and the possibility that data 

collection will change model or simulation behavior. Thus a real need exists to 

understand monitoring and measurement overheads so appropriate choices can be made. 

Quantitative studies were initiated early on during PerfMETRICS development. Native 

UNIX code profilers were used as a means to measure the impact of specific 

instrumentation strategies. Performing these studies throughout the development 

evolution resulted in the recognition o f three principle factors when making tradeoffs in 

measurement and monitoring costs and the value (essentialness) o f  data. They are: data
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granularity, data rate, and data volume. An example o f collecting data at different 

granularity levels is to gather performance data on a specific class o f entity as opposed to 

every instance of an entity in a specific class. This proved to be the case during 

PerfMETRICS development; not only were the run-time overheads of tracking and 

buffering data for individual entities too great, but user requirements emphasized 

understanding the impact o f certain entity types and their missions on overall scenario 

performance. This resulted in the implementation o f a more course-grained view of 

entity-based performance data, specifically aggregated by entity class (e.g., air, ground, 

water).

Data rate impacts, in some cases, can be significant. Instrumented models that exhibit 

low-processing, high-update rates can impose greater monitoring overheads than a model 

that is more compute-bound and whose update rate is much less frequent. This was 

observed during the DARPA STOW development effort. Simulations modeling fewer 

numbers of fixed-wing aircraft (compute/memory bound model updates) exhibited lower 

monitoring costs (intrusiveness) than simulations modeling large numbers o f tanks 

(simpler models but having more updates). The monitoring costs were greater due to the 

frequency each entity was updated (and the associated instrumentation code was 

executed). Data volume must also be considered because of the potential processing, 

memory, and bandwidth (communications) requirements.

The significance o f the performance impact o f these factors is highly dependent upon the 

value o f the data as required for analysis. The intrusiveness o f the instrumentation code is 

also dependent upon the performance of the underlying hardware so improved processor 

and memory performance may actually decrease the overall intrusiveness o f the 

monitoring process for some instrumentation profiles. Intrusiveness is still primarily a 

function of data granularity, the frequency that instrumentation code is executed (data 

collection rate), and the amount o f data that is collected (data volume).
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Objective 4. Provide a baseline o f practical experiences for future work related to 

performance measurement and monitoring for the design, configuration, and 

control o f DIS and HLA simulations.

Regarding related efforts early on in this research, observations indicate there was 

not an emphasis on establishing an infrastructure for defining and monitoring higher- 

level (application) performance measures. Most efforts mainly focused on building a 

communications infrastructure to gather operating system-level metrics that don’t 

necessarily describe the impact o f modeling or scenario design decisions. More recent 

efforts within the DMSO organization are attempting to bring together a framework for 

estimating the performance requirements o f an HLA Federation [71,72]. It does consider 

model components of the simulation environment (objects and their expected 

interactions) but is not intended for use beyond HLA and takes an approach that is 

benchmark-centric rather than emphasizing the run-time monitoring and data collection 

aspects of data analysis to support design, development, configuration, and control 

activities. This effort’s focus is on the estimation o f performance and resource planning.

The significant aspect of this thesis research is it provides a more generalized definition 

of performance for DIS and HLA-based simulation environments. The use cases provided 

practical experience in real world programs, established a baseline of performance 

measures useful for characterizing the run-time performance o f a diverse set of modeling 

and simulation applications, and identified some o f the limitations o f the current 

performance monitoring implementations (including PerfMETRICS). The lessons learned 

are useful for extending or generalizing the framework, and enhancing or developing a 

new data collection methodology.

6.2 Evaluation Summary

The evaluation of research objectives has shown the utility and breadth of application 

of the performance framework and its effectiveness at providing meaningful and useful 

information to persons making decisions about the design, configuration, and control o f
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DIS and HLA simulation environments. The positive impact o f using the framework 

(specifically the performance measures and PerfMETRICS) on real-world programs is 

evident as users were able to authoritatively (quantitatively) answer specific questions 

regarding model design, workload partitioning, and resource utilization (STOW ACTD 

and AVCATT-A). The taxonomy of performance measures appeared robust as witnessed 

in the use o f PerfMETRICS in an “active” vice “passive” mode o f operation, providing 

dynamic load scheduling o f simulation workloads (BFTT AMN). The data collection 

methodology and implementation proved to be flexible in the presence of evolving 

requirements to monitor different kinds o f applications (e.g., DIS<f>HLA Interface) and 

support assessments regarding the impact o f changing technologies (DMT Experiment).

From its initial (and successful) use during the STOW ACTD, the defined performance 

measures and PerfMETRICS infrastructure have demonstrated the added value o f making 

performance monitoring and data collection an integral component o f  any DIS and HLA- 

based architecture. It is entirely too difficult to anticipate run-time performance problems 

due to what is typically a complex set o f objects and interactions and increasing demands 

on the scale (size) o f the distributed simulation environments. The unified framework 

presented in this thesis provides the mechanism to support near-real time assessments 

regarding the impact o f certain modeling and simulation design and configuration 

alternatives.

6.3 Practical Significance and Contribution

This section o f conclusions can best be summarized by saying the framework presented 

in this thesis research is based on practical experiences gained while participating in the 

real-world programs presented as use cases in this research. The use cases are associated 

with performance of DIS or HLA-based (or both) simulations, however, this does not 

preclude the practical application o f the techniques, tools, and analysis objectives to other 

distributed simulation environments. Recurring objectives appeared in each use case 

based on the need to understand the performance impact o f specific scenario workloads
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(objects, object interactions, and synthetic environments). The recurring analysis 

objectives and the ability to meet those objectives for each of the use cases provide a 

credible basis for assessing the framework. The taxonomy seems robust in its coverage of 

relevant performance measures for each use case. This fact highlights a significant 

contribution o f this research, namely it provides a framework to help decision-makers 

build a performance monitoring and analysis infrastructure into the overall design and 

configuration o f a simulation environment. Not considering the simulation-centric 

performance measures, the framework in general is reusable (as is the PerfMETRICS 

implementation) and as such could be considered useful in any distributed computing 

environment where understanding run-time complexity and the problems it creates is 

desirable.

The fact that the use cases occurred over a period o f four years, and the fact that 

PerfMETRICS was selected as integral part o f the system development and analysis 

within these programs is a testament to the reasonableness o f the system design and it 

adequacy to meet changing analysis objectives by providing a flexible and extensible 

implementation. Over the life of the current PerfMETRICS implementation, it has been 

interesting to see other monitoring systems within the same community end up being re

architected so as to be similar in design to PerfMETRICS. This is in large part due to the 

simple and clean approach to implementing a daemon-based architecture with simple, 

minimally-intrusive, and well-defined interfaces with the application being monitored.

6.4 Future Research

Coinciding with the successful achievement o f thesis objectives comes the 

realization that opportunities exist to extend this research and its application to DIS and 

HLA-based simulation environments, as well as other distributed computing 

environments. Future research and development activities include: I) enhancements or 

extensions to the existing PerfMETRICS implementation, 2) improvements to the utility 

o f the proposed framework, and 3) continuing to actively employ the use o f the
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framework and monitoring infrastructure in existing or future programs. Useful

modifications to PerfMETRICS include:

■ Variable-Iength data  packets; PerfMETRICS uses a statically defined protocol 

packet for sharing performance data. Currently, this packet specification must be 

changed on a "per application” basis depending on the kind o f performance data 

desired. This also requires modifications to the collection code that must log or 

display the relevant performance information. Although this will add processing 

overheads to the collection daemon packet processing routine, the benefits in terms of 

system flexibility/extensibility and packet bandwidth reduction are expected to 

outweigh the processing costs.

* Dynamic selection of monitored, collected, and displayed perform ance measures;

Data collection and presentation requirements may change in between or during the 

execution of a distributed simulation exercise depending on the type o f analysis 

activity. The ability to specify and filter information that is collected and displayed is 

desirable. This makes data analysis and interpretation easier as well as reducing 

bandwidth requirements related to PerfMETRICS monitoring and collection 

processing, network transmission, and data logging.

■ M ore extensive run-tim e visualization/graphics; PerfMETRICS currently provides 

the capability to concurrently display performance data in a tabular format for 

multiple-applications. An earlier SGI-based version o f the PerfMETRICS GUI 

provided a time-series plot capability allowing a person to see the correlation between 

selected performance measures as a function o f time. This capability needs to be re

implemented. Additional graphical displays could include 3-dimensional 

presentations to support more complex, multi-variate analysis methods.

■ Dynamic load modules; Incorporating this functionality into PerfMETRICS supports 

run-time monitoring o f DIS, HLA, or both protocol environments; the objective being 

to structure the implementation to be more o f a “composable” system. An example is
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to load a Federation Management module to allow the PerfMETRICS collection 

daemon to collect federation Management Object Module (MOM) data. 

Implementing dynamic load modules also supports the integration o f relevant data for 

monitoring different application types reporting different performance metrics. An 

added benefit is the possibility o f smaller PerfMETRICS binaries and associated 

working sets since the related processes would only have memory requirements for 

the code that is actually used for a specific monitoring task.

■ Autom ated and less intrusive instrum entation techniques; Its not clear that hand- 

instrumented application code is not necessary for analysis activity involving the use 

of PerfMETRICS. However, it is possible to implement automatic code generation 

for some instrumentation “hooks”. Possibilities include count and timing data 

associated with the DIS and RTI communications infrastructure or other 

shared/reused software components that have well-defined interfaces. Modifications 

to PerfMETRICS to further reduce the intrusiveness o f the measurements process 

include utilizing system time information stored in a shared memory block 

(maintained by xntp) and better use of inline code substitution techniques (macros) to 

reduce overheads o f frequently called data collection functions.

■ Integrated pre-processing data analysis module; The present implementation of 

PerfMETRICS requires performance data saved to a log file to be pre-processed with 

a separate application, before being imported and used in a post-exercise analysis 

mode. It would be better if  this pre-processing function was tightly-coupled with the 

PerfMETRICS GUI to provide a more user friendly interface to select the data 

desired for analysis. Additionally, analysis tools could be instantiated using the 

PerfMETRICS GUI to provide a more cohesive analysis environment for the end 

users. This level o f automation would also make the end-to-end monitoring, 

collection, and analysis process more suitable for real- and near real-time decision 

support functions during the conduct o f a simulation exercise.
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■ Reuse assessments of other monitoring and analysis components; the objective 

being to increase the overall functionality o f the PerfMETRICS monitoring, 

collection, and analysis environment. Any functional enhancements to the existing 

PerfMETRICS implementation in terms of code generation should be weighed 

against alternatives such as the reuse o f other open source applications. Additional 

activity should include the migration (porting) o f the PerfMETRICS implementation 

for use in a Win32 (Windows and NT) environment. It would be especially useful to 

be able to readily connect a Window-based laptop computer into any DIS / HLA 

environment configured to use PerfMETRICS.

■ Dynamic multi-level, multi-resolution modeling; PerfMETRICS can be modified to 

supply relevant performance data and control information to support the dynamic 

instantiation of model representations at differing levels of fidelity. An example is to 

implement run-time switching between taskframe-based and TacAir-Soar-based 

behavioral representations for a specific entity. PerfMETRICS control packets could 

also be used to selectively “turn on” or “turn-off’ different levels o f detail in specific 

model representations. Included in these enhancements is the implementation of 

different load-scheduling algorithms based on different factors effecting run-time

performance and the feedback mechanism already implemented in PerfMETRICS.

Improvements to the performance analysis framework include:

■ Specification of aggregate / global perform ance measures; a more robust set of

performance metrics could be identified to provide an aggregated view o f simulation 

and system performance across the entire distributed simulation (WAN/LAN) 

environment. In general, a richer set o f performance measures within the framework 

would be useful, the objective being to relate application and model-level complexity 

to run-time performance.

■ Specific techniques applicable to perform ance analysis; Given the specification of 

additional performance measures, second-order analysis techniques could be applied,
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such as sensitivity analysis characterizing the global distributed simulation 

environment given some increase in the scenario workload. Additional methodologies 

and mechanisms could be used to perturb the system and understand the global 

impact (stability, reliability, validity) o f variations / fluctuations in some subset of 

distributed simulation applications.

■ Complexity/scalability classifications; It would be useful to be able to provide 

reasonable estimates o f expected performance based on the run-time interactions and 

compute resources used by any given scenario. This capability would be useful, for 

example, to provide “look-ahead” and allocate resources based on scenario dynamics.

■ Automated, traceable m apping function between the fram ew ork, the relevant 

perform ance measures, and the analysis objectives; Right now, the process by 

which relevant performance metrics are identified and used to support data analysis is 

based on the experience level o f  the analyst and his ability to explicitly define the 

data requirements for any given analysis function. It would be very useful too provide 

the capability to automatically identify relevant performance measures (from the 

frameworks taxonomy) and relate those to specific kinds o f DIS and HLA 

performance analysis objectives, for which they are suitable. This capability might be 

a good candidate for some kind o f  intelligent agents or other cognitive model.

■ A component of the fram ew ork to include the integration o f live C4I systems;

Large-scale integration of real-world systems (e.g., C4I) with constructive simulation 

environments is and artifact o f  successes using DIS and HLA-based simulations and 

more stringent requirements for the use o f modeling and simulation to augment the 

different DoD training, engineering, and analysis domains. C4I systems as used by 

the military have many unique communications and timing requirements. The 

semantic information associated with a C4I interface can significantly impact 

behavioral models inside the synthetic battlespace. Enhancements to the framework 

and its representation should account for the behavioral effects o f  C4I interfaces as 

well as the indirect impact on physical representations controlled by those behaviors.
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■ Composable taxonomy of perform ance measures based on distributed 

application type and analysis requirem ents; this desirable enhancement is based on 

the contention that the framework is extendible to non-DIS / HLA domains. The 

benefits would be manifested in a tool that supported the identification of 

performance measures and the automatic configuration o f PerfMETRICS 

(composability) to monitor and collect performance data.

This section (and dissertation) concludes with a discussion related to opportunities for 

utilizing and extending this thesis research to support existing and future programs, as 

well as other non-DIS and HLA distributed computing environments. As previously 

stated, although some performance issues may be unique to distributed simulations, many 

are applicable to distributed computing applications in general and the expectation is that 

much of what has been presented here will be useful for performance analysis across a 

broader spectrum of application domains (as opposed to distributed simulation). The 

notion o f performance bottlenecks associated with layered communications protocols, 

data translations, task scheduling, fault tolerance, process migration, object management, 

and other architectural technologies and mechanisms provides a natural overlay o f other 

applications domains to the ones presented in this thesis.

Despite the maturation o f distributed simulation architectures, most systems development 

efforts invariably appear to either make run-time performance an after thought in terms of 

system architecture or alternatively pursue the “holy grail” o f  performance analysis in the 

context of prediction. Additionally, programs frequently decouple performance analysis 

from configuration and control activities in terms of the overall system architecture, 

which necessarily seems to demarcate an important group o f persons (configuration 

planners and exercise support personnel) from information they require to make effective 

decisions. This can result in redundant information flows when another mechanism is 

implemented to get the required data. PerfMETRICS provides a practical approach to 

run-time performance analysis. The framework and monitoring infrastructure represent
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reasonable tradeoffs in terms of valuable information, monitoring intrusiveness, and 

implementation complexity.

PerfMETRICS and the performance analysis framework embodied in its implementation 

are currently being considered for use in additional DoD programs. The framework 

represents the notion of a unified and integrated model of performance characterizations 

across most simulation life-cycle activities, most significantly the design, development, 

configuration, and control o f distributed simulation environments. The following near- 

term DoD programs have been identified as potential candidates to benefit from the 

results o f this thesis:

■ YVarfighting Concepts to Future W eapon System Design (W ARCON); A program 

with objectives to develop an integrated acquisition environment that couples 

examination of warfighting concepts and weapon system design. The system 

architecture includes the integration o f  engineering and operational simulations. The 

interoperability o f disparate simulation architectures has an array o f modeling and 

simulation issues that impact run-time performance.

■ AVCATT-A; Preliminary work to support this program’s contract proposal was 

presented in the use cases. This program has now started the design and 

implementation phases and as such has a need to understand the run-time 

performance impact of any design decisions. A requisite tool needs to provide low- 

level model analysis to understand the details o f sub-model behaviors, the objective 

being able to assess overall model performance based on the run-time interactions of 

model and sub-model components.
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* NWDC / MBC; has identified a desire to investigate the thesis framework and 

PerfMETRICS infrastructure to support run-time performance analysis in Maritime 

Battle Center M&S activities (e.g.. Fleet Battle Experiments). Thesis results will be 

useful to establish system-level requirements for a unified approach to understand 

constructive simulation performance as well as understand the performance impact of 

integration of M&S components and live C4I systems.
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APPENDIX A 

PERFMETRICS GUI USER’S GUIDE AND DATA DICTIONARY

Introduction

This user's guide provides an overview of the PerfMETRICS monitoring system and how 

to use it to monitor DIS/HLA-based simulations. PerfMETRICS detects, collects, and 

displays high-level performance metrics that describe behavior o f the physical and logical 

resources and services used in the design and implementation o f DIS and High Level 

Architecture (HLA) simulations. Run-time and post-exercise feedback of performance 

information can provide meaningful information as a guide in making decisions about the 

configuration and control of the available hardware and software resources; the goal is to 

provide information needed by exercise planners and managers. This performance 

information can also be used to support modeling and simulation requirements and 

design.

Quick Startup Procedures

1) Start all simulations required for performance monitoring. Note that the simulations 

must be run either as root or as the same user (uid or effective uid) as the 

PerfMETRICS collection daemon running on that workstation (safuser in the 

WISSARD lab).

2) Login as safuser on the workstation designated as the PerfMETRICS monitoring 

station (perfmon in the WISSARD lab).

3) Select the PerfMETRICS button on the icon bar o f the window manager.

4) View the desired simulation engine by pressing the right hand mouse button and 

selecting the appropriate workstation.
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Software and H ardw are Requirements

The current PerfMETRICS implementation collects and reports performance information 

from hand-instrumented, ModSAF-based simulations. The system has only been tested 

on Silicon Graphics (SGI) and Linux-based Workstations. Note that the system level 

information is not currently available on SGI Workstations. To compile the 

PerfMETRICS instrumentation code, the PERFMETRICS compiler directive must be 

used during the build process and the functions provided in the libodumetrics software 

library must be linked into the simulation executable.

The PerfMETRICS collection daemon is written in ANSI C. The native SGI and Linux 

C-compilers are suitable for compiling the collection daemon. The simulation engines 

and the monitoring control station must be configured for ClNIX System V IPC and 

Multicast/IP networking. As mentioned in the Quick Start section, the simulation process 

and the collection daemon process must have either the same uid or effective uid to 

properly communicate.

The PerfMETRICS Graphical User Interface (GUI) is a Motif-based application that 

currently requires the SGI Viewkit libraries. As such the GUI must be run on an SGI 

Workstation with Viewkit support. It may be displayed remotely on non-SGI systems by 

setting the appropriate display environment variable (DISPLAY).
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Using The PerfM ETRICS GUI

1. Starting the PerfMETRICS GUI. See quick start procedure

2.The User Interface Use the right mouse button to select a specific machine for viewing.

Admin Button

New View to create another window; this is useful when trying to observe 

or compare performance data from two or more simulations.

Data Logging to start and stop saving the data to a file.

Exit to quit PerfMETRICS; ALWAYS USE THIS BUTTON to quit 

PerfMETRICS instead of killing from the window manager.

Config Button: Unused at this point

Views Button: Toggles between global, local, and monitoring views; local view 

is currently the only view that display data.

Plot Button: Opens up a plotting window to display X-Y plots o f selected 

performance variables. The most useful at this time is comparing "Slack in Tick 

Rate" and "Entity Update Performance". To do this:

■ Open the Selection Button.

■ Select Preferences.

■ Check the box beside these variables.

■ Select Apply, then Dismiss.

3. Interpreting the Data : See Data Dictionary table; Adjust the window panes to view 

appropriate entity, simulation, and system level performance data.

GUI D ata Dictionary

The following table describes the tabular data presentation o f the PerfMETRICS GUI. 

Note that PerfMETRICS monitors and collects more data than actually displayed on the 

GUI.
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Item Description Units
ENTITY
INFORMATION

E ntity  C o u n t s

Locals The number o f  local vehicles (being simulated on a workstation) Integer count

Remotes The number o f  remote vehicles (whose entity state is seen by a 
workstation)

Integer count

Other The number o f  all other local and remote entity types (e.g., 
aggregates, radio, etc.)

Integer count

P hase  P r o c e s s in g  
T iming

PDU In The relative time spent processing incoming PDUs relevant for 
entity state data: over the past 10 seconds (% interval), relative to the 
total time spent ticking entities (% total tick), and relative to the 
entire simulation time (% total sim).

Percent (%)

PDU Out The relative time spent processing outgoing PDUs relevant for entity 
state data: over the past 10 seconds (% interval), relative to the total 
time spent ticking entities (% total tick), and relative to the entire 
simulation time (% total sim).

Percent (%)

| Hull
i

The relative time spent processing entity kinimatics (e.g., flight 
dynamics model): over the past 10 seconds (% interval), relative to 
the total time spent ticking entities (% total tick), and relative to the 
entire simulation time (% total sim).

Percent (%)

j Turret The relative time spent processing an articulated part (turret): over 
the past 10 seconds (% interval), relative to the total time spent 
ticking entities (% total tick), and relative to the entire simulation 
time (% total sim). Note this is only relevant for tanks and other 
ground vehicles containing turrets.

Percent (%)

Gun The relative time spent processing entity weapon systems: over the 
past 10 seconds (% interval), relative to the total time spent ticking 
entities (% total tick), and relative to the entire simulation time (% 
total sim).

Percent (%)

Sensor The relative time spent processing entity sensor systems: over the 
past 10 seconds (% interval), relative to the total time spent ticking 
entities (% total tick), and relative to the entire simulation time (% 
total sim).

Percent (%)

Tasking The relative time spent processing entity behaviors: over the past 10 
seconds (% interval), relative to the total time spent ticking entities 
(% total tick), and relative to the entire simulation time (% total sim). 
Note that for SOAR agents this is the behavioral processing times 
and for SAFOR this is the time spent executing task (taskframes).

Percent (%)

GUI The relative time spent processing entity graphical display logic: 
over the past 10 seconds (% interval), relative to the total time spent 
ticking entities (% total tick), and relative to the entire simulation 
time (% total sim).

Percent (%)

i
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SIM ULATIO N
INFO RM ATIO N

Slack In Tick Rate The time within a 500 millisecond window that is available after 
processing all entities.

Milliseconds

Entity Update 
Performance

The relative number o f  entities meeting their prescribed update rate 
(2 Hz.) over some specified time period (60  second default in 
ModSAF)

Percent (%)

Update Rates The current rate that entity state is being updated (ticked): for local 
vehicles (local veh.), for remote vehicles (remote veh.), and all other 
vehicles (other). Note that this corresponds with what is referred to 
as the "SAF frame rate".

Cycles / Sec. (Hz)

Entity Tick Time The time spent updating (ticking) entity state relative to the total 
simulation time: over the past 10 seconds (% interval), and since 
simulation startup (% total sim).

Percent (%)

Idle Scheduler The scheduler's idle time (spin time in the case o f  ModSAF) relative 
to total simulation time: over the past 10 seconds (% interval), and 
since simulation startup (% total sim).

Percent (%)

RTI Tick Time The time spent in the RTI (ticking) relative to total simulation time: 
over the past 10 seconds (% interval), and since simulation startup 
(% total sim).

Percent (%)

Real Time Wall clock time since simulation startup. Seconds

User Time Time spent executing simulation code. Seconds

System Time Time spent in operating system code on behalf o f  the simulation 
process.

Seconds

Mean Soar Decision 
Time

Average time for a single Soar decision cycle (mean value over a 
ten-second interval).

Milliseconds

Mean RTI Processing 
Time

Average time for a single RTI tck (mean value over a 10 second  
interval

Milliseconds

SYSTEM
INFO RM ATIO N

CPU Processor type: Operating System

User Relative time spent executing user processes since system boot up. Percent (%)

System (Kernel) Relative time spent executing operating system code since system  
boot up.

Percent (%)

Idle Relative time spent idle since system boot up. Percent (%)

M e m o r y

Total Physical Total amount o f  memory configured on w orkstation (simulation  
engine).

Kilobytes (kB)

Used Total amount o f  memory allocated by operating system to processes 
(including the simulation).

Kilobytes (kB)

Free Total amount o f  available memory Kilobytes (kB)

Total Swap Total amount o f  swap space configured on workstation (simulation 
engine).

Kilobytes (kB)

Used Total amount o f  swap space used by the operating system Kilobytes (kB)
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Free Total amount o f  free swap space Kilobytes (kB)

Page In The operating system page rate over the past 10 seconds (newly 
allocated pages). Note this is the operating system ’s activity on 
behalf o f  a specific process.

Pages / Second

Page Out The operating system page rate over the past 10 seconds ( pages that 
are freed by writing data out). Note this is the operating system’s 
activity on behalf o f  a specific process.

Pages / Second

Swap In The operating system swap rate bringing processes in for execution. 
Note this is the operating system's activity in order to provide fair 
CPU time to all processes.

Pages / Second

Swap Out The operating system swap rate taking processes out o f  exeuction. 
Note this is the operating system's activity in order to provide fair 
CPU time to all processes.

Pages / Second

N e t w o r k

Packets Received IP packet receive rate for the last 10 seconds Packets / Second

Receive Errors IP packet receive errors for the last 10 seconds Packets / Second

Packets Sent IP packet send rate for the last 10 seconds Packets I Second

Send Errors IP Packet send errors for the last 10 seconds Packets / Second
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APPENDIX B

FUTURE W ORK -  RESEARCH AND DEVELOPMENT ALTERNATIVES

V ariab le-leng th  d a ta  packets X X X X

D ynam ic selection o f  m on ito red , collected, and  
d isplayed perfo rm an ce  m easures

X X X X

M ore extensive ru n -tim e  visualization /  graph ics X X X X

D ynam ic load m odules X X X X

A utom ated  an d  less in tru s iv e  in strum en ta tion  
techn iques

X X X X

In teg ra ted  p re-processing  d a ta  analysis m odule X X X

R euse assessm ents o f o th e r  m onito ring  an d  analysis 
com ponents

X

D ynam ic m ulti-level, m ulti-reso lu tion  m odeling 
su p p o rt

X X X

Specification o f aggregate/g lobal perfo rm ance 
m easures

X X X

Specific techniques app licab le  to perfo rm ance analysis X X X

Com plexity  classifications X X X X

A utom ated , traceab le  m app ing  function betw een th e  
fram ew ork , th e  relevan t perfo rm an ce  m easures, an d  
the analysis objectives

X

A com ponent o f th e  fram ew o rk  to include the  
in teg ra tion  o f live C 4I system s

X X X X

C om posab lc taxonom y o f perfo rm ance m easures based 
on d is tr ib u ted  application  type  an d  analysis 
requ irem en t

X
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