
Old Dominion University
ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Winter 2000

An Architectural Framework for Performance
Analysis: Supporting the Design, Configuration,
and Control of DIS /HLA Simulations
David B. Cavitt
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Recommended Citation
Cavitt, David B.. "An Architectural Framework for Performance Analysis: Supporting the Design, Configuration, and Control of DIS
/HLA Simulations" (2000). Doctor of Philosophy (PhD), dissertation, Computer Science, Old Dominion University, DOI:
10.25777/pt3w-4242
https://digitalcommons.odu.edu/computerscience_etds/72

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/72?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

AN ARCHITECTURAL FRAMEWORK FOR PERFORMANCE

ANALYSIS: SUPPORTING THE DESIGN, CONFIGURATION, AND

CONTROL OF DIS/HLA SIMULATIONS

by

David B. Cavitt
B.S. June 1989, Old Dominion University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment o f the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
December 2000

Approved by: f

C. Michael GverstreqL(Director)

Kurt J. Maly (Co-Director)

Richard E. Nance (Member)

mber)

R. Bowen Loftin (Member)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

AN ARCHITECTURAL FRAMEWORK FOR PERFORMANCE ANALYSIS:
SUPPORTING THE DESIGN, CONFIGURATION, AND CONTROL OF

DIS/HLA SIMULATIONS

David B. Cavitt
Old Dominion University, 2000

Director: Dr. C. Michael Overstreet

Technology advances are providing greater capabilities for most distributed computing

environments. However, the advances in capabilities are paralleled by progressively increasing

amounts of system complexity. In many instances, this complexity can lead to a lack of

understanding regarding bottlenecks in run-time performance o f distributed applications. This is

especially true in the domain o f distributed simulations where a myriad o f enabling technologies

are used as building blocks to provide large-scale, geographically disperse, dynamic virtual

worlds. Persons responsible for the design, configuration, and control o f distributed simulations

need to understand the impact o f decisions made regarding the allocation and use o f the logical

and physical resources that comprise a distributed simulation environment and how they effect

run-time performance. Distributed Interactive Simulation (DIS) and High Level Architecture

(HLA) simulation applications historically provide some of the most demanding distributed

computing environments in terms o f performance, and as such have a justified need for

performance information sufficient to support decision-makers trying to improve system

behavior.

This research addresses two fundamental questions: 1) Is there an analysis framework suitable

for characterizing DIS and HLA simulation performance? and 2) what kind o f mechanism can be

used to adequately monitor, measure, and collect performance data to support different

performance analysis objectives for DIS and HLA simulations? This thesis presents a unified,

architectural framework for DIS and HLA simulations, provides details on a performance

monitoring system, and shows its effectiveness through a series o f use cases that include

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

practical applications o f the framework to support real-world U.S. Department o f Defense (DoD)

programs. The thesis also discusses the robustness o f the constructed framework and its

applicability to performance analysis o f more general distributed computing applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Student is copyright owner: © 2000 David B. Cavitt. All Rights Reserved.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This thesis is dedicated to Ellen; my wife, partner, and best friend. Her constant and

tireless intention makes this thesis as much hers, as it is mine.

XOXOXO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vi

ACKNOWLEDGEMENTS

First and foremost, I must thank my principal advisor, Mike Overstreet. During this work,

he kept me pointed in the right direction, patiently stood by when productivity waned,

and helped to see this dissertation was brought to fruition. The value o f his experience

and guidance to me has been immeasurable. Similar thanks go to Kurt Maly, my co

advisor, whose experience and insight have always been right on the mark. Additional

thanks go to Dick Nance, Ravi Mukkamula, and Bowen Loftin for their outstanding

guidance and critical reviews during my research. Their clear and concise viewpoints,

and experience significantly enhanced the quality o f this effectuation.

Thanks also go to Ed Harvey and Jack McGinn, for their continual encouragement

throughout my research and writing. Ed’s practical and candid editorial contributed

significantly to the text. Jack’s quite reserve and gentle prods were always welcome

reminders to “make it happen.” Thanks also need to be expressed to the rest o f my

compatriots at BMH who willingly and admirably filled the voids while I was working on

this thesis.

As for family and friends, I am especially indebted to Lloyd and Barbara Schnuck. Their

vision, kindness, and support provided the impetus for me to take the “first step.” My

gratitude to them is only surpassed by what I owe to my mother and father, whose

encouragement and support has been constant in all that I’ve ever done. What they

taught, has served me well in education, my profession, and my personal life. I love them

dearly. Similar sentiments go to the rest o f my family: my sister Cherie, two brothers Bill

and Robert, Mac and Virginia Coupland, the Mundens, and the Petersons. I’m extremely

fortunate to be surrounded by such caring family whose interest and encouragement

supported me during the completion o f this work.

Finally, I must thank my wife Ellen, and children David and Anne, who have patiently

waited for me to persevere. They have been, and always will be my beacons. “Hey kids,

looks like Dad finished first after all. Yeehaa!”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

Page

LIST OF TABLES... x

LIST OF FIGURES... xi

LIST OF ACRONYMS.. xiii

Section

1. INTRODUCTION... 1

Problem Definition.. 3
Application Domains.. 3

DoD Modeling Issues... 6
DoD Distributed Simulation Architectures................................... 10

Simulation Network (SIMNET)... 10
Distributed Interactive Simulation, Semi-Automated
Forces, and Intelligent Agents... 12
Aggregate Level Simulation Protocol (ALSP)...................... 15
High Level Architecture (HLA)... 17

Thesis Objectives.. 19
Thesis Approach... 22
Thesis Organization.. 25

A Framework for Characterizing DIS and HLA Simulation
Performance.. 25
Performance Monitoring.. 26
Performance Monitoring Use Cases and Conclusions................. 26

2. RELATED RESEARCH.. 27

Performance Analysis o f Distributed Systems and Other
Distributed Simulations.. 27
Performance Analysis o f DIS and HLA Simulations........................ 31
Summary o f Related Research.. 36

3. A FRAMEWORK FOR CHARACTERIZING DIS AND HLA
SIMULATION PERFORMANCE... 38

A DIS and HLA Performance Abstraction.. 38
Network Performance Factors.. 41
Simulation Infrastructure Performance Factors........................... 43
Modeling Performance Factors... 45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

viii

TABLE OF CONTENTS

Page

Scenario Factors.. 47
Generalization... 50

A Taxonomy of DIS and HLA Performance Measures..................... 52
Performance Monitoring.. 57
Summary: A Unified Architectural Framework for Analysis........... 60

4. THE PERFORMANCE MONITORING SYSTEM.......................... 65

System Architecture.. 67
System Design... 69

Collection Daemon... 71
Data Presentation (GUI)... 78
Data Analysis.. 79

Instrumentation Costs... 81

5. PERFORMANCE MONITORING USE CASES.............................. 86

Synthetic Theater of War (STOW) and DARPA’s Advanced
Concept Technology Demonstration (ACTD).................................... 87

Model Design and Testing... 88
Scenario Configuration.. 92
Resource Monitoring.. 96

U.S. Navy Battle Force Tactical Trainer (BFTT) Air Management
Node (AMN).. 98
Aviation Combined Arms Tactical Trainer - Aviation (AVCATT-
A).. 101

Taskframe Testing..103
TacAir-Soar Testing.. 106

U.S. Air Force Distributed Mission Training (DMT)..........................109
Technology Insertion... 110
Assessing the Performance Impact - High-level...........................I l l
Assessing the Performance Impact - Low-level............................117

Use Case Summary.. 120

6. CONCLUSIONS.. 122

Evaluation..124
Evaluation Summary..129
Practical Significance and Contribution..130
Future Research.. 131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

Page

REFERENCES.. 139

APPENDIX A - PERFMETRICS GUI USER’S GUIDE AND DATA
DICTIONARY.. 147

APPENDIX B - FUTURE WORK - RESEARCH AND
DEVELOPMENT ALTERNATIVES..............................153

VITA... 154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X

LIST OF TABLES

Table Page

1. Example DIS and HLA Performance FAQs (Frequently Asked
Questions).. 40

2. Summary of Performance Measures.. 60

3. PertMETRICs Monitoring Event Notifications.. 74

4. Sample Instrumentation Costs for a SAF Run-time Function................ 84

5. STOW ACTD AirSF Correlation o f Performance Factors.................... 92

6. Update Rate and Entity State Update Performance for TacAir-Soar
Scenarios.. 106

7. LAN Transport Delays (msecs.) - HLA Network......................................119

8. WAN Transport Delays (msecs.) - HLA Network.................................... 119

9. Bandwidth Utilization - HLA Network...119

10. Use Case Metrics Summary.. 121

11. Summary o f Framework and PerfMETRICS Utilization.......................... 126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xi

LIST OF FIGURES

Figure Page

1. The evolution o f U.S. DoD distributed simulation................................. 8

2. Distributed simulation components used to define useful
metrics.. 41

3. A taxonomy o f DIS and HLA simulation performance
measures... 53

4. Performance analysis activity process.. 61

5. The unified, architectural framework for performance analysis o f DIS
and HLA simulations.. 63

6. PerfMETRICS architecture... 68

7. Data flow diagram o f the PerfMETRICS collection daemon................. 71

8. State transition diagram of the PerfMETRICS collection
daemon.. 75

9. PerfMETRICS collection daemon log file... 77

10. PerfMETRICS G U I... 78

11. PerfMETRICS data selection configuration file....................................... 81

12. PerfMETRICS data selection output file... 82

13. Instrumentation costs for SAF “high-frequency" function...................... 83

14. STOW ACTD AirSF IP traffic workload by mission type...................... 90

15. STOW ACTD AirSF remote vehicle count workload by mission
type.. 90

16. STOW ACTD AirSF IP remote radio workload by mission
type... 91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure Page

17. STOW ACTD AirSF RTI tick processing workload by mission
type.. 91

18. STOW ACTD AirSF simulation engine utilization.................................. 97

19. STOW ACTD AirSF entity state update rates by mission type.............. 98

20. BFTT AMN dynamic load scheduling using PerfMETRICS.................... 100

21. Entity state update (tick) rate for FWA taskframe
test... 104

22. Entity state update performance and update (tick) rate for a sample
FWA taskframe execution... 105

23. Entity state update (tick) rate for 8 TacAir-Soar agents; 532 remotes
ground vehicles... 108

24. Entity state update (tick) rate for TacAir-Soar agents; 260 remote
ground vehicles... 109

25. Latency vs. entity count (Air2Air)..113

26. Latency description (Air2Air)...113

27. Entity state throughputs (Air2Air).. 114

28. Avg. access to DIS port (Air2Air).. 115

29. Throughputs vs. entity count (Air2Gmd).. 116

30. Latency description (Air2Gmd)... 116

31. End-to-end latency (Air2Gmd)...117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF ACRONYMS

AAR - After Action Review

ACM - ALSP Common Module

ACTD - Advanced Concept Technology Demonstration

ADS - Advanced Distributed Simulation

AI - Artificial Intelligence

AirSAF - Air Semi-Automated Forces

ALSP - Aggregate Level Simulation Protocol

AMN - Air Management Node

ANOVA - Analysis o f Variance

API - Application Programming Interface

ATM - Asynchronous Transfer Mode

AVCATT-A - Aviation Combined Arms Tactical Trainer - Aviation

BFTT - Battle Force Tactical Trainer

CAP - Combat Air Patrol

CAS - Close Air Support

C2 - Command and Control

C4I - Command, Control, Computers, Communications, and Intelligence

CIG - Computer Image Generation

CGF - Computer Generated Forces

CORBA - Common Object Request Broker Architecture

DARPA - Defense Advanced Research Projects Agency

DCA - Defensive Counter Air

DDM - Data Distribution Management

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF ACRONYMS

DFD - Data Flow Diagram

DIS - Distributed Interactive Simulation

DMSO - Defense Modeling and Simulation Office

DMT - Distributed Mission Training

DoD - Department O f Defense

DR - Dead Reckoning

DSI - Defense Simulation Internet

ESM - Electronic Surveillance Mission

EXCIMS - Executive Council for Modeling and Simulation

FDDI - Fiber Distributed Data Interface

FEPW - Federation Execution Planners Workbook

FOM - Federation Object Module

FWA - Fixed Wing Aircraft

GUI - Graphical User Interface

HCI - Human Computer Interface

HLA - High Level Architecture

IDEF - Integration Definition For Function Modeling

IFOR - Intelligent Forces

I PC - Inter-Process Communications

JSAF - Joint Semi-Automated Forces

ISDN - Integrated Services Digital Network

LAN - Local Area Network

M&S - Modeling & Simulation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XV

LIST OF ACRONYMS

ModSAF - Modular Semi-Automated Forces

MOM - Management Object Module

MSMP - Modeling and Simulation Master Plan

O/S - Operating System

OMT - Object Model Template

OPFOR - Opposition Forces

PDES - Parallel Discrete Event Simulation

PDU - Protocol Data Unit

PID - Process Identification

QoS - Quality of Service

R&D - Research & Development

RTI - Run Time Infrastructure

RWA - Rotary Wing Aircraft

SAF - Semi-Automated Forces

SIMNET - Simulator Networking

SNE - Synthetic Natural Environments

SNMP - Simple Network Management Protocol

SOAR - State, Operator, And Result

SOM - Simulation Object Module

STOW - Synthetic Theater o f War

STE - Synthetic Training Environment

T&E - Test & Evaluation

TBM - Theater Ballistic Missile

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF ACRONYMS

TCP/IP - Transmission Control Protocol/Internet Protocol

USACOM - U.S. Atlantic Command

WAN - Wide Area Network

XDR - External Data Representation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

SECTION 1

INTRODUCTION

The evolutionary development o f distributed computing systems has been driven by,

among other things, the need to share resources, increase interactions, and operate in

wider geographical regions. The diversity in application domains includes systems for

Automated Teller Machines (ATMs), air traffic control and airline reservations,

interactive remote instruction, remote medical teleconferencing, and joint military

operations training. The availability o f lower-cost, higher-performance computing

networks continues to provide greater capabilities to solve new and bigger problems

using increasingly sophisticated computer applications. Increased capabilities and more

sophisticated applications can, however, lead to an increase in system complexity.

The number o f hardware and software components that must be considered complicates

understanding and managing the complexity associated with state-of-the-art distributed

computing systems. Typical systems consist o f hundreds or thousands of autonomous

workstations connected by different kinds o f communication sub-networks. The myriad

o f software must support, among other things, some or all o f the following: data access,

data consistency, processor synchronization, system security, fault tolerance, and system

transparency. Additionally, dynamic workload characteristics can cause large variances

in resource demands, dramatically affecting system run-time performance. Real-time

processing requirements contribute to the complexity o f distributed computing systems.

Whether the application is a critical, hard real-time system or a non-critical, soft real-time

system, understanding the effects o f task scheduling strategies, fault-toierance,

communications delays, and clock synchronization are important factors for assessing

and managing system performance. Detailed discussions on design issues and objectives

This thesis used the sty le guide model as presented in IEEE Transactions on Software Engineering; a
publication o f the IEEE Computer Society.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

relevant to distributed systems are presented in [1,2,3], Real-time systems are introduced

in [4,5]. Although this thesis will not address it, advances in technology and increases in

system complexity cause similar concerns for designing scientific and parallel computing

systems [6,7],

Current trends will result in ever larger and more complex distributed, real-time systems.

Understanding the behavior and effective exploration o f the performance capabilities of

these systems are predicated on the existence of good analysis tools and methodologies.

Distributed computing applications must be evaluated and tuned to perform efficiently

for varying hardware configurations and problem sizes. Persons making decisions about

these tasks need to be provided useful information about issues within their control and in

terms they can understand. Achieving these goals requires understanding which particular

parameters o f a run-time configuration are the most significant factors affecting

performance of the application. The relationship among those factors is complex and the

impact on performance can be significant.

The above discussion provides general motivation for the research presented in this

thesis, namely performance evaluation o f distributed simulations used by the U.S.

Department o f Defense (DoD). The goal is to provide decision-makers with an

understanding of technology factors contributing to performance bottlenecks in DoD

Modeling and Simulation (M&S) environments. Achieving this requires an architectural

framework consisting of a definition o f run-time performance, an analysis methodology,

and effective performance monitoring tools. Department o f Defense distributed

simulation environments are sufficiently complex to justify the thesis focus and provide

representative case studies to address significant and real problems. This thesis asserts

that, although some performance issues may be unique to distributed simulations, many

are applicable to distributed computing applications in general and the expectation is that

much of what is learned will be useful for performance analysis across a broad spectrum

of distributed computing domains (as opposed to just distributed simulation). The

remainder o f this introduction provides information on the evolution o f distributed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

simulation technology used by the DoD and discusses the objectives o f this thesis

research, namely the specification o f a unified architectural framework for monitoring

and analyzing the run-time performance o f DIS and HLA simulations.

1.1 Problem Definition

United States DoD military capabilities are defined as readiness, modernization,

force structure, and sustainability; they are discussed in [8], The DoD uses modeling and

simulation technologies to enhance these capabilities. Applications include joint service

training, development o f military doctrine and tactics, development and testing of

operational plans, technology assessments, systems acquisition, systems development and

force structuring. The effectiveness o f using simulation for these applications is in part

determined by performance measures describing the run-time behavior o f the underlying

components used in the simulation environment. An abstraction o f performance can

provide guidance in defining the relevant performance measures and a monitoring system

can gather the required data to derive the appropriate metrics (performance measures)

during simulation execution. This performance information is used by various persons

making decisions about the design and development o f system models and simulation

infrastructure, the configuration and control o f simulation exercises, and overall

management o f M&S resources to support the various application domains. Although a

variety o f measures are used to assess the effectiveness o f different technologies used to

support these domains, performance measures are among the most significant since they

support direct assessments regarding the realism and validity o f synthetic environments.

Performance measures are a key part o f any evaluation o f the technologies and as such,

must convey information about the application domain and must be both meaningful and

relevant to the appropriate decision-makers.

1.2 Application Domains

The use o f military modeling and simulation for decision making has a relatively

long and diverse history. As enumerated above, the application domains are numerous

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

and a formal taxonomy can be found in [9]. For this thesis, however, it is useful to

provide some background on the relevant DoD application domains, the technologies

used for distributed simulations, and the system complexity in terms o f run-time

performance. The discussion clarifies the terminology for the ensuing text and serves to

substantiate the claim that this research is addressing a significant issue to the DoD M&S

community, as well as to other distributed computing domains.

Military training is one domain where modeling and simulation play a significant role.

Training military personnel to function within complex systems has necessitated the use

o f M&S to create Synthetic Training Environments (STE). STE provide realistic training

environments that can reduce training costs, control personnel and training area

requirements, and in potentially hazardous training environments increase safety. STE

consist o f humans interacting with a virtual environment for the purpose of

experimentation, study, or evaluation. Some STE rely solely on manned simulators or

mock-ups to create the virtual environment. For some applications, having real-world

entities (e.g., humans, aircraft) participate in or contribute to the virtual environment is

feasible and adds to the effectiveness of the training environment. For STE that need

many entities, a cost-reduction technique is to rely on computer simulations to create and

populate much o f the virtual environment. Many STE incorporate all three components;

virtual simulators (mock-ups and manned simulators), live participants, and computer

simulations. Although technical issues and limitations still exist, the increased

performance and reliability o f computers, Local-Area Networks (LANs), and Wide-Area

Networks (WANs) allow these components to be geographically dispersed, sometimes

across continents, and still participate in the STE. Distributed simulation technology

allows trainees to be immersed in a synthetic environment that accurately simulates real-

world operational environments. Human (trainee) perception plays a significant role in

training environments, and near-real-time feedback and after-action-review systems are

used to provide analysis capabilities, to enhance the training, and to assess the

effectiveness o f training exercises. The diversity (and consequent complexity) of

integrated components used in an STE requires a significant amount o f information

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

regarding system performance and behavior to assess the validity and adequacy of the

training environment.

The DoD also uses distributed simulations to create more effective environments to

support analysis o f military systems (e.g., fixed-wing aircraft, Command and Control, or

C:) and subsystems (e.g., weapons control, radar). New and emerging technologies

provide enhanced capabilities but also add to system complexity. Accurately testing

and/or evaluating the cost/benefit of integrating these new technologies requires the

support o f increasingly sophisticated real-time simulation environments; the objective is

to create a higher fidelity synthetic air, land, and sea space for analysis o f military

systems. Programs for Research and Development (R&D), Test and Evaluation (T&E),

technology assessments, and systems acquisition, can utilize the same synthetic

environments as the training community. These application domains, however, may

require higher-fidelity models and have stricter timing constraints, necessitating better

and more predictable performance guarantees. As in STE, requirements exist for tools to

support decision-makers during the design, development, and use o f the M&S

environment. Additional application domains include using simulations to support

analysis of military logistics (materiel management, maintenance, and resourcing

policies), and the analysis o f military force structure (composition o f military forces

across different mission scenarios).

The technology used to create synthetic environments continues to emerge rapidly and as

people create more complex, higher fidelity models, hardware and software limitations

become restrictive. The technology choices that must be made to develop a realistic

synthetic environment are numerous and add to complexity for the decision-maker.

Manned simulators, typically large and expensive, are o f limited use in large-scale

environments. For training exercises that require many live participants the logistics of

including the personnel can be significant. Computer simulations can provide the

capability to consistently and accurately reproduce a synthetic environment for the

purposes o f experimentation, evaluation, and analysis, and distributed simulation is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

widely used to create these environments, partitioning the simulation processing

requirements among many independent simulation nodes.

1.2.1 DoD Modeling Issues

A significant benefit of using distributed simulation is its ability to enhance realism by

populating the environment with simulated entities and by implementing selective model

fidelity, defining and controlling the faithfulness with which real-world objects are

represented. Distributed simulations must include models that provide an accurate

representation of the real-world system at a level of realism sufficient for the goals of the

training and/or analysis. These higher resolution, higher fidelity M&S environments can

be characterized by increasing spatial and temporal complexity. In DoD simulation

terminology, physical models typically represent real-world entities, objects, or

subsystems. A physical model has a state that represents real-world properties and where

applicable, defines an interface for interaction with other physical models. Consider an

STE consisting of a virtual battlefield simulation. The virtual battlefield simulates tanks

(real-world entities) and specifies their sizes, traveling speeds, and armaments (state and

properties). Each tank model has weapons and sensor interfaces that allow these

subsystem states to be used to make decisions about when detections and engagements

with enemy vehicles occur (interactions with another physical model).

Behavioral models for synthetic environments are required to simulate collective or

individual human behaviors that control the physical models. These behaviors may be

responses to some change in state o f the virtual environment. In the above example, the

execution o f a behavioral model simulating the engagement o f an enemy vehicle is a

response to a simulation event detecting that vehicle. Since most real-world systems are

not closed systems, distributed simulations used in synthetic environments will typically

provide some form of environmental models to enhance realism. Again, using the virtual

battlefield simulation example, including environmental models is necessary because in a

real-world battlefield smoke, darkness, clouds, and dust contribute significantly to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

effectiveness o f sensor systems, weapons systems, and vehicle movement, as well as

affecting human perception and performance. These physical, behavioral, and

environmental models must provide an adequate representation o f the real-world system

with properties at the correct fidelity level and allow realistic perception, interaction, and

interpretation by the people operating within or using the synthetic environment.

The modeling issues discussed above create many technical issues for the design and

implementation o f distributed simulation software infrastructure. Many of these are

driven by the requirements for real-time man-in-loop capabilities for geographically

dispersed players and valid interactions among the live, virtual, and simulation

components. Design decisions for the components (networking; databases; parametric

data; timing and coordination; simulation management and control; graphics and user

interfaces; tracing and data logging; and security and protection) affect many important

aspects o f the system, performance being one o f those. The following two examples

clarify this point.

Invariably tradeoffs must be made between system performance and model resolution or

fidelity. In the context o f DIS and HLA simulations, terrain modeling is one o f the more

fundamental considerations. Better performing hardware and the availability o f vast

amounts o f very high resolution data have led to requirements for highly detailed terrain

representations. The representations can include, among other things, curved

representations o f large areas o f the earth (spanning deserts, mountains, etc.), river and

ocean bathymetry data, and multi-state cultural features (e.g., damaged and undamaged

representations o f buildings, roads, and bridges). Terrain attributes can include color, soil

type, and texture. Mean high and low water marks can be represented for littoral regions

along with sea walls and near-shore escarpments. One terrain representation used in a

case study for this thesis contains over 289,000 sq. km. o f terrain, 89,000 sq. km. of

bathymetry, 4,000 km. o f coastline, 30,000 km. o f roads and railroads, 4,000 km. of

pipelines, 13,000 building structures, 11,000 powerline transmission towers, 90,000 date

palms (trees), 9,460.000 desert scrub bushes, and 300 bridges, overpasses, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

SI MNET

Tech no l o g y
D e v e l o p m e n t

....

fifs®

S I M N E T
S t a r t e d

II L A B a s e l l a e
A p p r o v a l

D M S O RT1 t .3
F ul l y I I L A C o m p l i a n t

A I . SP
S t a r t e d

1____ i

D1S S t a n d a r d
D r a f t e d

I E E E DI S
1 2 7 8 - 1 9 9 J

I E E E D I S
1 2 7 8 - 1 9 9 5 .1__ L I

I I E E E DI S
___________ ^̂1 2 7 8 - 1 9 9 8

1985 ‘86 ‘87 *88 *89 1990 *91 *92 *93 *94 *95 *96 *97 *98 *99 2 0 0 0

S I M N E T
E t e r e i t e

A L S P
E t e r d t e

S T O W - E
E t e r e i t e

P e r f o r m an ce
M Hes t on es

\ LS P - F u l f - r a o g e o f J o i n t
5 S i m . C o n f e d e r a t i o n

S T O W - *97
E f e r t i l e

V L S P - C Sim'.
L a r g e - t c s l e

C o n f e d e r a t i o n

DM T
E i p e r i m ent

S T O W - J E 9 9
E t e r e i t e

Fig. 1. The evolution of U.S. DoD distributed simulation.

causeways. Run-time processing of this high-resolution terrain and feature data can result

in performance bottlenecks. For example, the run-time execution costs of intervisibility

algorithms used to assess whether two simulated vehicles can see each other (i.e., line of

sight calculations) can be dramatically slow when processing dense feature

representations (e.g., trees, hills, buildings), and a complex road system representation

can dramatically affect the processing requirements o f vehicle movement algorithms

(e.g., shortest-path search algorithms). Providing run-time performance data to decision

makers regarding the impact of specific terrain representations is useful for considering

design tradeoffs to meet M&S objectives.

Decision-makers must sometimes make design tradeoffs on non-technical issues and the

impact can affect run-time performance. Consider a highly distributed design and

development environment; a characteristic o f many DoD distributed simulations (i.e.,

many different government contractors and/or government agencies). Invariably the

development process results in disparate model implementations and simulation

architectures and the integration o f these simulations can exhibit invalid run-time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

interactions and resultant model behavior. It is possible to alleviate some of these run

time problems by taking a centralized approach for specific modeling workloads

(functional). As an example, one real-world system resorts to a centralized ordnance

server, a simulation responsible for simulating guided weapons in training simulations.

The motivation for the centralized ordnance server is driven by the need for a level

playing fie ld with respect to guided weapons, meaning that all simulations use the same

weapons models. In this system, within each simulation the guided weapons are

employed a very small percent o f the time (relative to the real-time simulation).

Simulating the weapons is computationally expensive and the existing implementations

are compute and memory bound processes, so it makes sense to allocate dedicated

compute resources in the form of a centralized ordnance server. This eliminates the need

for each simulation to set aside enough compute resources to support guided weapons

modeling and achieves the requirement for a level playing. The decision to centralize the

guided weapons models however creates specific performance requirements for the

ordnance server, namely to simulate all guided weapons in the synthetic environment

(which can be large) while guaranteeing valid interactions with remotely simulated

targets. Performance data was gathered and used to support network latency analysis of

weapons firing messages sent to the ordnance server, and weapons detonation messages

sent from the ordnance server. Timing data was also gathered on the ordnance server’s

execution. The performance analysis output provided positive feedback to the decision

makers regarding the feasibility o f this centralized approach in the presence of realistic

workloads.

This section has thus far presented some of the modeling requirements o f DIS and HLA

simulation environments and discussed the importance o f providing performance

information to support decision-makers. The remainder of this section provides relevant

background information on the evolution of DoD simulation architectures and provides

additional justification for this thesis research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

1.2.2 DoD Distributed Simulation Architectures

Significant advances in simulation architectures have been made over the past 10

years. Technology improvements have facilitated these advances and include lower-cost

workstations, high-performance local and wide area networks, and high-resolution, real

time Computer Image Generation (CIG) and display systems. Advances in simulation

architecture have also been driven by requirements for higher fidelity models and have

proved useful across a greater range of applications, as discussed in the previous section.

Additionally, policy directives from the U.S. government mandate the increased use of

simulations by the DoD for procurement, test, and evaluation activities. The history of

DoD distributed simulation is relatively short but follows a well-defined chronological

path. Figure 1.1 shows the evolution in the context o f the most significant distributed

simulation protocols and architectures. Its origins start with the Simulator Networking

(SIMNET) project and proceed to the current technology thmst, the High Level

Architecture, or HLA. The figure also shows significant simulation events and annotates

some of the characteristics regarding system complexity and performance. These

characteristics sound a recurring theme, namely, the need to observe and record system

performance to better understand the simulation environment.

1.2.2.1 Simulation Network (SIMNET)

SIMNET was a research project sponsored by the Defense Advanced Research

Projects Agency (DARPA) in partnership with the U.S. Army. Initiated in 1983. the goals

o f the program were to develop technology for networking large numbers o f interactive

manned simulators (i.e., combat vehicles and combat support elements). The objectives

were to provide realistic training and practice for fully manned platoon-, company-, and

battalion-level units to fight force-on-force engagements against an opposing force.

The SIMNET architecture networked individual manned tank simulators together using

microprocessor-based workstations (one simulator per workstation) and 10Mbps

Ethernet. Individual LANs were linked together to form a WAN connecting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

geographically dispersed simulators. This WAN was the precursor to the DoD’s Defense

Simulation Internet, or DSL A terrain database was replicated on each simulator and

provided a globally consistent view of the virtual battlespace. Low-cost, real-time CIG

systems were used to provide the crewed simulators with a three dimensional view o f the

battlespace. An application-level protocol was developed (SIMNET protocol) to allow

simulators to communicate; consisting o f data packets for controlling simulator

activation/deactivation, transmitting vehicle appearance data (entity state data), re

supplying and repairing simulated vehicles, weapons firing and detonations, and vehicle

collisions. Another important component o f the SIMNET architecture is the data logger

used to record, replay and support analysis o f simulation exercises.

The SIMNET architecture resulted in several significant distributed simulation design

principles still in use today. Among them are I) object-based M&S design and

development, 2) simulation autonomy (decentralized simulation control), 3) data

transmission restricted only to that relevant and required by other simulations, and 4)

dead-reckoning algorithms used to reduce network and processor loads.1 Additionally,

performance studies done using SIMNET provided the foundations for understanding

factors that impact distributed simulation performance in DoD application domains. The

studies elucidated the [still relevant] tradeoffs in communication costs, simulation

processing costs, and model fidelity. Another significant contribution o f the SIMNET

program was the use o f Semi-Automated Forces (SAP), to populate the synthetic training

environment. In the later part of the SIMNET program, the use o f SAF to populate the

virtual battlespace significantly added to the realism o f the simulation exercises.

The SIMNET program was formally completed in 1991; however, the U.S. Army

continues to use the SIMNET system. It provides real-time, interactive training, and

1 Dead Reckoning is a method for the estimation o f the position/orientation o f an entity based on a
previously known position/orientation and estimates o f time and motion. It is employed as a network
bandwidth reduction technique to limit the rate that Entity State PDUs are issued.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

provides the capability to train and sustain collective (crew through battalion level) tasks

and skills in command and control, communication and maneuver, and to integrate the

functions o f combat and combat service support. SIMNET provides this training in an

environment that is significantly lower in cost and risk than comparable “live” field

exercises.

SIMNET proved that distributed simulation was a viable paradigm for meeting DoD

simulation goals. Its architecture provided many key design principles used in more

recent DoD distributed simulation systems (i.e., DIS). Detailed information about

SIMNET, its architecture, and communications protocols is found in [10,11,12,13,14].

1.2.2.2 Distributed Interactive Simulation, Semi-Automated Forces, and

Intelligent Agents

The successful use o f SIMNET provided the impetus for using distributed

simulation technology to create larger and more realistic synthetic training environments.

It seemed practical to use this technology to support other DoD simulation environments

as well, such as test and evaluation of new combat vehicle systems and subsystems. In

1989 the first Distributed Interactive Simulation (DIS) standards workshop took place.

The primary motivation in creating the DIS standard was interoperability. In the context

of DIS, interoperability means linking dissimilar simulations together using a standard

protocol to create a consistent and coherent view of a synthetic land, air, and sea space.

The SIMNET protocol provided the baseline for DIS and position papers and workshops

evolved the standard throughout the early ‘90s. DIS is an application (i.e., simulation)

protocol based on Protocol Data Units (PDUs) associated with entity state and entity

interactions. The standard describes the form and type of PDUs making up DIS messages

that allow communications among simulations. The PDUs include:

• Entity State PDUs communicating an entity’s state (e.g., identification, physical

appearance, location, and orientation, and specific capabilities).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

• Fire and Detonation PDUs associated with the firing and impact/detonation of

weapons rounds.

• PDUs associated with vehicle and weapons logistics (i.e., re-supply and repair).

• Collision PDUs associated with collisions between entities.

• Emission PDUs, Transmitter PDUs, Signal PDUs communicating information about

electromagnetic characteristics o f entities.

• Exercise Management PDUs managing among other things, the creation and deletion

of entities, and the starting, suspension, and termination o f a simulation.

There are other PDUs and a complete discussion of the DIS Standard can be found in

[15,16.17], From an architectural standpoint, DIS-based simulations incorporate many of

the basic principles used in the design and implementation of SIMNET, including entity-

on-entity interactions, dead-reckoning algorithms to reduce network and processor loads,

a common terrain representation, and a common protocol for sharing information.

However, the evolutionary development o f DIS and its use by the DoD coincided with

the integration of a larger number o f disparate simulations, geographically dispersed

across wider regions (throughout the U.S. and other countries). The capability emerged to

simulate larger numbers of entities interacting in more realistic synthetic environments

(i.e., dynamic terrain objects and weather anomalies). Different models could execute

with different fidelity levels and similar models could execute at varying levels of

resolution. All of these factors add to the complexity o f DIS-based simulations and each

can significantly impact run-time performance. Perhaps the most significant impact o f the

DIS evolution was the increased significance o f SAP in DoD distributed simulations.

Semi-Automated Forces were simulations originally developed in the late 1980s in

SIMNET. They were used to generate a relatively small number o f simulated combat

vehicles to enhance the realism of SIMNET training exercises. Since the number of

available manned training simulators was limited, using SAFs to populate the battlespace

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

with opposition forces increased the number of manned-simulators available for training

blue forces (U.S. military forces). The successful use o f SAP during SIMNET resulted in

the recognition that S AF would play a significant role in the future o f DoD modeling and

simulation.

Semi-Automated Forces represent a broader class o f Computer-Generated Forces (CGF).

In the DIS environment, SAP can be characterized by an entity level representation of

combat units. These entities act as credible surrogates for modeling the behavior of

manned simulators. To achieve this, SAP have a wide and complex array of information

requirements that includes:

• Physical battlespace data describing things such as vehicles, weapon and sensor

systems, and other assets in the scope o f the combat portrayed by the system.

• Physical environment data such as terrain databases and environmental effects such

as smoke, weather, diurnal and seasonal effects, and electro-magnetic radiation.

• Hierarchical representations o f military units (e.g., platoons, companies).

• Data and mechanisms for commanding and controlling the SAP units to mimic the

real-world approach to command and control.

• Effective human-system interface so operators can interact with and control the

simulation.

Different mechanisms exist for implementing behavioral models in SAP. One common

technique is called Taskframe Behaviors and utilizes a software method for encoding task

models through the use o f finite state machines and arbitration methods. Taskframe

technology allows simulation entities to exhibit simple autonomous behaviors (tasks),

such as an aircraft flying to a waypoint. SAPs still require significant human management

however when it comes to executing complex coordinated simulation activity (e.g., air-

to-air engagements). In a densely populated synthetic environment, the human controlling

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

the SAF can quickly become overwhelmed by the workload required to control entities

(units). This deficiency led to the development o f Intelligent Forces (IFOR) for use in

DIS exercise environments. IFOR represent another class o f CGF and are more highly

automated than SAF, the goal being to use these intelligent agents to further reduce man

power requirements o f simulation-based training exercises. A specific implementation of

IFOR called TacAir-Soar is used extensively throughout this thesis research. TacAir-

Soar is based on the use o f Soar technology, an artificial intelligence technique initially

developed at Carnegie Mellon University.2 TacAir-Soar was developed jointly by

researchers at the University o f Michigan and the University of Southern California.

TacAir-Soar enables fixed-wing and rotary-wing aircraft to be simulated as fully

automated forces controlled by intelligent agents (simulated pilots). A rule-based logic

engine controls the IFOR behaviors. These behaviors are specified as a set of goal

hierarchies and are used to conduct doctrinal missions. A simulation control application

can provide close control o f the intelligent agents and their behaviors. A spoken language

interface using the grammars o f real-world pilots and controllers can also be used. A

thorough overview o f IFOR is presented in [18, 19]. The new capabilities provided by

DIS. SAF, and IFOR dramatically affect run-time workloads of simulations. The

complexity created by integrating the various technologies used to implement DIS

justifies a formal approach to understanding the impact o f using these technologies to

assess and evaluate simulation performance.

1.2.2.3 Aggregate Level Simulation Protocol (ALSP)

The Aggregate Level Simulation Protocol is another DARPA research program

that coincided with DIS development. The ALSP permits multiple, pre-existing warfare

simulations to interact with each other over local or wide area networks. The grouping of

: Soar was originally an acronym for State, Operator, And Result (SOAR), which together constitute one
basic search step in Soar. For some unknown reason the community has dropped the reference to the
acronym and just uses the term Soar and references it as a general Artificial Intelligence (AI) architecture.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

simulations is called an ALSP Confederation. The ALSP program was initiated in 1989.

The system architecture continued to evolve as experiences gained in real training

exercises provided requirements for design and implementation changes. By 1994, the

confederation consisted of five different simulations encompassing the full range of joint

military operations including, air, land, and sea warfare. By 1997, the ALSP

Confederation consisted o f twelve different interacting systems and the ALSP

Confederation continues to support large-scale, joint military training exercises.

Like DIS, the ALSP architecture is based on the successful characteristics o f SIMNET,

namely autonomous simulations capable o f interacting in a geographically distributed

environment, and using a message-based communications paradigm (a standardized

protocol). Due to the nature o f the pre-existing simulations, ALSP has some unique

requirements not characteristic o f SIMNET. These are: 1) the individual simulations

maintain and advance time in different ways so a mechanism is needed to synchronize

time and coordinate simulation events. 2) each simulation uses its own databases so a

standard representation of shared data is required, and 3) simulations have different

design architectures so a method is needed to enable each simulation to exist within the

ALSP Confederation despite its design and implementation differences.

The ALSP program addressed these issues by developing an extensible communications

architecture consisting of several standardized protocols and processing components used

for time and data management functions. Each simulation (called an actor) is tightly

coupled with a translator component that is responsible for converting data into a

common representation. The translator provides a bridge between an actor and the

confederation by directly interacting with an ALSP Common Module (ACM). There is one

ACM for each actor/translator pair. The ACM manage the joining and leaving of actors

from the confederation, coordinate the actors’ local time with confederation time, and

manage object and object attribute ownership and updates. An ALSP Broadcast Emulator

(ABE) manages communications among all ACMs in the confederation. ALSP has two

basic protocol layers; an actor-to-actor protocol and an actor-to-ACM protocol. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

actual communications connections primarily use standard TCP/IP and Ethernet

technology. The ALSP history, architecture, and design are discussed in [20,21,22,23].

As the size o f the ALSP Confederation increased, run-time performance problems

became a significant factor in assessing the effectiveness o f ALSP to support training

objectives. Similar performance problems were apparent when scaling DIS-based training

exercises and the approach taken to improve performance was to reduce bandwidth

requirements, message processing overheads by the actors, and code optimizations of

critical simulation functions. These performance enhancements temporarily alleviated

some performance problems. However, evolving requirements for greater simulation

functionality and confederation capabilities continue to create performance bottlenecks

that limit the quality o f the training experience.

1.2.2.4 High Level Architecture (HLA)

Prior to the early-90’s, the DoD M&S programs can be characterized as narrowly

focused, stove-piped simulation design and development efforts, meaning the simulations

were typically implemented and executed in an autonomous manner and provided very

little interoperability with other systems. Many DoD simulation development efforts were

plagued with cost-overruns, late deliveries, and limited reuse. To address these concerns,

in 1991 the U.S. Under Secretary of Defense (Acquisition), established the Executive

Council for Modeling and Simulation (EXCIMS). The council was tasked to provide a

focused vision of modeling and simulation to support and enhance U.S. military

capabilities. This resulted in the U.S. DoD Modeling and Simulation Master Plan

(MSMP) completed in 1995. The plan outlines strategies for achieving future DoD M&S-

based capabilities, defines an initial step in a process for developing M&S functional

objectives, and attempts to foster the development o f a common set o f M&S standards,

processes, and methods among civilian and defense industries. The MSMP defines a set

of objectives required to realize the DoD M&S vision; the first being to “Provide a

common technical framework for M&S”. This objective is the basis for the design and

development o f the High Level Architecture (HLA), a facility that promotes the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

interoperability and reuse o f models and simulations. In September, 1996, HLA was

adopted as the standard technical architecture for all U.S. DoD simulations. The HLA

consists o f three principal components: I) the HLA Rules, 2) Interface Specification, and

3) the Object Model Template.

The rules specify the key principles behind HLA and provide a basis for meeting the

objectives of using HLA, namely reuse and interoperability. The rules can be partitioned

into two groups, those that apply to a federation (a group of interacting federates with a

common goal), and those that apply to individual federates (simulations). Federation

rules require the development and use o f a Federation Object Model (FOM) that specifies

what types of data are shared, and when and how the data is exchanged among federates.

The federate rules require the development of a Simulation Object Model (SOM). The

SOM specifies those objects, attributes, and interactions o f a federate that can be made

public in a federation. Both the federation and federate rules discuss object ownership

policies and provide rules that allow individual federates to have different time

management mechanisms and still participate in the federation in a coordinated fashion.

The HLA Interface Specification provides a well-defined interface that allows federates

to interface with the Runtime Infrastructure (RTI), invoke its services, and respond to

RTI requests. The RTI is in essence a distributed operating system that provides services

that support the federate-to-federate interactions. The principal service categories are: I)

Federation Management, 2) Declaration Management, 3) Object Management, 4)

Ownership Management, 5) Time Management, and 6) Data Distribution Management.

The HLA Interface Specification defines how a federate accesses these RTI services.

The Object Model Template, or OMT, is a standard form that provides common

documentation to define the SOM and FOM. The OMT provides a structured format with

commonly understood terminology and objects. It provides a source o f information for

assessments about the suitability o f a federation for specific applications, or the

suitability o f an individual federate for participation within a specific federation. The goal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

is to use the OMT as a means o f selective development and reuse o f HLA federates and

federations. A more thorough overview of HLA can be found in [24,25],

The mandate for new simulations to be HLA-compliant is having a significant impact on

DoD M&S community and will continue to do so. The current HLA specification

provides a baseline for building distributed simulation environments that can be

characterized by greater interoperability and reuse. Interoperability among different

simulations is achieved by using the RTI to facilitate data sharing. The requirement to

document characteristics o f object representations using the OMT enables consistent data

interpretation among federates participating in a specific federation which also enhances

interoperability. Initial implementations of the infrastructure, however, have had dramatic

effects on run-time performance. Performance evaluations are presented in [26,27,28].

A likely artifact o f greater interoperability and reuse is increased complexity in terms of

the static distributed simulation architecture and the dynamics o f the run-time

environment. It is very difficult to anticipate all the run-time interactions among the

various aspects (network topology, hardware, operating system, RTI, simulation

infrastructure) that constitute a DIS or HLA simulation environment. The need to

understand the impact o f current and future DIS and HLA design and implementation

decisions provides additional impetus for the research presented in this thesis and

reinforces its significance to people making decisions about the use o f distributed

simulation technology.

1.3 Thesis Objectives

Sections l .l and 1.2 characterize the complexity of DoD M&S environments and

justify a well-defined framework of DIS/HLA performance. The discussion provides the

motivation for the objectives o f this thesis. The original concept o f the research was to

provide a generalized architecture for distributed simulation performance analysis.

During the initial stages o f thesis development, however, it became readily apparent that

the scope o f performance analysis within DoD distributed simulation environments was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

sufficiently complex and that focusing research objectives on DIS and HLA simulations

provided a significant, yet reasonable, bound on research objectives. Further rationale

regarding the refinement o f thesis objectives is found in the conclusions Section. The

formally defined thesis objectives are the following:

• Define a framework useful for characterizing DIS/HLA simulation performance. The

framework shall include a conceptualized view of performance in the context of DIS

and HLA simulations, and a taxonomy of performance measures useful to different

decision-makers involved with the DIS / HLA life-cycle.

• Develop a measurement, monitoring, and analysis infrastructure useful for supporting

DIS and HLA simulation performance.

• Relate the costs o f obtaining the performance information for use in both dynamic

and static performance analyses in terms of the intrusiveness o f run-time monitoring

and measurements o f DIS/HLA simulations.

• Provide a baseline o f practical experiences for future work related to performance

measurement and monitoring for the design, configuration, and control o f DIS and

HLA simulations.

The significance and contribution o f the research are to:

• Provide a framework to identify and understand a set o f meaningful and useful

performance measures for persons making decisions within the context o f DIS and

HLA simulation environments.

• Provide a performance monitoring software implementation that is useful and

extendible to support different modeling and simulation applications and domains and

that could be used for other distributed computing applications where performance

monitoring and evaluation are desirable .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

• Provide documented experiences useful for understanding the tradeoffs associated

with gathering specific types o f performance information and metrics as they relate to

data granularity, data collection rate, and the overall run-time intrusiveness o f the

monitoring system.

• Present results from real simulation exercises that provide those persons making

decisions about performance measures with meaningful and relevant data for

understanding such things as the utilization o f simulation and network resources,

partitioning the simulation workload to account for scenario effects, estimating

hardware / software requirements, and understanding the impact o f inserting specific

technology into a distributed computing environment.

The goal is to provide a set o f tools to effectively provide guidance for the diagnosis and

analysis of simulation run-time performance. The metrics should provide information to

model developers and programmers, exercise and configuration planners, system analysts

and program managers, and other decision-makers who need to understand performance

of a distributed simulation’s execution in high-level terms, relating the myriad of DIS and

HLA simulation technologies to the objectives o f simulation studies. The maturity and

scope of DIS and HLA simulation environments provide a realistic environment to

develop this thesis and ensure that real performance issues are addressed. The

expectations are that results o f this research and implementation will be reusable beyond

the DIS and HLA domains; therefore, a secondary objective is to provide a performance

analysis framework useful for other distributed simulation environments.

Run-time acquisition and analysis o f the performance information should provide

feedback on the execution o f the simulation and allow decisions to be made about the

efficiency of the current distributed simulation environment. The framework and

monitoring infrastructure should support decisions about the configuration and control o f

the available hardware and software resources for future distributed simulation exercises.

It should provide information that lets a decision-maker anticipate problems which will

invariably exist in any technically complex system (i.e., distributed simulation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

environment) and provide insight to where problems exist in the system. The information

is useful to develop a timely resolution strategy, assess risks, and document and track

problems. The performance information should also be useful to help remove biases from

design, operational, or analysis viewpoints that different people bring to the table.

1.4 Thesis Approach

The thesis will clearly conceptualize the meaning of distributed simulation

performance in the context o f DIS and HLA simulations and will present a mechanism

for capturing performance data in the run-time environment. Meeting the research

objectives requires a well-understood and controllable simulation environment, suitable

for validating the performance monitoring and analysis methods presented in this thesis.

An ideal case study was selected; the DARPA Synthetic Theater o f War (STOW)

program. STOW is an evolving Advanced Distributed Simulation (ADS) technology that

has successfully demonstrated the capabilities of high-resolution simulation to support

military' training, systems acquisition, analysis, and test and evaluation [29]. The origins

of STOW technology are DARPA’s previous work in synthetic forces including the

SIMNET program. STOW creates a realistic, distributed simulation environment where

synthetic forces are modeled at the platform level and the synthetic environment includes

representations o f real-world terrain, space, oceans, and environmental effects [30,31].

STOW has been successfully used to support U.S. Atlantic Command’s (USACOM)

Joint Task Force (Tier III) training. STOW requirements included the ability to generate

enough ground, air, and sea forces to simulate theater level operations. Additionally, it

had to integrate real-world Command, Control, Computer, Communications, and

Intelligence (C4I) systems to support component-level training requirements. The STOW

component of this exercise consisted o f 500 computers generating up to 8000 simulated

objects, distributed across sites throughout the United States and United Kingdom. To

achieve the large-scale, networked requirements o f this exercise, a synthetic battlespace

was created using HLA. The STOW program developed an advanced, high-performance

networking infrastructure based on ATM and Multicast/IP technologies, the goal being to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

reduce bandwidth requirements and transmission latencies [32]. The showcase for

DARPA’s STOW program was the STOW Advanced Concept & Technology

Demonstration (ACTD) conducted in 1997. The performance abstraction, the taxonomy

of performance measures, and the performance monitoring software presented in this

thesis were initially developed to support the STOW ACTD. STOW technology is an

excellent case study that:

• Provides a complex simulation environment with many run-time characteristics

affecting performance, supporting the design and iterative refinement of an abstract

representation of distributed simulation performance.

• Provides a large and sufficiently complex simulation environment (both run-time

behavior and software architecture) suitable for designing, implementing, and

analyzing different monitoring schemes and for understanding the cost/benefit of

doing performance analysis in terms of the perturbation o f the analysis results.

• Allows assessments to be made regarding the impacts on performance of a dynamic

simulation architecture and configuration and the framework’s flexibility to changing

requirements in performance information.

• Supports real-world simulation exercises, with a diverse set o f decision-makers, and

allows assessments to be made about the utility o f the performance framework and

techniques for measuring and monitoring performance information.

• Is used in multiple simulation domains and supports a broad range o f requirements

for different kinds o f performance information.

Interacting with the STOW program provided an opportunity to develop a baseline of

knowledge regarding the kinds o f performance information that was meaningful and

useful to different decision makers. An initial concept o f useful performance information

was developed and the simulation application was instrumented. Data collected during

real exercises was analyzed and used to provide feedback during model development,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

support workload partitioning during pre-exercise planning, run-time monitoring o f the

distributed environment during the simulation exercise, and post-exercise analysis of

distributed simulation performance. Experiences from the STOW ACTD supported

iterative refinement and extensions to the initial performance abstraction and monitoring

software. As STOW continued to evolve and its technology transferred to other DoD

programs and M&S domains, the conceptual understanding o f what DIS and HLA

performance means was refined. Additionally, the costs of monitoring have been

quantified and weighed qualitatively against the value added by having run-time

performance information available to make important decisions regarding the availability

and use o f the different resources and assets in a distributed simulation environment.

Acceptability criteria for successful completion of this research is based upon meeting the

research objectives and showing the utility and breadth o f application o f the performance

framework which relates to the effectiveness with which the research contributions can

be used and which is in large part a qualitative assessment of the successful completion

of the validation requirements. Validation is based on examining the case studies

presented in this thesis, understanding the positive impact the performance information

has on real-world programs, and successfully initiating the transfer o f the research and

technology to the simulation community. This is significant as the crux o f the validation

effort is getting decision makers to agree on the applicability and usefulness o f the

performance measures as well as the methodology for capturing the data. The two most

fundamental validation questions to answer are: does the performance information

provided meet the user’s objectives o f analyzing simulation performance and does using

the proposed framework significantly impact the performance analysis process

(succinctly, what is the added-value o f using the proposed framework?).

The approach taken in this thesis will establish a clear, logical path from the

conceptualization o f distributed simulation performance to the conclusions drawn about

distributed simulation performance during the case studies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

1.5 Thesis Organization

The first section of this thesis has introduced characteristics o f typical distributed

simulation environments and relates the complexity o f these environments with the

enabling technologies underlying the system implementation. It also traces the evolution

of U.S. DoD distributed simulations from the founding SIMNET program to the

emerging HLA standards and discusses the components that make up the synthetic

environments (dynamic virtual worlds) associated with the various military M&S

domains. Section 2 discusses related research and further articulates the significance and

contribution o f this thesis research. Sections 1 and 2 provide a foundation that justifies

the need for a well-defined framework for performance analysis o f not just DIS and HLA

simulations, but other distributed simulations in general and sets the context for the

research presented in this thesis.

1.5.1 A Framework for Characterizing DIS and HLA Simulation Performance

Section 3 establishes the basis for the specification o f the framework presented in

this thesis. It defines an abstraction that identifies the most significant factors affecting

the run-time performance of DIS and HLA simulations. These factors are used to

establish a taxonomy of performance measures useful for characterizing distributed

simulation performance. This taxonomy is a helpful tool for persons trying to define a set

of meaningful performance metrics useful to meet DIS and HLA performance analysis

objectives. Requirements for a performance monitoring system to monitor, measure, and

collect performance data is also discussed. Finally, the section introduces the crux of the

thesis, a model that represents a unified, architectural framework for the performance

analysis of DIS and HLA simulations. The notion o f “unifying” in this context means a

framework that provides an identified set o f performance measures common among DIS

and HLA simulations, a mapping of those measures to a set o f metrics collected with a

general performance monitoring infrastructure, and the transformation o f those metrics to

meaningful information used by an array o f decision-makers involved in different

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

activities associated with a simulation life-cycle. This unified framework is depicted in an

important graphic in Figure 3.4.

1.5.2 Performance Monitoring

Section 4 discusses the design and implementation o f the PerfMETRICS

monitoring system, a software-based monitoring system created as a part of this thesis

research. The system architecture and design are presented along with the motivation for

specific implementation techniques. Details regarding the various logical and physical

components of the software are discussed in detail including the instrumentation

component, the collection daemon, and the graphical user interface component for

displaying and logging the performance data.

1.5.3 Performance Monitoring Use Cases and Conclusions

Section 5 presents use cases associated with the application o f the framework to

real-world M&S programs. The use cases are significant for demonstrating the relevance

of the framework across a range o f performance study objectives to support the design

configuration, and control o f DIS and HLA simulations used in different M&S domains.

All o f the cases are based on the use o f PerfMETRICS and the underlying framework

describing the relevant performance metrics. The use cases discuss in detail the use of the

framework to support model design and testing, scenario configuration, monitoring o f the

resources, dynamic load-scheduling, capacity planning, and technology assessment and

insertion, support application design and development, and run-time control of DIS and

HLA applications. Conclusions from this thesis research are presented in Section 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

SECTION 2

RELATED RESEARCH

This section reviews literature related not only to the performance analysis and evaluation

o f DIS and HLA-based simulations but also to other distributed simulations, applications,

and computing environments. The objective o f this section is to show the need for an

analysis framework suitable for acquiring and presenting performance information to

people who design, configure, and control DIS and HLA simulations. This information

must be presented at various levels o f abstraction depending on its intended use by

decision-makers. Research and performance studies o f distributed systems are applicable

across a variety o f applications and this section discusses issues relevant to performance

evaluation and modeling o f distributed systems as well as distributed simulation.

Although the emphasis o f this research is on developing an analysis framework and

deriving suitable performance metrics for DIS and HLA simulations, this section

introduces the monitoring, measuring, and presentation of performance information of

different distributed application domains; each application exhibits aspects of

performance studies that are integral to any analysis method. These existing and well-

documented topics provide a basis for integration and reuse within the scope of this

research.

2.1 Performance Analysis o f Distributed Systems and Other Distributed
Simulations

Measurement and monitoring are integral components of any performance analysis for

distributed simulation. The specification o f performance information and the data

acquisition used to derive that information can significantly affect the feasibility o f the

performance analysis. Additionally, the intrusiveness o f monitoring must be understood

to assess whether the monitoring process has perturbed the results o f the analysis.

Generally, monitoring o f distributed systems is considered an event-based activity. For

simulation monitoring, the definition o f performance events o f interest is based on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

goals o f measurement, the events necessary to describe the behavior of the simulation,

and the simulation instrumentation.

Typically, three fundamental design techniques exist for monitoring distributed systems.

Hardware, hybrid (consisting of both hardware and software components) and software

monitors each provide benefits that make them more suitable for specific applications,

depending on the type of information required for analysis and the level o f intrusiveness

that can be tolerated [33]. Hardware monitoring consists o f dedicated hardware that

passively monitors the target application. It is a low-level monitoring system that fetches

signals transmitted on system buses. Hardware monitoring is the least intrusive but can be

limited in the kinds o f process-level events it can capture and use for performance

analysis. In the context o f distributed applications this means data shared among different

processes and transmitted via I/O channels. Another disadvantage is the cost and

limitations o f hardware that is typically machine-dependent, a significant factor given the

current trend toward more heterogeneous distributed computing environments.

Software monitoring is an approach that uses only instrumentation code to detect and

process the target program’s run-time behavior. Since the instrumentation code is

embedded within the monitored program, it consumes compute cycles that are otherwise

used by application code. As a result, software monitoring can be intrusive. It does,

however, provide the greatest flexibility in terms of detection, collection, and analysis of

process-level performance information. A hybrid monitoring system relies on software

instrumentation o f the target application but uses dedicated hardware to capture and

process the performance data. This technique reduces monitoring intrusion by

minimizing the overhead o f detecting and collecting the performance data. It does not,

however, eliminate the cost o f executing the performance instrumentation code. The

intrusive effects o f monitoring go beyond the timing errors induced by executing

performance instrumentation code. Timing errors can induce the re-sequencing of

simulation events, possibly leading to incorrect execution of the distributed simulation

and misleading or incorrect analysis o f results. Training environments based on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

simulations are particularly susceptible to this since trainees’ interactions with the

simulation are based on decisions and responses to the events they perceive happening

during run-time. A complete discussion of the issues related to monitoring o f distributed

and real-time systems is found in [33,34,35]. Examples o f software monitoring

approaches for distributed applications and operating systems are found in [36-40].

Run-time monitoring is just one issue related to performance analysis. Performance

visualization and prediction are two other areas o f interest for performance analysis. The

distributed computing community has recognized the need for an integrated environment

to monitor, visualize, and model the behavior o f distributed and parallel applications.

Considerable interest exists in the development o f automated tools that can help isolate

and correct performance problems o f distributed applications. However, existing tools’

capabilities raise many concerns. Typical complaints include the requirement to have a

sophisticated understanding of the application to use the tool, widely varying interfaces

and functionality in a heterogeneous environment, inability to reuse components of

existing tools to build or extend other tools, and hand-coded instrumentation o f the

application for data monitoring. Pancake, Simmons, and Yan provide a short overview of

the issues surrounding parallel and distributed processing tools for both prediction

(modeling) and measurement (monitoring) [41],

The importance o f the visualization of performance information for distributed and

parallel applications is discussed in Heath, Maiony, and Rover [42]. This paper presents a

clear and concise model for presenting performance information, based on the successes

gained in the visualization o f scientific and engineering data relating physical systems

and their behavior. The significance of this research as it relates to the performance

analysis methodology presented in this thesis proposal is its emphasis on presenting the

information at a level o f abstraction meaningful to its intended audience. Another

interesting paper deals with the use of feedback from monitoring tools to assess and

engineer program modifications [43]. Fickas and Feather introduce the idea o f using

program requirements and assumptions to define what components of the software

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

implementation should be monitored. The monitor detects violations of the system’s

requirements and provides feedback to people responsible for maintaining or designing

the system. Additional examples and case studies are discussed in [44,45].

Other approaches to performance evaluation o f parallel and distributed applications are

based on modeling, both analytically and through the use o f simulation. In [46,47]

Dickens, Heidelberger, and Nicol illustrate the use o f simulation to provide a predictive

model o f a parallel code’s performance. It is essentially a timing simulation to estimate

the speedup/slowdown performance of a parallel code on an Intel Paragon. It has proven

to be accurate to within 5 percent of the actual execution times when the application was

run on native hardware. Although in this paper, the application’s domain was not a

simulation, the paper illustrates the efficacy of using simulation to predict certain

performance characteristics of a distributed program. Sarukkai and Mehra provide

another example in [48] o f a predictive model used for scalability analysis o f parallel

programs.

Research on the performance o f distributed simulations can be considered based on the

type of simulation and its environment. Typically, the Parallel Discrete Event Simulation

(PDES) community bases its performance analysis exclusively on speedup, since the

primary goal is to get the simulation to execute as fast as possible, decreasing the time it

takes an analyst or decision-maker to obtain output and analysis data. Often PDES are

run on multi-processor architectures, but even in distributed environments the most

frequent presentation o f performance results is the speedup relative to the number of

processors participating in the simulation exercise. Another comparison is the speedup

relative to the message density (number of messages per processor). Fujimoto presents a

detailed discussion of PDES and its performance goals in [49]. Fujimoto and Falsafi

present results o f PDES performance studies in [50,51]. Many aspects of PDES affect

performance including models and their interactions, simulation infrastructure overhead,

and distributed processing overhead. Although the metric o f speedup is measured relative

to the number o f messages and/or processors used, other static characteristics and run

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

time behaviors o f the PDES such as queuing disciplines and operating system overhead

affect performance. Often the information reported is not adequate to assist people in

making decisions and assessments about the configuration and run-time characteristics of

the distributed simulation. In [52], Carothers, et al. present a visualization tool (PvaniM)

for providing insight into the run-time performance o f a variant o f the Time Warp (TW)

Operating System used to execute PDES in a distributed computing environment. The

tool provides graphical views of the TW component, the middleware, or simulation

infrastructure. Performance o f PDES has proven to be very dependent upon the

communication patterns exhibited by an application and the PVaniM tool provides low-

level information about the application’s time management and synchronization

characteristics (i.e., rollback, aborted events, time-advance).

2.2 Performance Analysis o f DIS and HLA Simulations

Distributed Interactive Simulation is a distributed simulation based on entity-level

interactions (as opposed to aggregate-level interactions among groups of entities). In

some DIS-based applications it is desirable to simulate as many entities as possible to

enhance the realism of the simulation environment. This makes scalability an important

characteristic for DIS. Vrablik and Richardson present the results o f benchmarking a DIS

that generates CGF for doing military training, doctrine development, and test and

evaluations [53]. The paper emphasizes a performance metric o f entities per workstation

(vehicle count), relating the metric to various software and hardware configurations.

White reports the results o f a similar study but discusses the details and implementation

of the software architecture, trying to further explain why certain configurations obtain

differing levels o f performance [54], The discussion, however, relates execution times for

certain functions in the simulation’s implementation and this low-level analysis o f why a

certain vehicle count is achievable is meaningful only to a programmer or model designer

knowledgeable and familiar with the simulation’s software architecture.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

Previous DIS exercises required the simulation o f up to 5000 entities on the DSI, a

network of workstations geographically dispersed throughout the United States, England,

and Korea. Prior to the evolution o f multicast technology, DIS relied on broadcast

communication services; all hosts on a network received every other hosts’ data,

regardless o f its interest level.3 The bandwidth requirements for sharing data in this kind

o f DIS environment proved to be the limiting factor and past performance studies and

evaluations focused on the networking and communications costs associated with

operating in the local and wide-area networks. Smith, Schuette, Russo, and Crepeau

proposed a mathematical model to characterize the performance of Distributed Synthetic

Forces (DSF) [55]. It discusses how the major limiting factor in DSF is the costs of

distributing (replicating) entity information throughout the simulation environment. It

accounts for the networking costs (the protocol stack and data transmission) and

discusses some experimentation done. Experiment results are used to verify a scalability

metric. Once verified, the scalability metric could be used to assist people who need to

make decisions about resource requirements and hardware configurations for future

distributed simulation exercises.

Recent advances in communications services (e.g., multicasting, ATM, fiber optics) have

relaxed bandwidth requirements associated with wide-area networks linking individual

DIS LANs. Early bandwidth reduction techniques (e.g., dead-reckoning) significantly

reduced the amount o f traffic seen at the interfaces to individual simulation hosts. The

development o f the HLA RTI has further reduced bandwidth requirements using

techniques such as relevance filtering. The cost, however, in the case o f the RTI is the

overhead in making real-time decisions about how to route data among potentially

hundreds o f hosts participating in a simulation exercise. Additionally, as the realism

(validity) o f the synthetic environment increases, typically so does the density (number)

’ For many DIS-based exercises, entity count requirements would exceed achievable capabilities. One o f
the most successful DIS-based exercises in terms o f entity counts was DARPA’s STOVV-E (Europe)
exercise; only achieving an entity count around 2800.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

of simulated objects. The models and algorithms that need data on the state of these

objects will typically also require more processing time (CPU cycles). Many present day

DIS and HLA simulations are actually CPU and/or memory-bound processes.

The models and studies discussed in the previous paragraphs are based on run-time

monitoring and measurements o f existing parallel simulations. The results were obtained

from monitored data in empirical performance studies. The DIS and HLA communities

have also attempted to use predictive models to assess simulation performance. In [56]

Guha and Bassiouni assert the use o f Petri-nets as a predictive analytical tool for the

performance evaluation o f an HLA-based run-time environment. This is preliminary

work, however, and the aim o f this tool is to identify reusable simulation components that

can be combined into a single Petri-net module, reducing the size o f the net’s reachability

graph, and thereby reducing the size and complexity o f the solution. The reduced size of

the graph maps the resulting implementation into fewer software components and could

enhance the run-time performance o f the simulation. Srinivasan and Reynolds propose

simulation as an alternative technique to predict run-time performance [57,58]. They

have developed a simulation model to allow HLA federation designers to conduct first

order performance analysis before constructing the federation. The defining characteristic

of their model is that the semantic information about individual federates is not part o f

the model. The model focuses on resource usage and contention and ignores application

level details. The system consists o f executing federate objects and their interactions

based on probabilities. Similarly, overheads for communications (message transmission)

and the RTI are accounted for using probabilities. The use o f probabilities can be a

limiting factor when configuring the model for analysis since the use o f HLA is newly

emerging and many of the run-time characteristics o f the model components are

unknown. Additionally, the simulation model does not include semantic information

about federate behavior which can dynamically change simulation performance based on

the stochastic nature o f the federate object behaviors. What is needed is empirical data to

validate the model’s execution probabilities; this need provides incentive for the

performance monitoring proposed in this research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

Different strategies have been proposed and used for the monitoring and measurement of

distributed simulations. The goals o f the monitoring are often to observe performance in a

very limited area o f interest, so the monitoring techniques tend to be tailored specifically

to study only one aspect o f the distributed simulations behavior. Nair, McGregor, Root,

and Barth present an architecture for the monitoring and analysis o f networking control

components (software) used to control bi-level multicasting, Quality o f Service (QoS),

and network overload management (flow-control) o f a DIS communications architecture

[59], The relevant performance data gathered by an SNMP “sub-agent”, is passed

throughout the network using SNMP.4 The paper suggests that reuse o f this architecture

for communicating higher-level simulation performance data is feasible. Sudnikovich

proposes the standardization o f two new Protocol Data Units (PDUs) in the DIS standard,

a Global Data Query PDU and a Global Data PDU [60]. The formats are primarily

intended for requesting and receiving entity level performance data as it relates to the use

o f the lower levels of the network protocol stack (e.g., the transport layer, network layer,

and down to the physical layer). Intrusiveness of the use o f these PDUs could be

significant, as many requests for performance information will reduce network bandwidth

available for the transmission of more critical PDUs. The paper does present some

solutions and proposals for research to control the level o f intrusiveness o f the new

PDUs.

Unlike many PDES where success is based solely on the speedup attained, the diverse set

o f DIS domains (e.g., training, test and evaluations, planning and control) typically use a

broader set of success measures. Making decisions and assessments about the

effectiveness or utility o f an exercise, or the hardware and software configurations o f the

DIS. requires analyzing the many factors contributing to the run-time performance of the

simulation. This need warrants the development o f a suite o f techniques and tools to

4 The Simple Network Management Protocol, or SNMP, is a network management protocol based on the
exchange o f information using messages to monitor and control network events (e.g., terminals or
workstations joining or leaving a network).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

analyze such functions as simulation control, network and protocol analysis, and

simulation event analysis. In [61], Stender discusses simulation management for large

exercises. The paper defines exercise managers’ responsibilities including monitoring the

exercise execution (performance information), identifying and resolving problems, and

providing information and guidance to the program manager or exercise sponsor who, in

turn, will provide guidance and instructions on assuring the exercise will meet its

objectives. The paper also introduces an interesting high-level performance metric, a

network breaking point that assigns a threshold to identify network saturation.

The need for an effective framework for DIS exercise management and review is

significant enough that the IEEE has proposed a standard, the “IEEE Recommended

Practice for Distributed Interactive Simulation - Exercise Management and Feedback”,

that is presented along with some suggested improvements in [62,63]. A tool for DIS

exercise support and feedback is discussed in [64], The tool requirements are for an

effective real-time or near-real-time monitoring tool that is similar in functionality to the

utilities used for DoD After-Action-Reviews (AARs). The tools should gather simulation

trace data used for data analysis including assessment of resource utilization, simulation

participation and interoperability analysis. This paper also concludes that the adoption of

HLA/RTI (High-Level Architecture and Run-time Infrastructure), the Common Object

Request Broker Architectures (CORBA), and multicasting, are going to significantly

complicate performance monitoring tools and utilities. Information about CORBA is

presented by Mowbray in [65].

Since the culmination of the DARPA STOW ACTD in 1999, related research has

included initial design and development efforts for an HLA development tool suite, RTI

performance studies, and other studies related to HLA federation performance.

Designing, building, and using an HLA federation is complex and as in any software

development project, a method for automating the data exchange among the various

development activities is desirable. In [66], Hunt introduces a proposed suite of tools that

are either being prototyped or have been identified as needed to support the complete life-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

cycle o f an HLA federation. Among them are: I) a performance modeling/prediction tool

to support the design phase of federation development, 2) a test tool for federation

testing, 3) monitoring, runtime management, and data collection tools to support

federation execution, and 4) a data analysis/post processor tool to support the analysis

activities phase.

Coinciding with HLA tool development, continuing concerns regarding HLA run-time

performance resulted in a series of studies focused on understanding and defining HLA

RTI performance [67. 68, 69, 70]. These studies are RTI-centric and focus exclusively on

the throughput and latency characteristics in terms of HLA objects and interactions. The

Defense Modeling and Simulation Office (DMSO) has initiated efforts to develop a

Federation Execution Planners Workbook (FEPW); a developer framework that requires

the articulation of distributed simulation environment characteristics including

performance requirements. This data is used to support logical and physical resource

estimates for an HLA federation [71,72]. Some commercial products

(http: www.virtc.com/') are also starting to appear on the market and intend to automate

the federation development process as well as provide run-time feedback regarding

simulation execution.

2.3 Summary' of Related Research

Much of the related research presented in this section discusses the performance analysis

and evaluation of distributed and parallel codes for scientific and engineering

applications. Many of the problems associated with identifying, collecting, and analyzing

performance information are similar, regardless of the type o f distributed application.

However, the complexity and diversity o f components making up the software and

hardware architecture o f distributed simulations justifies the need for a well-structured

and unified framework for performance analysis. The complexity o f simulation models

and the computer architectures on which they run makes the assessment o f the costs and

benefits o f distributed simulation a difficult task and requires a diverse range of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.virtc.com/'

37

performance information. Most performance studies of distributed simulations and the

tools used for analysis have been loosely-coupled and focused on one aspect of

simulation performance (e.g., network analysis or queuing performance, rollback

performance). What appears to be missing from the literature is a unified framework for

identifying the factors throughout the entire spectrum of system characteristics affecting

distributed simulation performance and a model for deriving performance information at

a high enough level so as to be meaningful and useful to simulation exercise managers,

configuration planners, and other decision-makers.

Advances in enabling technologies continue to improve the already successful use o f DIS

and HLA simulations. DIS and HLA objectives, specifically interoperability and reuse,

result in increasingly Iarger-scale simulation environments exhibiting greater complexity.

Changing technology also results in shifting performance bottlenecks among the various

components comprising a distributed simulation environment. An example is the shift in

bandwidth contention from the network media to the application-level algorithms that

process shared data, a result o f faster transmission media, more efficient routing

technologies, and more robust protocols (e.g., multicast vs. broadcast technology). There

is one constant; the exercise scenario and associated workload is a driving factor behind

simulation performance. As reported, most o f the research related to DIS and HLA

performance analysis has been focused on very specific aspects and lower-level

components affecting distributed simulation performance. This fact provides further

justification for the research presented in this thesis, specifically the design and

development o f a framework for performance analysis addressing the diverse set of

physical and logical distributed simulation resources and suitable for acquiring and

presenting performance information to people who design, development, configure, and

control DIS and HLA simulation environments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

SECTION 3

A FRAMEWORK FOR CHARACTERIZING DIS AND HLA
SIMULATION PERFORMANCE

The DoD distributed simulation architectures presented in Section 1 have proved

effective for augmenting systems studies in research, systems acquisition, and training

environments. We have also seen how the complexity o f these systems makes it difficult

to understand the effect o f integrating new M&S technologies. What is needed to

improve our understanding and management o f DoD distributed simulation environments

is a framework for characterizing performance. This framework provides a performance

abstraction; a set of performance measures that convey what is important from the

decision-makers perspective. This section discusses, based on lessons learned during this

research, those aspects of performance that are most meaningful and useful to different

decision-makers involved with the distributed simulation life-cycle. It provides a

taxonomy o f relevant performance measures and discusses issues regarding the

monitoring and measurement o f DIS and HLA simulations to obtain the relevant

information.

3.1 A DIS and HLA Performance Abstraction

During the different phases of the simulation life-cycle people assume various

roles with different responsibilities. The roles include those o f model developers and

simulation programmers, configuration and experimentation planners, and system

analysts or program managers. Each role may require different kinds of performance

information for decision-making. Performance information gathered and used by these

people during the various phases o f the simulation life cycle differentiates between the

distributed simulation’s different physical and logical components (i.e., hardware, O/S,

application, models, experimentation). Table 3.1 provides examples o f questions different

people might ask when trying to understand the performance behavior of a distributed

simulation environment. For related questions (in each row o f the table), the principle

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

difference is the granularity o f the data needed to answer the question. Data aggregation

or data fusion may be required to present the information in a meaningful way. Referring

to Table 3.1, a simple example of aggregation takes the data rates for different message

types (useful to a model developer) and combines them to derive an average throughput

(meaningful for a program manager). A more complex example combines interaction

PDU rates (e.g., radio or sensor transmissions) with entity counts to provide a useful

performance measure for persons trying to make decisions about how to partition a

workload of interacting entities among different simulation engines. A systems analyst or

project manager will generally be interested in performance information on the

simulation’s capabilities, resource utilization, and bottlenecks as they relate to the

simulation study goals. Performance studies can provide information to assist the analyst

and managers in assessing the impact of decisions made about simulation requirements

and exercise goals. A model developer or programmer can use some o f the same

information but will most likely need additional measured data to derive more detailed

information about the system’s hardware and software performance. Configuration and

experimentation planners also need information that allows them to assess the

performance of the simulation. With the recognition that the distributed environment

imposes certain constraints on the simulation’s processing requirements, configuration

and experimentation planners must have performance information at varied levels of

granularity that allows them to understand the effects of computer, network, and other

architectural components. Meaningful performance measures are useful to all o f these

people when making assessments about how various hardware and software components

used in distributed simulation impact meeting simulation objectives.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

TABLE 1
Example DIS and HLA Performance FAQs (Frequently Asked Questions)

Program Analyst and
Managers

Model and Simulation
Developers

Configuration /
Experimentation
Controllers

Networking /
Connectivity

Is network performance
sufficient in terms o f data
latency and throughput?

What are the data rates for
specific messages using
specific network services
(e.g., best-effort. reliable,
etc.)?

What are the transmit,
receive, and error rates
at the network
interfaces?

Modeling

What model interactions
are most expensive from
the perspective o f compute
resources?

What are the run-time
characteristics for specific
model (e.g., entity)
interactions?

What entity models can
be efficiently simulated
within the same
simulation engine?

Simulation

What is the simulation
workload (e.g.. entity
count, terrain processing,
etc.)?

What are the processing
rates for different
simulation components?

How idle is the
simulation (i.e..
scheduler not
processing simulation
events)?

Scenario Design
Workload Partitioning

Can enough entities be
created to meet training
objectives?

How many entities can be
simulated per
workstation?

How should the
entity/object workload
be distributed among
available workstations?

Execution
How well are we using
available compute
resources?

What is the resources
utilization for a specific
workstation?

How many simulations
are currently executing?

Analysis

Can we afford to collect
specific types o f data for
AAR, Debrief, or other
analysis?

What are the costs, in
terms o f simulation
performance to collect
specific kinds o f data?

What are the costs, in
terms o f bandwidth to
collect specific amounts
o f data at specific rates?

A performance analysis o f a DIS or HLA simulation, or some component therein,

requires an initial specification o f the performance requirements o f the system and the

consequent identification of relevant metrics for quantifying run-time performance.

Although the analysis objectives for different DIS and HLA simulation environments

invariably result in different sets o f useful metrics, experience has shown that a set o f

metrics exists which have broad application to many decision-makers needs and is

defined by the set o f physical and logical resources in a typical distributed simulation

environment. The existence of, and the interactions among, these resources define metrics

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

S c e n a r i o

N e t w o r k i n g M o d e l i n g

S i m u l a t i o n
In f r a s t r u c t u re

Fig. 2. Distributed simulation components used to define useful metrics.

useful for analysis, independent o f the application domain. Figure 3.1 presents a diagram

showing a conceptual partitioning o f the major functional components required for a

distributed simulation: I) a networking component, 2) a simulation infrastructure

component, 3) a modeling component, and 4) a scenario or workload. Useful metrics

might come from the union of all components, or just a subset o f the metrics (as defined

by an intersection o f the components).

3.1.1 Network Performance Factors

Modem networks have been modularized and built into a complex, yet reliable,

communications infrastructure based on a fairly mature set o f standards. It would be too

costly to reconstruct this networking infrastructure for every distributed simulation

project; therefore, current distributed simulation environments bank heavily on the reuse

of these networking “toolsets” . The fact that the networking components are reused

means many questions can exist regarding performance within the context o f a new

application and workload, so network performance monitoring and analysis is useful to

support decision-makers. Useful network performance data include bandwidth, latency,

and error rates as they relate to any of the different low-level networking technologies

(protocols) used in DIS and HLA environments: ATM, TCP/IP, Multicast IP, FDDI, or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

Ethernet, to name a few. A meaningful presentation o f the metrics (e.g., kilocells/sec.,

packets/sec., etc.) is dependent upon the level at which the protocol is being examined

and by the end user o f the performance information (decision-maker).

For HLA federations, an RTI is a mandatory network component (often referred to as

middleware) and metrics related to its performance are o f significant interest, especially

in the context o f a large-scale distributed simulation exercise. From a performance

viewpoint, the RTI acts as a conduit channeling and regulating the workload effects

between the networking component, the simulation (federate) infrastructure, and the

modeling component. For some HLA application scenarios, tens o f thousands o f entities

may exist and require high throughput rates for attribute updates (or reflections). Entities

may be dynamically created and destroyed at bursty rates, pushing the capabilities o f the

RTI Declaration and Ownership Management services. Frequent calls to advance the

simulation clock could have adverse performance impacts when using the RTI Time

Management services. A common set of metrics useful for understanding the impact of

an RTI implementation can be derived from measurements related to a) data

transmission, and b) processing overheads associated with RTI. Throughput, bandwidth,

and latency descriptions are also useful for characterizing the performance of data

transmission at the RTI level. Additionally, packet and message loss data are important

measures to support utilization assessments about the underlying network infrastructure

and any potential resource contention within the RTI implementation (e.g., buffering,

packet bundling, etc.). Timing data related to the relative processing costs o f an RTI are

useful for persons trying to understand the overall costs associated with using HLA/RTI

to share data. The RTI intrinsically maintains some performance information in its

Management Object Model (MOM) data. MOM data can provide useful information on

the operation o f the RTI, individual federates, and the integrated federation.

The bandwidth, latency, and error rates are relevant throughout the entire protocol stack

of DIS and HLA simulations. Within the DIS and HLA, end-to-end delays (latencies) are

especially significant due to the impact on valid object interactions (time delays and

event reordering). Unacceptable end-to-end delays can be a result o f contention for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

transmission media or in the case o f a wide-area network, the length of transmission (i.e.,

speed of light laws). Networked simulations have additional factors affecting network

performance not directly related to the physical transmission o f the data. An example is

the encoding and decoding (i.e., data packing, byte ordering, etc.) o f messages passed

among machines; a process adding to end-to-end delays and complicated by the nature o f

heterogeneous networks and compute platforms used in DIS and HLA-based simulation

environments.

The low-level functionality in the network component (as it relates to the protocol stack)

provides a desirable place to filter and format data and provides control-flow

mechanisms. Data rates and packet sizes are used to design buffer space and account for

compute cycle requirements. Decisions must be made regarding interest management

(filtering), bad data (sending and receiving), exercise control, timing requirements

(synchronous vs. asynchronous), network partitioning (bandwidth reduction), and

network configuration (hardware and software topology). Networking performance

metrics are essential to provide meaningful and useful information to developers,

configuration planners, and other persons addressing these issues to connect DIS and

HLA simulations as well as other distributed applications.

3.1.2 Simulation Infrastructure Performance Factors

Metrics associated with simulation infrastructure help characterize the run-time

performance of simulation processing overheads or the costs o f doing simulation.

Typically, DIS and HLA simulations are scaled, time-stepped; or discrete, event-stepped

implementations. DIS and HLA simulation environments (or federations) may consist o f

simulations (or federates) having similar or dissimilar architectures. An example would

be an HLA federation consisting o f engineering design models implemented as discrete

event simulations interoperating with a fixed-time increment, analysis simulation used to

assess the impact o f various design alternatives. Regardless o f the type o f simulation, a

set o f common functional components is used for time management, events and event

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

schedulers, entity management, simulation administration and control, graphics and

visualization, and support routines for data collection (including performance

measurements). DIS and HLA time management functions are complicated in that each

o f the computers participating in the distributed simulation must invoke events in a

globally coordinated or synchronized manner, assuring either correct program behavior

or the recovery from errors induced by uncoordinated activity. The schedulers must

execute efficiently, independent o f the number o f events that must be serviced as the size

of the simulation experiment is scaled up or down. As is the case for most simulations,

maintaining event lists, entity databases and other data structures used in DIS and HLA-

based simulations can greatly affect performance so the cost o f maintaining,

synchronizing, and accessing these structures must also be considered when

characterizing performance. Graphics displays and visual systems capabilities must be

weighed against the modeling and scenario complexity. Performance measures related to

rendering and displaying graphical images, as well as any network traffic associated with

remote visualization are useful.

All simulations have some cost associated with initialization and start-up, termination and

cleanup operations, and general simulation administration, control, and reporting. Having

these services replicated, executing concurrently, and coordinating operations and

decisions, affects performance. The control o f a distributed simulation is a characteristic

that is pure overhead, part o f the cost of doing simulation, and must be considered when

understanding the performance of a distributed simulation. Additionally, for some

simulations, graphical displays and high levels o f user interaction and intervention can be

intrusive to the simulation; the impact on performance must be considered. Lastly, the

library and utilities associated with data collection in a distributed simulation

environment are diverse and application dependent. The effect on performance can be

dramatic depending on the granularity or volume of data collected.

When used in conjunction with performance data from the other defined components,

simulation infrastructure metrics provide an intuitive feel and, at some level, a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

quantitative assessment for whether the workload is too excessive for a given simulation

implementation. This is useful as feedback for testers and configuration and workload

planners. Specific metrics such as number of events processed per second, state update

rate, scheduler idle time, and total simulation time are useful for developers to identify

implementation deficiencies or problems, and to provide real-time feedback regarding the

health of the simulations executing in a distributed simulation environment.

3.1.3 Modeling Performance Factors

The previous two subsections describe lower-level, quantifiable measures that

most directly relate to the performance of specific components o f the simulation

architecture. Performance measures related to these components provide useful

information for assessing the utility o f certain enabling technologies (networking) or the

reasonableness o f a specific implementation (simulation infrastructure); however, to

support assessments about the success or achievement o f simulation goals, networking

and simulation infrastructure performance data must be interpreted in the context of

specific modeling and scenario workloads using terminology meaningful to decision

makers. Performance assessments at this level can be complicated because o f the multi

variate relationships among interacting simulation components and non-linear

performance behavior in the presence o f changing model and scenario workloads.

DIS and HLA-based simulations are predominately used by the U.S. DoD, so most o f the

scenarios consist o f entities (e.g., tanks, aircraft, dismounted infantry) and environmental

(e.g., clouds, dust, rain) models used to create a synthetic battlespace. The CGF and

Synthetic Natural Environments (SNE) may have different levels o f fidelity and

resolution leading to very different run-time performance characteristics. CGF model

design and implementation issues affecting run-time performance include physical

modeling o f entity motion (within its own coordinate system and within a world

coordinate system), sensor modeling, weapons handling, behavioral modeling, and

visualization. Entity motion model performance is dependent upon whether the models

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

are physics-based or state-based. When different or multiple axis coordinates are used to

simulate entity dynamics (i.e., body-axis coordinates for equations o f motion and earth-

axis (world) coordinates used to describe the kinematics), consistency and accuracy

among algorithms and databases for entity position and orientation transformations are

critical. Frequent transformations can significantly impact model performance.

Another factor that can affect run-time performance is related to dead-reckoning.

Different thresholds may be required for vehicle models that exhibit very different

movement characteristics (i.e., slow-movers vs. fast-movers). High-performance DR

algorithms lead to more accurate representations with greater computational costs. Lower

DR algorithms provide lower computational costs but can lead to anomalous or invalid

simulation performance in terms o f visualization, simulated collisions, and other model

aspects. Factors affecting CGF sensor modeling include the capabilities o f the simulated

sensors, the size and complexity (temperature, density, humidity, weather, dynamic

environmental effects, etc.) o f the synthetic environment, and the number o f sensors the

simulated entity is modeling. The same factors are relevant to any simulated weapons

processing as well.

Cognitive and other behavioral modeling is another performance factor. It has been

recognized that an essential aspect o f CGF realism is the use of accurate behavioral

representations that provide context for CGF physical representations. Different

behavioral models will have different computational requirements (performance), as is

the case, for example, between the SAF taskframes (lower cost) and the TacAir-Soar

mechanisms (higher cost) discussed in Section 1.2.2.2. Taskframes are based on a finite-

state machine mechanism and TacAir-Soar uses the Soar architecture and programming

language, an actual Artificial Intelligence (AI) cognitive model [73].

Environmental modeling is the representation o f the simulated world or the gaming area

in which entities operate and interact. Terrain modeling (land and ocean) can have

extensive processing and memory requirements; dependencies include the number o f

static versus dynamic representations that are used to create the terrain, the consistency

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

requirements within the distributed simulation environment (network performance

impact), and the internal representations within a specific simulation implementation.

SNE run-time performance measures can be related to algorithms (temporal) or data

(spatial) and are affected by such design decisions as a homogeneous (globally consistent

environmental state) or gridded (e.g., different weather conditions in different regions of

the simulation playbox) models, or the fidelity o f physics-based implementations

(barometric pressure effects; viscosity and water movement; energy propagation such as

shock waves, sound, light, medium variability; and discontinuities such as temperature or

salinity).

Important performance considerations must be given to the interaction among the CGF

and SNE models. The complexity o f the interactions is the principal reason why assessing

or predicting performance of DIS and HLA simulations is so difficult. Possible

interactions between entities/environment and environment/environment must be defined

and performance measures used to determine the impact on performance. Examples

include line-of-sight algorithms critical for air/land/entity interactions, and traffic models

to support realistic movement o f entities on terrain including effects such as slope,

surface type, and effects o f recent weather. Other factors affecting performance can

include the use o f dynamic terrain (e.g., craters, tidal flow) and multi-state objects used to

show the results o f weapons interactions and create animation sequences for the visual

system (e.g., buildings blowing up).

3.1.4 Scenario Factors

The use o f performance measures related to the conduct o f a scenario is useful for

many purposes including: 1) utilization of existing resources in the synthetic

environment, 2) planning for growth in the presence o f changing technologies, and 3)

evaluation o f “level playing fields” among interoperable simulations. DIS and HLA

scenarios are necessarily constrained by the technologies (capabilities and limitations) of

any existing network, models, and simulation infrastructure. Consequently, scenario

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

rehearsal is a critical factor in determining the “proof o f the total system” (architecture

and configuration). This requires making sure the available resources are sufficient and

the run-time performance of all components is adequate for a given simulation exercise.

Performance information characterizing network, simulation infrastructure, and modeling

capabilities support assessments by decision-makers regarding the feasibility o f a specific

scenario and the workload resulting from that scenario. Useful performance metrics

related to run-time performance o f the distributed simulation environment include overall

processor and network utilizations, bandwidth characteristics (network and application

protocols), minimum and maximum model update rates, and sensitivity metrics

addressing the impact o f changing workload due to the scenario.

Two significant factors to consider during scenario design are the types of simulated

entities to be used and their expected interactions. Performance data can be captured and

used to provide insight on the processing requirements o f specific entity types.

Performance assessments can then be made to estimate overall scenario performance

based on the number of entities and their expected interactions. This approach allows the

capabilities o f the networked system (network, simulation, modeling capability) to be

properly paired with scenario objectives and supports evaluation o f scenario design

compatibility with the physical and logical configuration o f the DIS and HLA

environment. As an example, in a SAF-based simulation various models o f real-world

physical systems (hull, sensors, weapons, etc.) are combined as sub-models to make up

the entity representation o f a vehicle. Each of the sub-models will have known processing

requirements and when combined in a run-time context will define the overall processing

requirements of the entity representation. A real ship has a number o f sensor systems and

the associated SAF representation of that ship will have the corresponding number of

sensor sub-models. If the ship model is used in a large-scale scenario, the model may

spend all of its time processing the shared (distributed) data inputs to the sensor models

(e.g., emissions, radio packets), which limits the number of ships that can be simulated on

a single simulation engine. As a result, tradeoffs must be made in scenario design

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

regarding the size o f the synthetic environment (number of entities) and the types of

entities that are a part of the scenario.

In WAN environments or environments that integrate DIS and HLA simulations with

real-world systems, networking limitations can also constrain scenario design. For

example, in one recent distributed simulation exercise, a transoceanic, 128K.byte ISDN

line was used to link an HLA federation with the combat systems used onboard a U.S.

Navy AEGIS class ship. The HLA federation modeled a Theater Ballistic Missile (TBM)

threat and passed the simulated entity position and orientation data over the ISDN line as

input to the ship’s sophisticated tracking radar and fire control systems. To properly

stimulate these real-world systems, the model was required to update the simulated

TBM’s position and orientation state data at a minimum 5 Hz rate. In this case, the

constant, known size (data volume) of the ground truth data (TBM position and

orientation), the specified model update rate, and the limited capacity o f the network

were all factors that imposed constraints on the size and complexity o f the scenario used

for this simulation exercise. In this case, by previously monitoring and understanding the

processing requirements of the TBM model, it was determined that a maximum o f two

TBMs could be successfully simulated at any instant in time..

Performance measures related to the conduct o f a scenario can also be used to assess the

adequacy of the synthetic environment in providing a “level playing field”; otherwise

interactions between entities may be invalid. An example could involve the interaction o f

a CGF Fixed-Wing Aircraft (FWA) and a virtual FWA simulator (man-in-loop) acting as

an opposing force (air-to-air threat). If the performance o f the network and CGF

simulation engine is such that latent entity state data is used to update the image

generator in the virtual cockpit simulator, it is possible that the trainee in the virtual

cockpit will have an incorrect perception of the actual position o f the CGF FWA, while

the CGF FWA has a more accurate perception o f the virtual cockpit simulated FWA.

This creates an unnatural advantage favoring the CGF FWA and invalidates any

interaction the two entities might have in the synthetic environment (e.g., decision to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

engage). Performance information (real-time and post-analysis) can be useful for

assessing the validity of certain scenario workloads and can be useful for adjudicating

invalid interactions similar to the example described above.

3.1.5 Generalization

Typical hardware and operating system performance information in distributed

simulation applications, like CPU and network utilization, are easy to identify and

measure using traditional tools. Obtaining other meaningful application specific

performance information requires alternative methods, deriving the information from the

composition o f data characterizing run-time performance o f individual simulations and

global data on the structure and performance o f the entire distributed simulation

environment. The perception o f both local detail and global structure provides both fine

and course-grained views o f distributed simulation performance and can be used to

understand the effects of decisions made regarding model design, implementation, and

scenarios (run-time workload). Traditionally, most performance measurement and

analysis methods for distributed simulations have been application specific and primarily

focus on providing information meaningful to the software developer. For non-DoD

applications, the goal of simulation speedup dominates most o f the literature. For many

DoD applications (e.g., synthetic training environments), the number o f entities per

workstation (where an entity is defined as some simulated real-world object) is also used

as the singular metric. These two metrics are based on a set o f criteria that indicate

achievement, or not, of a particular performance goal but do not articulate the reasons for

the observed performance and behavior. Decision-makers need a broader array o f

performance metrics than speedup or entities per workstation, yet the number of

components that make up a distributed simulation and the complexity of interactions

among the components make identifying all the performance factors a difficult task.

Consider a hypothetical case o f an HLA exercise manager being told that a simulation

engine modeling five aircraft is performing poorly. The following metrics convey

increasingly greater amounts o f information:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

• Entites per workstation - not meaningful in this case because the number of locally

simulated entities is low and the number and the types of remote entities is variable.

• Packets per second - useful for detecting the overload condition but does not provide

the manager with enough information to help resolve the problem.

• Reflections per second - allows the exercise manager to know if the RTI is passing a

large amount of state information to the application models and is able to associate

the performance degradation with model activity.

• Radio updates per second - indicates the rate a specific model, a radio in this case, is

receiving and processing data.

• Radios per aircraft - indicates that number of radios an aircraft has associated with its

representation.

The exercise manager could use the above metrics to detect and identify performance

problems due to a specific aircraft receiving inordinately large amounts o f radio traffic.

This information could be used to make judicious decisions about how to partition the

workload (simulated aircraft) to minimize the impact o f radio traffic. An important point

about the metrics listed above is they are presented in terms meaningful to the exercise

manager who needs to understand the performance impact o f a specific scenario

workload.

To improve the benefit o f distributing a simulation’s computations and run-time

environment, it is necessary to understand the simulation’s performance characteristics in

the context of the distributed environment. The characterization o f distributed simulation

performance is multi-faceted. Decisions about concurrent execution o f simulation models

using replicated resources and services are based on abstract models o f computation, and

performance characterizations o f this system can be difficult to understand. Speedup and

entities per workstation, however, are not sufficient for a full characterization o f

distributed simulation performance. This is especially true when distributed simulation is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

used in training and other man-in-loop environments. Performance information relates

not just to the speed of computation, but to the efficiency and effectiveness of the

simulation in utilizing the shared resources and services within the distributed

environment. Performance information characterizing concurrency, scaling, availability,

reliability, and interactivity can articulate the simulation’s ability to meet the many goals

of a simulation study.

Characteristics o f simulation architectures, simulation models, scenarios, and distributed

systems provide a basis for identifying factors affecting distributed simulation

performance. A well-defined framework for performance analysis can provide techniques

to establish relationships among these factors and the constructs and abstractions used in

the simulation's design and implementation. The intended use o f the performance

information defines which metrics are useful to develop an understanding of the

simulation’s performance. The level at which the performance information is presented is

determined by the role and intended use of the information. This establishes the

motivation for the development of an effective framework for analysis of distributed

simulation performance.

3.2 A Taxonomy of DIS and HLA Performance Measures

The previous section highlighted the significance o f different components affecting

distributed simulation performance. At run-time each of these components manifest

themselves as a set o f diverse, yet interrelated, performance measures and for this

discussion it is useful to classify and organize the performance measures into a

meaningful hierarchy. The taxonomy shown in Figure 3.2 is not necessarily inclusive o f

all measures but provides a logical organization based on the conceptualization discussed

in the previous section. The organization o f these measures is useful for persons trying to

understand the scope of analyzing the run-time performance of DIS and HLA

simulations. It provides an initial definition of performance measures useful for making

decisions about designing, configuring, and controlling the simulation environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

DIS/HLA Perform ance M easures

Sim ulation
In frastru c tu re

System

Scheduler T im e D ata and List Networking
M anagem ent and IPC

CPU Memory Disk Network

M odeling

Entity Environm ent

Vehicle / Entity
C ounts

Sub-model
Processing

T erra in Ocean Air Space

Position and Sensor W eapons Behaviors G raphics and
O rientation V isualization

Fig. 3. A taxonomy of DIS and HLA simulation performance measures.

These measures, when considered with the capabilities and limitations o f enabling

simulation technologies and scenario effects, provide a model for structuring the

Meaningful performance information related to the components discussed in Section 3.1

is associated with performance measures in three top-level categories: I) modeling, 2)

simulation infrastructure, and 3) system. Modeling performance measures are related to

simulated entities (e.g., vehicles, platforms, etc.) and simulated environment (e.g., terrain

5 Depending on the objectives, the analysis may consist o f a series o f interacting or collaborative activities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

monitoring, data collection, and analysis process.5

54

representations, bathymetry, etc.). Specific to entity modeling, it is important to provide

an Entity- Count, the number o f each entity or vehicle type (air, ground, and water

vehicles, mines, etc.) in the simulation environment. This count data should be available

on a per application basis, and as a set o f global metrics (the entity count o f the entire

simulation environment). Entities (vehicles) are a natural data point for persons involved

with DIS and HLA simulations because o f their direct correlation with the real-world

objects and activities, especially in the context of DoD and military environments.

Related to each run-time instance o f a simulated entity, is its sub-model processing

requirements. A frequent question asked by persons developing or configuring DIS/HLA

simulation exercises is what are the processing costs associated with a specific entity

type. The Sub-model Processing Times provide timing data that characterize the

processing costs of each component used to represent specific entities. For DIS and HLA

simulations, experience has shown that it is reasonable to view the synthetic environment

as a set o f entities that may or may not move around, sensing and interacting with their

environment, and that are potentially capable o f engaging other entities with weapons.

This view allows an entity sub-model categorization of: 1) position and orientation

models (dynamic representation o f the entity such as flight dynamics or kinematics), 2)

sensor models (e.g.. visual, radar), 3) weapons, 4) behaviors (e.g., following a route,

flying a formation), and 5) graphics and visualization. A meaningful way to present sub

model processing times is as a relative percentage o f the over-all simulation processing

time for some specified time interval, including the elapsed simulation time. It is possible

to collect the sub-model timing data on a per entity basis or on a per application basis,

depending on the level o f detail required for the analysis.

Modeling SNE entails providing realistic representations o f the ground, air, sea, and

space domains. High-fidelity SNE can improve the fidelity of entity modeling but can

also adversely impact application processing and network performance. In the context o f

DIS and HLA, dynamic high-fidelity SNEs are an emerging technology. A proven

paradigm for architecting environmental models within a distributed simulation system is

to have a centralized network server [31]. An environmental server typically uses

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

compute-intensive, physics-based volumetric modeling techniques. Performance

measures related to environmental modeling include basic timing measurements used to

understand the compute costs o f specific environmental models (e.g., fractal-based cloud

models, smoke models, and water-column models). More important performance

measures are related to the impact that environmental modeling has on the overall

distributed simulation environment; specifically, how the receiving entity models and

their respective sensors process the environmental inputs, and the effect the potentially

voluminous data has on the network resources. The real-time (or faster-than-real-time)

constraints o f many DIS and HLA simulations may further hinder performance.

Important environmental performance measures related to entity modeling are the time it

takes entity sensor models to perform intervisibility (Intervisibility Lookups) and collision

avoidance (Collision Lookups) calculations. These can be potentially expensive

algorithms and timing data supports decisions regarding modeling tradeoffs in terrain

fidelity and entity model processing requirements. Other performance measures related to

environmental models and their performance impact are the Total Number o f

Environmental Objects Transmitted (uniform- and gridded-weather). Environmental

Object Update Rate and Variance, Average Time to Transfer (bytes/sec), Average Object

Size Transmitted, Re-transmit Requests (specifically for new simulation joins), Total

Number o f Bytes Transmitted, and static measures dealing with the Size and Extents of

the environmental data sets.

Performance measures suitable for describing simulation infrastructure include

characterizations of; I) the simulation scheduler or executive, 2) the networking and

Inter-process Communications (IPC), 3) data and list management, and 4) general timing

information. Scheduler Idle Time provides a measure o f the scheduler workload as it

relates to servicing events. Slack in the Entity Tick Rate6 provides a relative measure of

" A metric derived from the notion o f real-time process scheduling. This metric is applicable to simulations
requiring periodic updates to all entities within a specific time period. Slack is the time remaining in the
time period after all entities have been updated. As processing times for entities and other state information
increase, the amount o f slack decreases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

the amount of available room for additional entity state processing. The two metrics

above are especially important as they relate to DIS-based real-time or scaled, real-time

simulations. They provide quantitative measures that can be used to relate scenario

workload to the perceived run-time performance o f the synthetic environment. If

workload becomes too great such that the simulation processing cannot keep up, the

scheduler will not be able to keep up and simulation time will begin to lag behind the

wall-clock (real-world time). Entity Tick Rate describes the average update frequency for

each instance of entity and Entity State Update Performance provides a measure o f the

overall update performance for all simulated entities within the simulation. Metrics

related to interprocessor communications using the HLA RTI include RTI Tick Time

(time spent in the RTI), RTI Tick Rate, Attribute Updates/Reflections (per second),

Object Interactions (per second). Average Size o f Attribute Updates, Attribute Update

/Interaction Delay, and Time Advance Request Delay.

System-level performance measures are related to the utilization and performance of the

operating system services and hardware resources on the computers running the

simulations (applications). These measures map to the processing, memory, and

networking components used in any general distributed computing environment and

provide a low-level performance characterization o f the simulation process and the

computer on which it is executing. Metrics include relative CPU and Memory

Utilizations for the application and the system. One potential artifact o f the high fidelity,

high-resolution representations used in many DIS and HLA simulations is very large

storage requirements to manage data (e.g., terrain databases) in physical memory and on

disks. DIS and HLA simulations can be memory bound processes so additional

performance measures include the amount o f physical memory (Resident Memory)

consumed by the simulation as well as the amount in virtual memory {Swap). Hard disk

activity (blocks or bytes per second) metrics extend the notion o f memory hierarchy

performance measures. These measures are useful for identifying applications or

simulations with inefficient working sets or memory leaks. Simulation workload

characteristics such as fast-moving platforms (e.g., theater ballistic missiles) can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

sometimes induce thrashing situations, as the interactions between the entity and the

terrain require rapid and large-scale memory updates. Networking performance measures

are used to assess the impact o f the simulation workload on the available bandwidth as

seen on the transmission media and as seen at the computer network interface card.

Standard metrics include the Transmission and Receive Rates (packets/sec.), Error Rates,

and Collision Rates.

3.3 Performance Monitoring

An important component o f any framework for performance analysis is the

monitoring system used to collect data. Many issues must be considered when designing

a performance monitoring system. Monitoring in the DoD distributed simulation

environment requires additional considerations. The size and complexity o f current

distributed simulation environments require a person designing and implementing a

monitoring system to be intimately familiar with many aspects o f the simulation

architecture. A key objective is to locate where in the simulation environment the data

can be obtained for the required data abstraction level. Non-invasive monitoring gathers

data only from the network and is not comprehensive due to the limited content available

by looking at the network packets. Invasive monitoring allows for a more complete

evaluation by looking at the internals o f the simulation. Distributed monitoring systems

that rely on instrumented simulation source code collect raw performance data on

individual simulations; effective techniques are required to collate this information into

an aggregated characterization o f global simulation performance. Another difficult

problem is the large number o f hardware and software interactions in distributed

simulations masking the direct causal relationships among specific simulation activities,

model behaviors, and observed system performance. This necessitates identifying the

significant factors affecting simulation entities and interactions and establishing a

mechanism for correlating the run-time events with simulation outcomes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

From a practical perspective, system administration issues affect the usability, reliability,

and transparency o f a distributed simulation performance monitoring system. It is

important and necessary to understand the status o f all monitored and monitoring

components. For example, if a simulation or monitor crashes, the system should be aware

of and log the event. For monitoring systems where location transparency is an issue (a

good characteristic for any distributed system), daemon processes can provide a

mechanism to manage shared performance data. Heterogeneous simulation networks are

the de facto result o f the evolution o f distributed simulation technology and its use in

cooperative simulation design and development programs. As such, an important

characteristic for a monitoring system is portability and/or interoperability, byte ordering

being a significant case-in-point. A harder issue surrounding the interoperability of a

performance monitoring system is the specification of a common class of shared

performance information useful among dissimilar simulation architectures and system

components; the dependency being related to any protocols associated with the

monitoring system.

Specific to an HLA environment, distributed monitoring is complicated by, among other

things, the interest management mechanisms intrinsic to the RTI. The specifications that

restrict the visibility o f certain entities and/or their attributes mean that it is possible for

inconsistencies to exist among simulations’ global view o f the simulation execution

space.7 Another important issue is related to current RTI implementations: modular

libraries linked with a simulation application (federate) during the executable build

process. A standardized RTI Application Programming Interface (API) provides logical

points for instrumentation to gather RTI timing data. Since access to RTI source code is

In the context o f HLA, interest management is also referred to as “relevance filtering” or Data
Distribution Management (DDM). The HLA RTI implements DDM as a run-time services that reduces
network and processor bandwidth requirements by restricting the transmission o f shared data to only those
federates that explicitly express and interest in receiving the data. Any distributed monitoring system that
wants to have a global view o f the entire synthetic battlespace will have explicitly declare its interest in the
relevant performance information from all federates, which might not necessarily be available in certain
segments o f the network topology.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

typically restricted, performance data related to the internal operation o f the RTI has to be

included in the HLA MOM data, transmitted periodically by each RTI during federation

execution.

Another important characteristic o f DoD M&S environments is the ability to scale the

size of the simulations. This is especially true in the training environments where

populating the virtual battlespace with more entities can enhance the realism of the

synthetic environment. A performance monitoring system for DIS and HLA

environments must exhibit similar scalability characteristics.

Finally, perhaps the most significant issue concerns the costs associated with obtaining

meaningful performance information. Collecting performance data can be intrusive to

system performance and if monitoring is required for other than the development and

testing phases of the simulation life-cycle (i.e., for experimentation or production use),

the cost of monitoring might be prohibitive. Therefore, a compromise must be made on

run-time measurements necessary to obtain performance data, the objective being to

establish a balance between the adequacy of measured data (for the purpose of analysis)

and the intrusiveness o f the monitoring system (and its perturbation o f the performance

analysis). The value of the data depends on analysis goals (performance problem) and

what is currently understood or not understood about the run-time environment. As such,

a mechanism to tune and control the data collection process is desirable. Timing delays

induced by executing simulation code instrumented to detect and collect performance

data potentially affects the correct execution of the simulation. These timing delays can

be measured and their impact on simulation performance assessed. A more difficult

timing error to account for is the potential reordering of simulation events among

workstations participating in a simulation exercise. Assessing the impact of performance

monitoring is required to establish a compromise between the volume of performance

data collected and acceptable simulation run-time performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

TABLE 2
Summary o f Performance Measures

Simulation Infrastructure System M odeling
Scheduler CPU Entity
Time Memory Vehicle / Entity Counts
Data and List Management Disk Position and Orientation
Networking and IPC Network Sensor

Weapons
Behaviors
Graphics and Visualization

Environment
Terrain
Ocean
Atmospheric
Space

3.4 Summary: A Unifled Architectural Framework for Analysis

Although performance analysis goals may be unique for different kinds of

decision support, experience has shown that some common objectives exist among DIS

and HLA performance studies that support the specification o f the framework presented

in this thesis. The commonality o f analysis objectives lies in the fact that DIS and HLA

simulation can fundamentally be viewed as a set o f simulated real-world objects

interacting within some kind o f simulated time/space analog to the real-world

environment where those objects exist. Understanding the run-time performance of these

objects and the synthetic environment in which they exist means characterizing the

simulations in terms o f the number o f objects (or synonymously, the number o f entities),

the level of activity and interaction among the objects, and their impact on the physical

and logical resources used to create the distributed simulation environment.

Reemphasizing the previous discussion, a general DIS and HLA performance

characterization is useful in many contexts. Performance monitoring can provide valuable

information to persons trying to design and implement application models and simulation

infrastructure. They use performance data for making decisions related to such things as

algorithms, model fidelity, data communications patterns, network topology, timing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

Enabling Technologies

Scenario Effects Performance Measures

Analysis Objectives

Simulation Execution

Analyze
Run-Time

Performance

Performance
Characterization

Monitoring System

Fig. 4. Performance analysis activity process.

requirements and policies, and system scalability issues. Many DIS and HLA

applications have soft, real-time requirements so performance data (i.e., timing data) is

useful for testing and debugging activities, especially in the context o f a complex,

distributed run-time environment. Coinciding with model design and development are

issues surrounding the planning and execution of DIS/HLA exercises so decisions must

be made regarding hardware and software configurations. Simulation performance

information is also useful to support run-time assessments regarding the simulation

environment and for making near real-time assessments about the validity o f the current

simulation activity. Depending on the information provided, decisions can be made that

include dynamic load balancing, diagnosis o f simulation performance, and validity of

perceived simulation activity.

The performance abstraction presented in Section 3.1 discusses the most significant

factors that affect DIS and HLA performance and provides a basis for the taxonomy of

performance measures that delineate the boundary o f logical and physical components

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

used to create a distributed simulation environment. The set o f performance measures

(summarized in Table 3.2) provide a basis for metrics selection useful for characterizing

DIS and HLA run-time performance as it relates to the low-level resource and services

used in a distributed simulation environment.

The process o f metrics selection must also consider the capabilities and limitations of

enabling technologies as well as the workload impact o f specific scenarios. The

relationship between low-level system and simulation performance, and the scenario

workload is a critical factor to provide meaningful information to persons making

decisions about the configuration, control, and management o f DIS and HLA simulations

and for those who might not be able to interpret lower-level performance data. Figure 3.3

shows a process model (IDEFO [74])8 that represents the taxonomy of performance

measures, scenario (workload) effects, and enabling technologies (hardware, software,

and architectural) as constraints on the performance analysis activity. Based on the

analysis objectives, a set of meaningful metrics is selected and collected using the run

time monitoring system.

Figure 3.4 depicts the notion o f a unified architectural framework for the design,

configuration, and control o f DIS and HLA simulations. At the core o f the framework is

the taxonomy of performance measures discussed in this section, specifically the

measures related to modeling, simulation infrastructure, and the systems (compute

platforms) on which they are instantiated. Data (metrics) that capture these performance

measures are collected at simulation run-time by a monitoring system. This monitoring,

measurement, and data collection system embodies the knowledge about the run-time

execution of HLA and DIS applications. The performance information related to the run

time performance of the simulation environment is useful during the entire life-cycle of

the simulation; during modeling and simulation design and development activities,

s Equivalent representations could be created using other IDEF representations such as IDEF4 (object-
oriented design methods for client-server architectures).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

Fig. 5. The unified, architectural framework for performance analysis o f DIS and HLA
simulations.

configuration of simulation exercises or studies, and for run-time monitoring and control

of the simulation environment (especially in the context of large-scale and geographically

disperse environments). The outer ring in the framework depiction represents the various

M&S domains (training, analysis, acquisition, and operational) using DIS and HLA

simulations that require decision support regarding the impact o f simulation run-time

performance. Fundamentally, the only aspect o f the framework not relevant to non-DIS

or non-HLA distributed simulations is the performance measures associated with physical

and behavioral representations of military entities (i.e., sensor and weapons sub-models).

As such, the DIS and HLA performance characterization presented in this thesis is a

useful characterization in general since it is based on a high-level abstraction of

components relevant to most distributed simulation environments.

The next section in this thesis continues the discussion o f an integral part o f the

performance analysis framework; the PerfMETRICS monitoring, measurement, and data

collection component. The design and implementation of this software was a significant

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

portion of this thesis development and its role in DIS and HLA performance analysis is

discussed in the follow-on section on use cases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

SECTION 4

THE PERFMETRICS MONITORING SYSTEM

As discussed in the previous section, a limited number o f data collection tools

exist to support DIS and HLA performance evaluations and most o f the tools that do exist

are focused on providing low-level, application specific performance data (e.g., network

traffic). To meet the objectives o f this thesis, a tool was developed to monitor and collect

performance data useful for decision-makers when analyzing simulation and system

performance. The tool embodies knowledge about the run-time execution o f HLA and

DIS applications. It is capable of identifying performance bottlenecks that can lead to

errors in terms of application behavior and its interactions with the systems on which they

run. PerfMETRICS is a performance monitoring tool developed to meet the following

requirements: 1) provide capabilities to monitor, record, and report simulation

performance data, 2) provide real-time analysis o f simulation performance, 3) provide

logging capabilities for post-mortem analysis o f simulation data, 4) provide an

infrastructure for monitoring and controlling a diverse set o f HLA and DIS applications,

5) provide an implementation that is flexible and extensible, 6) provide a mechanism for

controlling the monitoring process, and 7) limit the intrusiveness of the system.

PerfMETRICS can be used to collect performance information to guide persons making

decisions related to model fidelity and resolution, the design and implementation of

simulation infrastructure, and the control and configuration o f simulation scenarios and

their run-time environments. A tool like PerfMETRICS is required to allow decision

makers to better understand the complexity of the DIS and HLA distributed simulation

environment.

The data PerfMETRICS collects relate to the simulation model components, the

simulation infrastructure, and the operating system and its application interfaces.

PerfMETRICS gathers timing data from individual model components and correlates the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

data with specific entities or entity types. Performance data gathered on simulation

infrastructure includes timing information for implementation mechanisms such as the

event scheduling, idle time, entity state update performance (tick rates), and data sharing

(e.g., time spent in the RTI). Operating system performance information includes CPU,

memory and network utilization metrics. A detailed description of the data

PerfMETRICS currently collects is found in the appendix.

Real-time analysis o f simulation performance information includes the capabilities to

look at the performance o f individual workstations and to view multiple machines

concurrently to assess the aggregate performance of all machines participating in the

simulation exercise. PerfMETRICS provides a Graphical User Interface (GUI) that

provides a numeric/tabular display of the relevant performance metrics and a means of

showing the data as it changes during simulation run-time (time-series analysis).

PerfMETRICS provides logging capabilities for post-mortem analysis o f simulation data.

The performance data of each o f the individual simulations is saved so fine-grained data

analysis, if desired, is possible. The data from all simulation/applications can be collated

to provide a more global view of simulation performance. A mechanism (i.e., external

utility) for reading the performance information is implemented and is capable of

formatting the data so it can be imported into a diverse set o f analysis software. A subset

of available performance information can be selected for analysis since typically large

amounts o f data are available but are not relevant to the current problem of interest. This

capability, the use o f compiler directives to statically include or exclude instrumentation

code, and the run-time capability to dynamically start and stop data collection supports

tuning the monitoring and collection process to meet analysis requirements.

To provide a flexible and extensible monitoring system, the design o f PerfMETRICS is

loosely-coupled with the applications it is monitoring. Data links used to pass

performance information are independent o f the simulation application and protocols.

Doing so enhances the monitoring system’s usability in both DIS and HLA simulation

environments. Ideally, a monitoring systems architecture should generalize to make it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

useful for a broad range o f distributed applications used in distributed simulation

environments. PerfMETRICS has been used to monitor and control various DIS and

HLA applications. An artifact o f application diversity is the use o f the monitoring system

within a heterogeneous distributed simulation environment. This results in the need for

data marshalling and PerfMETRICS is designed to deal with byte-ordering differences

among big-endian and little-endian workstation architectures. The PerfMETRICS

implementation is written using the C programming language and uses standardized X-

Windows and M otif toolkits and libraries. This makes PerfMETRICS a readily portable

application on any processor/compiler architecture with an operating system that supports

the use of shared memory.

As requirements for simulation performance information and simulation control change,

a monitoring system should be implemented in a way that allows the relevant simulation

performance and control information to be transmitted as needed throughout the

distributed simulation environment. The underlying application and network protocols

the monitoring system uses should be able to support the data exchange. Also, the

architecture must be able to support increasingly stringent performance requirements (in

the context o f the monitoring system’s run-time execution). As the size o f the distributed

simulation environment scales, the volume of performance information collected by the

monitoring system must scale respectively. PerfMETRICS provides capabilities to

control the rate o f performance data collection, manage the hierarchy o f simulation

engines that are reporting and/or collecting performance data, suspend and resume the

collection and reporting process, and define what low-level network resources the

monitoring process uses (e.g., TCP/IP service ports, multicast group addresses).

4.1 System Architecture

The PerfMETRICS architecture (see Figure 4.1) consists o f DIS and HLA applications

interfacing with the PerfMETRICS monitoring system via a shared memory interface.

The monitoring system has a daemon process on each workstation running a DIS or HLA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

P e rfo rm an ce In fo rm a tio n R ep o rtin g M u lti-c a s t G ro u p

Station 1

D istrib u ted S im u la tio n

P c rtM E T R IC S A PI

I
S hared M em ory

I
P crtM E T R IC S

C o llec tio n D aem on

t

Station 2
/* s

D is tr ib u te d S im u la tio n

PerfMETRICS API

V ,

I
S h a red M em ory

I
P crtM E T R IC S

C o lle c tio n D aem on

T

Station ...n
r \

D is tr ib u te d S im u la tio n

PcrtM ETRICS API
)

I
S h a red M em ory

I
P crtM E T R IC S

C o lle c tio n D aem on

t
±

D ata L og

/

P e rfM E T R IC S P c rtM E T R IC S
C o lle c tio n D aem on G U I

Perl\lETRICS Monitoring Station

L A N /W A N

Fig. 6. PerfMETRICS architecture.

application. The daemon processes transmit control and performance information

throughout the LAN and WAN networks using multicast/IP. One or more workstations

designated as monitoring control stations receive the PerfMETRICS control and

performance data packets and log and display the relevant information. Performance data

is obtained from the application and stored in a shared memory segment, either through

periodic processing or on the occurrence of specific events. This shared memory segment

is implemented using standard System V IPC. The performance data in shared-memory is

a static structure used by the DIS or HLA application and the PerfMETRICS collection

daemon. As mentioned, the PerfMETRICS collection daemon runs on each workstation

executing a monitored application (may or may not be a simulation). The collection

daemon is implemented as a simple state machine. Depending on whether or not a

simulation or other monitored application has attached to the shared-memory segment,

the collection daemon will either be transmitting (send state) or receiving (receive state)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

performance data. Every daemon process has a global view of the PerfMETRICS control

information being transmitted on the network. As mentioned, the daemon gets

performance data from the application by reading the shared memory segment. At a

periodic interval, the daemon will transmit the performance data over the network.

The PerfMETRICS system supports dynamic analysis o f simulation performance by

using a Graphical User Interface to display relevant performance data. Simulation

performance is conveyed as entity, simulation infrastructure, and system (i.e., operating

system) information. The interface can display data in time-series to help visualize the

complex relationships among different factors that affect simulation performance. The

PerfMETRICS system is capable of logging all performance data it receives to a binary

file. The file structure is well defined; it is identical to the performance data packet

structure transmitted by the PerfMETRICS collection daemon. Logging is done by the

workstations designated as the monitoring control stations (whose PerfMETRICS

collection daemons are in a receive state). If logging is turned on (it is optional), as the

collection daemon receives a performance data packet it will write the packet to a binary

file.

4.2 System Design

The design of PerfMETRICS can be viewed as three principal components: I) the

application instrumentation, 2) the collection daemon, and 3) the user interface

(facilitates the presentation and display o f the performance information). Performance

data is obtained by hand-instrumenting the application source code. This requires specific

knowledge about the application’s implementation. The performance measures discussed

in Section 3 are used as a guide to determine what data is to be pulled out o f the

application and where the instrumentation code is inserted. A library (PerfMETRICS

API) is compiled and linked into the application that provides the functional interface to

the shared memory segment used by the application and the collection daemon. The

interface consists o f both function calls and macros that may be used for things such as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

starting and stopping timers or writing performance event data into the shared memory

segment. The instrumentation code is either turned on or off using compiler directives.

This mechanism results in PerfMETRICS either being turned on or turned off at compile

time but avoids the additional overheads o f doing run-time conditional checks to

determine whether or not the instrumentation code should be executed. As mentioned, the

application type and defined performance metrics define the structure of the performance

data in shared memory. An example C data structure used for the use cases presented in

this thesis looks like:

typedef struct {
/* structure containing the Entity Statistics Data */
ENTITYSTATS emetrics; /* queue of vehicles */
/* structure containing the Simulation Statistics Data */
SIMSTATS simmetrics;
/* structure containing the System Statistics Data */
SY3STATS sysmetrics;
/’* contains simulation's version, host, exercise, PO
database id, and terrain database version */
EXSTATS exstats;
/* contains HLA « DIS Gateway performance data */
HLAINTERFACE_STATS hlainterface_stats?

} METRICS, *METRICS_PTR;

During initialization the application attaches to the shared memory segment via the

PerfMETRICS API, registers to use a semaphore controlling access to shared memory,

and then clears the data structure. This data structure in shared memory acts as a buffer,

holding the most recent performance data until the PerfMETRICS collection daemon is

ready to transmit the data to the monitoring station(s). Additionally, at initialization time

the application uses the PerfMETRICS API to set up signal handlers used to notify the

collection daemon o f the status o f the application. For instance, at startup the application

sets a shared variable with an enumeration defining its application type (e.g.,

HLAINTERFACE is an enumeration used to indicate an HLA<=>DIS Interface

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

I Transmit 1
I Control Data I

ruro*

DIS Application or
HLA Falerite

Period*: Ar*l LveniD m m
I 'n i i tn u n ir I)au

bet Monitoring
Control Data

Receive
Control Data

D o m e R e lev an t
A p p lica tion

P e rfo rm a n c e D ata

PertMETTtlCS CdMroi
PacketMomturmg rm ceu

t.wwrw Dua
Fncirv MiOH Uou
SimuJaliun lA fm m jcxunr Om j

PcnMETRKS Consol
Dm i Packet

Performance Data ButTcr
Receive

Pcrt’ormance
Data

PWM6TRK. S Control And
Prrturmanee D uu Packet

D e n v c R elev an t
S y stem

P e rfo rm a n c e D ata

Vtem>#> (UtiAUiai
Serwiwk I.ood

Pe rfo rm * * * d id
'omrm O ta Pjckm

PtrlVlfc IKICS Ctmrol Af*l
rt Oku P»;kct

Transmit
Pertbrmance

Data

>prr?nng v*»iem
P«n>enun«;e (>*U

I S I X p ro c h lc s v n c m Process and
Maintain

Pertbrmance
Data

save
Pertbrmance &
Control Data

Kernel vunuK*

O p e ra tin g S y stem
K erne l EJmery Ptrftsmencr

And Ciwnrol DaU
ReccedPrrtienuw e And

« .n iro l [W* 1 tx t *

PilM-JiUlVM*
All Wtvktutiuftt

Pertbrmance Log File
PcrtMETRICS

Run-time Display
iGL'USyvtem

Fig. 7. Data flow diagram of the PerfMETRICS collection daemon.

application) and then sends a signal to the collection daemon indicating it is ready,

meaning the PerfMETRICS component o f the application has been properly initialized

and is ready to write performance data to the buffer. The application also catches

operating system signals that cause the application to terminate, crash, or abort. This

allows PerfMETRICS to properly manage the 1PC and to send a control message that the

application is no longer running.

4.2.1 Collection Daemon

Figure 4-2 is a data flow diagram illustrating the functional components o f the

PerfMETRICS collection daemon. The key daemon functions are: 1) gather the

performance information from the application and operating system, 2) transmit, receive

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

and process control and performance data, and 3) process and manage the information for

logging and run-time display. The shared memory buffer provides the conduit for data

flow. Shared memory was selected because o f its better performance compared to other

IPC mechanisms. Traditional pipe and named pipes (FIFOs) are subject to performance

overheads since they are implemented using file I/O and system calls. Other drawbacks

associated with pipes include the number o f pipes that must be created for a client/server

architecture consisting o f multiple clients, explicit deletion of pipes after process

termination, and the fact that data passing through the pipe can only be viewed as a byte

stream that has no persistence once read. Other IPC mechanisms such as message queues

and the STREAMS/socket interface offer better performance than pipes because they are

implemented in the operating system kernel. However, they still are generally slower

mechanisms than shared memory IPC; multiple copies and buffers of data must be

managed by the kernel as the data is shared among processes.

A shared memory interface provides a fast mechanism to share data. Access to the shared

region is like any other memory access, requiring no system calls to read or write data

and in terms of implementing a software-based performance monitoring system it is the

least complex in terms of instrumentation code. One limitation o f shared memory is the

lack of any intrinsic synchronization for processes reading and writing data to the shared

memory. To address this problem, PerfMETRICS uses a semaphore mechanism to

coordinate access to the shared memory segment. Logical communications between the

application and the collection daemon are via software interrupts and data stored in the

shared memory region. The software interrupts (signals) are used to establish a logical

connection between the monitored application (typically a simulation) and the collection

daemon. This requires their Process Identification (PID) numbers be placed in the shared

memory segment. These PIDs are used by the signaling mechanism to notify either o f the

two processes that some event has occurred related to control o f the monitoring process

(e.g.. change the frequency o f reporting data). Table 4.1 lists the notifications that are

currently used in the PerfMETRICS monitoring system. The actual signal sent and

delivered via the kernel is a POSIX defined SIGUSR1 interrupt. Upon receipt o f this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

interrupt, the collection daemon or application will examine a Control Command field in

the shared memory segment that specifies the particular notification type. The daemon or

application will then execute the required processing.

Communications between the collection daemon and the lower-level networking facility

use I/O multiplexing to know when data can be read from the networking service ports

without blocking. The multiplexing mechanism is implemented in the collection daemon

by using a select system call, allowing the daemon to know which service ports are ready

to be read from or written to without blocking. The use o f I/O multiplexing in the

PerfMETRICS design is significant because when reading or writing data from the shared

memory segment, the daemon acquires a semaphore lock on that region. If the daemon

blocks while trying to read or write to the network service ports, the semaphore it is

holding prevents the application from accessing the shared memory region. If this is the

case, then the application could spend an inordinate amount o f time blocked while

waiting for the semaphores, increasing the overall intrusiveness o f the monitoring

process. Using shared memory, signals, and I/O multiplexing reduces the overhead o f the

PerfMETRICS monitoring process by decreasing the time it takes to access shared data

and making the most o f event-driven IPC.

The PerfMETRICS collection daemon is implemented as a simple state machine capable

of either sending or receiving performance data depending on the type o f application with

which it has established communications. The collection daemon states and transitions

are illustrated in Figure 4.3. The transitions are shown as condition/action pairs. After

creating and initializing the shared memory segment and its networking service ports, the

collection daemon enters an initial Sleep state where it waits for an interrupt from an

application that wishes to use the daemon process. When an application wakes the

daemon process the Ready state is entered. In the Ready state the daemon transitions

either to the Sender, Receiver, or Sleep state depending on what kind of application or

process, if any, has established a logical connection with the collection daemon via the

shared memory segment. If the daemon determines a monitoring control GUI or an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

TABLE 3
PerfMETRICs Monitoring Event Notifications.

Notification Generated by (at) Seen and / or U sed by

New Collection Interval Monitoring Control GUI AH collection daemons

Suspend Collection Monitoring Control GUI All collection daemons

Resume Collection Monitoring Control GUI All collection daemons

Simulation Start Simulation All collection daemons

Simulation Stop Simulation All collection daemons

Simulation Suspended Simulation All collection daemons

Simulation Resumed Simulation All collection daemons

Simulation Crash Simulation All collection daemons

Start Data Logging
Monitoring Control GUI Monitoring Control collection

daemon

Stop Data Logging
Monitoring Control GUI Monitoring Control collection

daemon

Configure HLA Interface Monitoring Control GUI All collection daemons

HLA Interface Control Monitoring Control GUI All collection daemons

HCI Interface Control HCI Application Simulation

application that needs to send or receive performance data has awakened the daemon, the

daemon transitions into the Receiver or Sender state accordingly. Once in the Sender

state, the collection daemon will transmit system and application performance data along

with control information. Some applications may have requirements to receive

performance data, which is also possible in the Sender state. All relevant performance

and control data is transmitted to members in the PerfMETRICS multicast groups. The

data is transmitted at the rate specified by the collection interval, a parameter specified

during daemon initialization and may be modified during run-time. Upon receipt o f a

monitoring control interrupt (SIGUSERl), the collection daemon transitions out o f the

Sender state, processes the control command and returns to the Ready state. Transitions

between the Receiver state and the Ready state are the same as from the Sender to Ready

state.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

Application or
Monitoring Control
Process Terminated

Command Control
Interrupt

Monitoring or Application
Command Processed

Monitoring Control
Station Connected

Application Connected

Transmit and/or Receive
Pertbrmance Data

Command Control
Interrupt

In itia liz a tio n

R ece iv e r

R eady

Monitoring or Application
Command Processed

Fig. 8. State transition diagram o f the PerfMETRJCS collection daemon.

The PerfMETRICS protocol consists o f event-based transmission o f monitoring control

packets and periodic transmission of performance data packets. The two packet types are

transmitted via service ports associated with different multicast groups. Using multiple

multicast addresses provides the flexibility to create a hierarchy o f reporting groups,

allowing the monitoring system to scale more easily. The monitoring control packet is

used to disseminate information about the monitoring process such as applications

starting, stopping, or abnormally terminating, Control packets are also used to suspend or

resume the transmission o f performance data and to change the interval in which the data

is collected and transmitted. Application control can be implemented as well, using the

PerfMETRICS control packet. An example is the HLA<=>DIS Interface application

discussed in the use cases presented as part o f this thesis. PerfMETRJCS is able to control

the startup and shutdown of the interface application as well as control the flow of

specific DIS PDUs and HLA data packets. Additionally, another extension to the

monitoring control packets allows application specific data to be transmitted and received

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

by the daemon and used by an HLA federate to make dynamic load scheduling decisions.

Details on this application are also found in the use cases.

The monitoring control packet acts as the header for the PerfMETRJCS performance data

packet; the performance data packet, therefore, consists o f a control packet and a copy of

the shared memory buffer (described early in this section) containing the performance

data. One drawback to the current implementation o f this protocol is that it does not allow

for only application specific data to be passed, meaning that, depending on the number

and types o f applications using PerfMETRJCS, all data packets have the same structure,

regardless o f the type of monitored application. The current implementation should be

modified to allow for variable length data packets whose contents would only contain

data relevant for the application type sending the packet. The collection daemon uses the

External Data Representation, or XDR, to perform data marshalling. The decision to use

XDR was a tradeoff between the flexibility o f XDR for porting applications across

different platforms, and the constraint o f requiring other applications to use XDR to

translate the data from a PerfMETRJCS data packet into a usable format. A detailed

description o f the PerfMETRJCS monitoring control packet and the performance data

packet is found in the appendix.

An important component o f the PerfMETRJCS collection daemon is the logging

capability. The daemon process logs information related to the entire run-time monitoring

environment. It logs important initialization information as well as monitoring control

information. Figure 4.4 shows a sample log file and provides a time series example of the

collection daemon processing as discussed in this section. This particular listing indicates

a successful initialization o f the daemon process; the signal disposition is set, IPCs and

Multicast/IP communications is initialized, access to the kernel statistics is initialized,

and then the daemon enters the Sleep state. When the application (in this case, a Human

Computer Interface, or HCI, on a workstation called pseudo_l) attaches to the shared

memory segment and is ready to send and receive performance data, it sends a signal

waking the daemon from its Sleep state. The daemon enters the Sender state (referenced

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

TueJun 8 15:18:27 1999 Hostname: pseudo l (192.5.11.54)
TueJun 8 15:18:27 1999 Starting perfcollectd (pid=28479) daemon.
TueJun 8 15:18:27 1999 Signal disposition set.
TueJun 8 15:18:27 1999 Removed existing shared memory segment U 1
TueJun 8 15:18:27 1999 Removed existing shared memory segment # 2
TueJun 8 15:18:27 1999 Removed existing semaphore set # 1
TueJun 8 15:18:27 1999 Removed existing semaphore set # 2
TueJun 8 15:18:27 1999 IPC initialization complete.
TueJun 8 15:18:27 1999 Data Group: FD=4 PORT=6000 G RO UP=224.0.1.255
TueJun 8 15:18:27 1999 Data Group: FD=5 PORT=6000 G RO UP=224.0.1.255
TueJun 8 15:18:27 1999 Control Group: FD=6 PORT=6002 GROUP=224.0.2.255
TueJun 8 15:18:27 1999 Control Group: FD=7 PORT=6002 GROUP=224.0.2.255
TueJun 8 15:18:27 1999 Comm, initialization complete.
TueJun 8 15:18:27 1999 System data initialization complete.
TueJun 8 15:18:27 1999 Going to SLEEP.
TueJun 8 15:20:10 1999 Entering SIM STATE
TueJun 8 15:20:10 1999 pseudo_l:cl:HCISTART:TueJun 8 15:20:10 1999
TueJun 8 15:20:10 1999 HCI Connected.
TueJun 8 15:21:31 1999 pseudo_4:cl:SIMSTART:TueJun 8 15:21:22 1999
TueJun 8 15:21:41 1999 pseudo_7:cl:SIMSTART:TueJun 8 15:21:37 1999
TueJun 8 15:24:11 1999 pseudo_4:c2:SIMCRASH:TueJun 8 15:24:02 1999
TueJun 8 15:24:18 1999 pseudo_l:c2:HCISTOP:TueJun 8 15:24:18 1999
TueJun 8 15:24:18 1999 Going to SLEEP.

Fig. 9. PerfMETRJCS collection daemon log file.

in the figure as SIM STATE) and is able to send and receive performance data. As seen

in the figure, the daemon logs monitoring control information. The figure shows two

other workstations (pseudo_4 and pseudo_7) each starting up a simulation. Pseudo_4’s

simulation terminates abnormally (SIMCRASH) and then the HCI process on pseudo_l

terminates normally, transitioning the daemon back into the Sleep state. This kind of

information is valuable for assessing not only the collection daemon’s processing but also

provides a way of analyzing the entire performance monitoring environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

4.2.2 Data Presentation (GUI)

PerfMETRICS uses a Graphical User

Interface (GUI) to display data collected at

run-time. The interface provides a tabular

display of the performance information

collected from each application reporting

data during an exercise. Figure 4.5

provides an illustration o f the main

PerfMETRICS window. The data

presentation is partitioned into three

sections displaying the entity metrics,

simulation metrics, and system metrics

discussed in Section 3. Data unit

conversions are handled within source

code. The appearance of the data labels

and notes on the display is controlled via

the X I 1 resource files. The display is initialized to show performance information for the

application associated with the first data packet received by the collection daemon.

Performance information for different applications (different workstations on the

network) can be selected by pressing the right mouse button anywhere in the GUI

window and selecting the desired workstation from the pull-down menu. It is possible to

view multiple workstations at the same time by selecting the “New View” option from

the main “Admin” menu. The windows can be tiled on the monitor screen allowing

performance comparisons o f multiple machines at run-time. Logging of the performance

information to disk for post-exercise analysis is also controlled via the PerfMETRICS

GUI.

The window shown in Figure 4.5 is the default window for showing performance

information. The user interface however, is designed to show alternative views depending

f j /M tn S M I (^ lU o n c Toolm MUp

LacalajE*

A—o ta a [fr

O tharjjM

\l
PTiaaa A rucaaalny T is ln y tjl

pou in [s .2* / a . t o / l . l a M « w i / i t

POD 0u t |7.S * / 7.01 / l . t a M n « i / » t

H u lljllO .** / 17.17 ✓ 3.E a tm « v W S S t

T u rm i!> .W / 0^7 7 O . l a t i t

Local s i m i c t t t n P i r f t fM A M
anr s t a t u * tcrstT » s to w a c id t o a /z i s s o i s h u • c o n tr o l*
ImtcImi M AO oatwi—t io T«mim -■ .t iw a -w q

E n t i t y I n fo

S im u la tio n In to

S la ck In T ick R ate j f d l .W

E n t i t y Update .Par fam oncj 1» .73
t* d a tn R ataa (ItZ^AA I 12.773 I 1 «Um1
E n titu Tick T im / 20.»W U N n l / l l

|U*W t L ln u c X.o.n
(

(K ern e l! [II .<

I d le M . t

Fig. 10. PerfMETRICS GUI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

on the kind of application being monitored. An example is the view developed to

specifically show performance data for an HLAODIS interface discussed in detail in

Section 5. When a user selects a machine that is reporting performance data from a

different kind o f application (e.g., an HLA Interface), the view will automatically change,

triggered by an “application indicator flag” in the data packets associated with that

machine. Using the “Config” menu option it is also possible to readily integrate

customized windows to provide, among other things, exercise or application control

functions. This capability was utilized to implement a control function for the

H LA ^D IS interface; turning on and off the flow o f different DIS and HLA data packets

through the interface.

Similar to simulations instrumented for PerfMETRJCS, the GUI process communicates

with the PertMETRICS collection daemon through a shared memory interface (refer to

Figure 4.1). Constraints are programmed into the collection daemon to prevent the GUI

from connecting to the collection daemon if a simulation is already connected. A signal

(software interrupt) is sent to the GUI indicating the daemon process is being used by

another process. The GUI traps the signal and then terminates with an error message. The

collection daemon logs the condition of the GUI failing to connect with the daemon

process. Depending on the hardware / software configuration and analysis objectives this

constraint may or may not be desirable and is readily removed, although the collection

daemon has not been tested for concurrent reading and writing o f performance data.

An important point to emphasize is the design and development focus for PerfMETRJCS

was not on the GUI. The intent was to concentrate efforts on other aspects o f the

monitoring system such as data semantics and communications infrastructure. The GUI

provides basic capabilities for a user to monitor, control, and log data.

4.2.3 Data Analysis

Data analysis associated with DIS and HLA exercises can be considered from two

aspects: real-time and post-exercise analysis. The graphical interface used to present real

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

time data was discussed in the previous section. Its practical application to real-time (or

near, real-time) data analysis for DIS and HLA simulations is more closely related to

exercise monitoring and control, the objective being to support timely decisions regarding

the conduct o f a given simulation study or exercise. The GUI provides a means to

observe system-level, application-level, and model-level performance characteristics of

individual workstations (i.e., simulation engine or other DIS/HLA application). The

collection daemon can be configured to control the rate that performance information is

collected and determines the timeliness and accuracy of the data on which decisions are

based. It is possible to make comparative assessments regarding the performance of

different or similar applications when multiple windows are tiled on the monitor screen.

For post-exercise analysis, the current PerfMETRJCS implementation logs all

performance data to a file. The file format is simply a binary dump of the PerfMETRJCS

protocol data packets. This provides a simple and fast method for saving the data with the

least impact on run-time performance of the collection daemon. A separate process is

used to extract the desired data, perform data or unit conversions (if required) and

redirect the processed data to another file in an ASCII format. Figure 4.6 shows a

segment o f the configuration file used to specify exactly what data is extracted (data

mining) from the binary data file and for which workstation (application). Figure 4.7

shows a segment o f an ASCII output file generated by the data selection process. The

resultant performance information can be imported into a suitable analysis application

(e.g.. Minitab, Microsoft Excel, SAS).

PerfMETRJCS provides the capability to observe the workloads from each major

component of the simulation architecture. Time-based analysis of performance data from

individual workstations provides detailed information on simulation (application)

performance over a narrow aspect o f the overall distributed simulation system. The same

process used to extract the desired performance data also aggregates utilization data for

all workstations reporting PerfMETRJCS data (data fusing). This operation allows global

simulation metrics to be generated and helps decision-makers to understand how well

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

** convert.config - configuration files to specify which PerfMETRJCS
output variables to print **/

hostid 3
input usrl/_082598083l 13.airl5
output gw 3_l.txt
starttime 00:00:00
stoptime 24:00:00
month 0 i* month */
day 1 /* day o f month *1
time I /* time o f day */
host 1 /* simulation hostname */
exid 0 /* exercise id */
poid 0 /* po database id */
collint 0 /* data collection interval */
seqnum 1 /* data packet sequence number */
Iveh 0 i* n o f local vehicles * /

lmis 0 /* # o f local missiles */
lstr 0 /* # o f local structures */
lstl 0 /* # o f local stealths */
lenv 0 /* # o f local environmentals */

Fig. 11. PerfMETRJCS data selection configuration file.

available resources (in this case, workstations) are being utilized. The next section of this

thesis provides greater detail regarding data analysis and includes examples o f how data

collected using the PerfMETRJCS monitoring system can be used to analyze and assess

the run-time performance of different distributed simulation environments.

4.3 Instrumentation Costs

If performance monitoring is required for other than the development and testing

phases of the DIS/HLA life cycle (i.e., for experimentation or production use), a software

monitoring architecture could be too intrusive on system performance. A compromise

must be made on run-time measurements necessary to obtain performance data, the

objective being to establish a balance between the adequacy o f measured data (for the

purpose of analysis) and the intrusiveness o f the monitoring system (and its perturbation

o f the performance analysis). Prerequisites for determining the appropriate compromise

(tradeoffs) include assessing the value o f the performance data as it relates to the analysis

activity, developing an intuition regarding the potential impact o f monitoring on model or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

day time host seqnum lairveh rairveh sns_int tsk_ int cp>_slack cp_ratio
ltk_rate rtk_:rate tktm_int wttm_:int :rtitm_:int

8 18:06:34 PSEUDO_3 138 23 50 12.97 5.12 396.90 100.00
5 .87 6.18 59.42 0.12 5.11

8 18 :06:39 PSEUDO_3 139 23 50 12.97 5 .12 396.90 100.00
5 .87 6 .18 59.42 0.12 5 .11

8 18 :06:44 PSEUDO_3 140 25 50 18.19 6.14 396.90 100.00
7.28 7.36 74.95 0.00 4 .93

8 18 : 06:49 PSEUDO_3 141 25 50 18.19 6 .14 396.90 100 .00
7.28 7.36 74.95 0.00 4 .93

8 18:06:54 PSEUDO_3 142 25 50 17. 93 5.98 396.90 100.00
8 .02 7.99 77.75 0.00 4 .63

8 18 : 06:59 PSEUDO_3 143 25 50 17.93 5.98 396.90 100.00
8 . 02 7.99 77.75 0.00 4 .63

8 18:07:04 PSEUDO_3 144 25 50 18.19 6.11 361.06 100.00
8 . 02 8 . 08 76.63 0.00 4 .89

8 18:07:09 PSEUDO_3 145 25 50 18.19 6.11 361.06 100.00
8 .02 8 . 08 76.63 0.00 4 .89

8 18:07:14 PSEUDO_3 146 25 50 17.68 5.89 361.06 97.68
3 .23 8 . 17 76.70 0.00 4 .53

8 18:07:19 PSEUDO_3 147 25 50 17.68 5.89 361.06 97 .68
8 .23 8 . 17 76.70 0.00 4 .53

Fig. 12. PerfMETRICS data selection output file.

simulation behavior, and understanding the monitoring effects (perturbation) on the

analysis results. Perturbations in performance analysis may be caused by the delays

induced from executing performance measurement code (instrumentation); this also

conditionally affects other low-level resources such as memory caches, pipelines, and

register allocation. Other perturbations that occur when monitoring distributed

simulations are created when the execution of instrumentation code results in delays

causing a re-sequencing o f simulation events; event reordering can potentially lead to

incorrect execution o f the simulation.

Analysis o f the run-time performance o f a distributed simulation must, at some

level, account for the perturbations due to performance measurements. An estimate o f the

costs o f performance measurements must be determined. These costs can be accounted

for during the presentation o f performance information.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

Instrumented

Ss
b
5

Non-instrumented

Number o f Vehicles

Fig. 13. Instrumentation costs for SAF “high-frequency” function.

The above discussion motivates the need to understand monitoring and measurement

overheads so choices can be made regarding monitoring system design and

implementation. Early on in the PerfMETRICS development process, studies were

conducted to understand the costs associated with the instrumentation component of the

PerfMETRICS architecture; the most intrusive component since it directly affects the

simulation's run-time execution path. Figure 4.8 presents results from a timing analysis

done on a SAF application instrumented to use PerfMETRICS. The results show the

percentage of the total CPU time used by a “high-frequency”, run-time function,

specifically the SAF sub-scheduler responsible for invoking the execution of each

entity’s sub-models. The data shows the worst-case overhead induced by the

instrumentation is less than twelve percent. This instrumentation cost was deemed

reasonable considering the value o f the sub-model performance data gathered in this

function. The relative instrumentation costs in this function decrease as the number o f

entities increase. This is an artifact o f the larger entity count creating a greater simulation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

TABLE 4
Sample Instrumentation Costs for a SAF Run-time Function

Instrumentation Code System Calls
times semop

36.24 +/- 1J % 41.74 +/- 1.0 % 22.08 +/- 0.08 %

workload in other functional areas o f the processing, resulting in fewer calls to the sub

scheduler function. This example illustrates the dependency between instrumentation

costs (intrusiveness) and data frequency. Other dependencies exist in terms of the

granularity o f the data that is captured and the volume of performance data that is

monitored and/or collected.

Another significant factor affecting run-time costs of monitoring and data collection is

the design and implementation o f the instrumentation code itself. Alternative designs and

implementations should be considered in conjunction with the data design issues

discussed above. Consider the impact o f making frequent calls to the operating system to

get the value o f the system clock or some other function. Table 4.2 presents more data

from the timing analysis discussed in association with Figure 4.8. The table shows the

relative costs associated with the instrumentation code and the system calls it invokes.

The expense o f making frequent calls to the operating system (in this case time-of-day

and requests to acquire a semaphore) is obvious. An alternative implementation to using

kernel semaphores is to implement “user” semaphores by using a shared variable.9 This

was implemented in a Linux-based version of PerfMETRICS using a machine-level

instruction intrinsic to Intel-based processors, specifically an exchange word (xchgw)

instruction. The required semaphore lock and unlock functionality was implemented

using in-line assembler and the xchgw instruction. The code segment was as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

#define Locklnit(p)
^define UnLock(p)
tfdefine Lock(p)
(♦define lock t

(p=0)
(exchange(&p, 0))
while (exchange(&p,1)) while (p)
volatile int

inline int exchange(volatile * addr, int reg)

int oldbit;
asm volatile (LOCK_PREFIX

"xchgw %0,%1"
:"=q" (oldbit), "=m" (*(addr))
: "m" (*(addr)), ”0" (reg));

return oldbit;

The resulting implementation eliminates the overhead associated with the _semop system

call and reduces the costs o f the instrumentation code (user-defined) by almost fifty

percent. These results illustrate the significant effect o f certain implementation decisions

on the costs associated with performance monitoring. In some instances, executing

instrumentation code for inordinately large amounts o f time is tolerable. An example is

the time spent executing the instrumentation code for measuring scheduler idle time.

Since the simulation is obviously not busy (i.e., its idle waiting for an event to occur),

there are no adverse effects on executing the instrumentation code because it is using

compute cycles that are otherwise unused for real simulation events.

To summarize, software-based performance monitoring systems such as PerfMETRICS

mandate a careful balance between the volume and accuracy of the data. Excessive

amounts of instrumentation and a poor implementation will perturb the monitoring

process and analysis results; not enough instrumentation limits the accuracy o f the data

used to characterize system behavior. Lacking perturbation models to quantify the effects

o f instrumentation costs relative to data requirements, intuition and trial-and-error must

be used to develop a monitoring system that adequately meets performance analysis

objectives without being too intrusive on system performance.

This is possible provided there are guarantees that writing to the shared variable (the semaphore) is an
atomic operation (no-preemption) from the operating system kernel perspective. Note that this mechanism
is generally non-portable since it relies on the explicit use o f a processor-specific instruction set.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

SECTION 5

PERFORMANCE MONITORING USE CASES

This section presents use cases containing performance monitoring and analysis

results from real-world programs. The examples illustrate the utility o f performance

monitoring during the design, development, and use o f DIS and HLA-based applications

in different M&S environments including military staff- and unit-level training,

technology research and development, and system acquisition and procurement. The use

cases are imbued with the framework presented in this thesis, and demonstrate its

practical application to support model and simulation design, as well as the configuration

and run-time control of different applications in DIS and HLA simulation environments.

The common theme among all the use cases is the general applicability o f PerfMETRICS

to collect data useful for decision-makers. Each use case involved the monitoring and

data collection from a STOW application as discussed in the thesis approach (Section

1.4). The first case made use o f the framework during the complete simulation life-cycle

o f the DARPA STOW ACTD. This involved using PerfMETRICS to monitor and collect

performance information useful for model design and testing, scenario configuration, and

overall monitoring o f the resources used in the air component o f the synthetic

environment during the ACTD. The second case discusses how PerfMETRICS is used to

provide dynamic load-scheduling o f the entity workload in the U.S. Navy’s Battle Force

Tactical Trainer (BFTT) Air Management Node (AMN). The next use case presents

results from performance studies done to make technology assessments about different

modeling techniques for use in the U.S. Army’s Aviation Combined Arms Tactical

Trainer -Aviation (AVCATT-A) program, the underlying objective being to provide

capacity planning data for system procurement. The final case study presents an

application o f the framework during an experimental technology insertion program

conducted under the aegis o f the U.S. Air Force’s Distributed Mission Training (DMT)

program. The goal was to understand the performance impact of integrating DIS-based

virtual cockpit simulators using HLA-based STOW technology, the principal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

performance objective being to minimize latency and maximize throughput o f the M&S

data used by the image generators in the simulator visual displays. During this

experiment, PerfMETRICS was also used to support application design and development

and provide run-time control of the integration mechanism, an HLAODIS Interface

application.

5.1 Synthetic Theater o f War (STOW) and DARPA’s Advanced Concept
Technology Demonstration (ACTD)

As mentioned, the ACTD was a technology demonstration. The primary focus

was the development o f new models that enhance the realism o f the synthetic

environment. Over 270 models and software libraries were designed and implemented by

different model developers. In this kind o f simulation development environment,

different understandings o f model requirements invariably led to different levels of

resolution among interacting models. Additionally, model implementations frequently led

to inordinately high processing costs that were intolerable in terms o f execution costs.

The timing requirements o f the DIS/HLA real-time applications only exacerbated the

problem of controlling these costs. Performance monitoring during the ACTD simulation

development and pre-exercise testing provided feedback to model developers and

assessments were made about the performance impact o f certain modeling design and

implementation decisions.

The principal simulations used during the STOW ACTD were SAF variants of Modular

Semi-Automated Forces (ModSAF), a simulation system designed to meet the DoD’s

distributed simulation training requirements. The SAFs were originally implemented

using the DIS protocol but to satisfy DoD requirements the architecture, design, and

implementation evolved into an HLA-based simulation. PerfMETRICS was used to

support technical and operational tasks associated with the Air Synthetic Forces (AirSF)

component o f the ACTD. AirSF simulates Fixed-Wing Aircraft (FWA), Rotary-Wing

Aircraft (RWA), and the munitions employed by these aircraft. The FWA and RWA were

primarily simulated using the TacAir-Soar (hereafter, also referred to as just “Soar”)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

technology described in Section 1.2.2.2 and the simulated actions o f each entity type are

based on its real-world capabilities and military doctrine.

S. 1.1 Model Design and Testing

The entity performance data monitored from AirSF consists of count data for

local and remote entity types and the time spent ticking the sub-model components used

to model each entity type (i.e., FWA, RWA). The AirSF architecture is implemented so

that every entity in the system is ticked at a periodic interval. During each entity tick, a

sub-scheduler is called that executes each sub-model used to construct the overall

representation of the aircraft. A radar sensor model is one example o f a sub-model used

by an aircraft. Most simulated aircraft representations include common sensor, munitions,

and flight dynamics sub-models. Therefore, the only significant difference among aircraft

representations is the behavioral models. With this realization, PerfMETRICS was used

to collect relative execution times for entity sub-models including hull modeling (e.g.

FWA flight dynamics), weapons modeling, sensor models (e.g., radar and visual), and

vehicle tasking and behaviors (e.g.. Close Air Support, or CAS, and Combat Air Patrol,

or CAP). Critical simulation metrics were derived by collecting run-time data from the

appropriate libraries used in the AirSF implementation. Data collected consisted of,

among other things, timing data for entity state update rates (i.e., tick rate), idle scheduler

time, and time spent in the RTI. The RTI timing data proved to be of special interest

because people were looking for critical feedback on the costs/benefits o f migrating to

HLA-based simulation environments. The need to characterize performance of the RTI

component has resulted in previous performance studies that made assessments about

throughput and latency characteristics [56]. These studies provided feedback for RTI

developers by characterizing the performance of algorithms, protocols, and software

implementation. Meaningful information for application developers, however, requires a

characterization that is indicative o f the RTI performance impact on DIS/HLA federate

modeling and development. Figures 5.1 - 5.2 illustrate the wide variance in RTI

processing requirements among different Fixed-Wing Aircraft (FWA) missions simulated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

in AirSF during the ACTD. The figures provide moving averages of data taken from

three scenarios executed during the first three hours o f the exercise. Each scenario was

executed on a different simulation engine.

Figures 5.1 and 5.2 reveal very similar workloads among the scenarios in terms of the

amount of network traffic and the volume of remotely simulated vehicles. Figure 5.3,

however, shows a distinct difference in the number o f remote radio entities that the

Electronic Support Mission (ESM) receives. The impact is shown in Figure 5.4. Due to

the comparatively large number of remote radios the RTI requires a significantly greater

proportion o f simulation processing time for ESM than for CAS or CAP missions. The

correlation values for the three mission scenarios are shown in Table 5.1; note the much

stronger correlation of RTI tick rate with remote radios than with remote vehicles. The

data reinforces our conclusion that the number of radios to which the ESM platforms

subscribe significantly affects performance of the simulation in terms of the time required

to manage simulation data. This information is useful to DIS/HLA developers when

considering a different design of the radio spaces (i.e., repartitioning o f the subscription

space). As an alternative, ESM modelers could modify the requirement for certain radio

frequencies. Regardless, this data provide insight into the impact o f the RTI

implementation and its effects on modeling FWA and certain mission scenarios.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
am

ie

Ve
hi

cle
s

1‘i
tck

ets

Pe
r

Se
co

nd

90

290 —

270 —

250 —

230 —

2 1 0 —

190 —

170 — CAP
ESM
CAS150 —

1:30 2:000:30 1:00
Tim e

Fig. 14. STOW ACTD AirSF IP traffic workload by mission type.

2 6 0 — i

250 —

240 —

230 —

2 2 0 —

210 —

2 0 0 —

90 —

CAP
ESM
CAS

ISO —

170 —

1:30 2:001:000:30
Tim e

Fig. 15. STOW ACTD AirSF remote vehicle count workload by mission type.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Kd
ut

iv
c

IJU
xx

»a
it>

(<̂

91

100

000

900

800

700

600

500

400
CA P
ESM
CA S

300

200
2:000:30 1:00 1:30

Time

Fig. 16. STOW ACTD AirSF IP remote radio workload by mission type.

2 5

15

C A P
ESM
CA S5

2:001 :300 :30 1:00
T im e

Fig. 17. STOW ACTD AirSF RTI tick processing workload by mission type.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

TABLE 5
STOW ACTD AirSF Correlation O f Performance Factors

Remote
Vehicles

Remote
Radios

RTI Tick

Remote Radios 0.266
RTI Tick 0.403 0.887
IP Packets 0.434 0.118 0.303

As another example, AirSF showed drastic and unexpected performance degradation late

in the testing process (prior to the STOW ACTD). Initially, the only reliable correlation

the development team was able to make with this degradation was high entity counts on

the network. When the PerfMETRICS system was used to monitor performance,

developers were able to observe the impact o f the high entity counts on specific

simulation models. The real-time feedback PerfMETRICS provided allowed the

developers to test various mission and aircraft types and to quickly isolate the specific

model(s) causing the problem; in this case the sensor model. Correcting the deficiency

was a non-trivial problem involving several iterations o f code changes. During each

iteration the capability of PerfMETRICS to provide detailed information in real time

allowed the developers to assess the impact o f the code changes made to the model

designs and simulation infrastructure.

5.1.2 Scenario Configuration

An important objective for using ADS technologies like DIS and HLA to support

military training is to minimize the number o f persons required to support a simulation

exercise or study. The SAFs used during the ACTD did not require user intervention to

control the low-level behaviors o f the physical and logical models. Operators were

required to make the high-level decisions regarding the design o f mission scenarios and

entity behaviors. SAF operators can override entity behaviors if required to do so.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

DIS/HLA exercises frequently incorporate dynamic free-play in terms of the training

audience’s interaction with the simulation. However, the exercises are most commonly

structured around the execution o f pre-scripted events that reflect training objectives and

represent scenarios for real-world military operations. Thus workloads are in part

predetermined; this provides an opportunity for configuration planners and simulation

operators to more effectively utilize available hardware and software resources. As

mentioned, accurate assessments about the number of people required to support the

simulation exercise are required. Performance monitoring can be used to provide

guidance during these activities.

In the past, developing pre-scripted events typically relied on estimates o f an initial

number o f entities (vehicles) that could be simulated on a workstation. In the case of

ModSAF, these estimates were made using a benchmark based on simulating tanks.

However, different vehicle types have significantly different processing requirements

depending on the activities (missions) in which they engage. Specifically, the simulation

of fast moving aircraft over a large area o f the synthetic battlespace has very different

performance characteristics than that for slower moving tanks on a more restricted area of

the battlespace.

Additionally, the dynamic behaviors o f vehicles during the simulation can result in large

fluctuations in workload, depending on the level o f interaction with other simulation

entities. By monitoring DIS/HLA simulations, metrics can be established that allow the

workload on available workstations to be managed based not only on vehicle type but

also on the type o f activities they are assigned and the entity interactions expected with

each scenario. This information is then used to make accurate assessments about the total

number o f machines and persons needed to support the simulation o f specific scenarios

during a DIS/HLA exercise. For the STOW ACTD, PerfMETRICS provided the

simulation site test director with valuable performance information useful for making

decisions about AirSF scenario design and workload configuration. This process involved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

incremental test phases, the goal being to achieve the best possible utilization and

performance of the available resources.

The first phase included tests with only one or two workstations simulating a “best guess”

number of entities (based on model developers’ recommendations). During this phase

expected entity (FWA) behaviors and interactions were verified and the general

performance of the simulation was observed. For the AirSF component o f the STOW

ACTD. performance measures gained during this first phase were especially useful since

the simulation o f FWA was implemented using TacAir-Soar. The existing TacAir-Soar

implementation can have severe processing requirements depending on the number of

agents and number o f interactions with remote entities. Gaining preliminary performance

estimates was critical for exercise planning. Preliminary studies done by Soar developers

resulted in a goal to update an agent’s entity state at a 3 to 4 Hz. rate. Achieving this goal

allows the agents to simulate what is considered “good cognitive behavior.” Using

PerfMETRICS to monitor the entity state update rates during the initial test phase

resulted in better estimates o f the maximum number of Soar agents per machine. The

numbers, dependent upon the type o f mission the agent performs, were as follows: CAS -

2 agents, CAP - 4 agents, ESM - 2 agents.10

Initially, it made sense to group different missions together when Soar agents exhibited

extensive interaction. An example is Defensive Counter Air (DCA) missions and

Airborne Early Warning (AEW) missions. Using PerfMETRICS to monitor overall

simulation performance revealed that combining these two missions on the same

simulation engine resulted in excessive paging activity (poor working set size

characteristics) and consequently very poor performance. This resulted in early

repartitioning of the agent workload based on missions. Phase one tests provided a good

baseline for assessing simulation and Soar agent performance.

10 Critical workstation parameters were: 200 MHz Intel Pentium processor; 256 Mbytes RAM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

Subsequent test phases increased the number o f simulation entities and agent interactions.

In the case o f DCA testing (CAP is a specific kind of DCA), the number o f air-to-air

interactions was increased until the Soar agents’ behaviors were determined to be invalid.

Subject Matter Experts, or SMEs, made this determination based on visual perception of

agent behavior and the update rates provided by PerfMETRICS. This established limits

for the number of simulation entities, Soar agents, and their interactions that could be

expected to not adversely affect the perception o f valid simulation behavior. The final test

phase involved the execution o f different scenarios in a fully populated battlespace on the

STOW WAN. These tests exposed the individual HLA federates (AirSF simulations) to

the workload demands expected during the ACTD. Specifically, as many as 5,000

simulation entities and network traffic at the LAN interface averaging between 300 and

800 packets per second.

Using PerfMETRICS during these test phases helped determine the maximal number of

Soar agents per workstation that still allowed the achievement o f realistic behaviors

during the ACTD. This allowed the AirSF test director to make decisions regarding

scenario workload and configuration. Using the performance information described

above and estimates about the expected number o f FWA sorties (missions) during the

STOW ACTD exercise, the test director was also able to provide an estimate o f the

number o f AirSF simulation engines (Intel-based PCs) required to meet the exercise

objectives. As mentioned, DIS/HLA simulation training exercises are to some extent pre-

scripted with well-defined scenarios and objectives. For the AirSF component, SMEs

estimated the Air Tasking Order (ATO) that lists missions to be executed, would require

a maximum number (at any one point in time) o f the following basic mission types: DCA

(includes CAP) - 3 missions (12 agents), Strike (includes CAS) - 10 missions (40

agents), and Intel (includes ESM) - 5 missions (10 agents). The number o f required

simulation engines, m is a specific mission type, Em is the number o f entities for mission

m

engines was then estimated as where N is the number of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

type m, S„, is the number of scenarios o f mission type m, and Pm is the number agents per

engine for mission type m (derived using PerfMETRICS).

5.1.3 Resource Monitoring

Based on the process discussed in the previous section, it was estimated the AirSF

component for the STOW ACTD would require (at any one period) 26 simulation

engines, 3 for DCA, 20 for Strike, and 3 for Intel. The WISSARD facility at NAS

Oceana, Virginia Beach, VA (the air simulation component o f the STOW ACTD) was

issued 36 workstations designated as simulation engines. Figure 5.5 shows the actual

utilization o f the engines during the STOW ACTD (also derived using data gathered with

PerfMETRICS). The median values for backend (simulation engine) utilization over the

three days were 72, 75, and 61 percent, respectively. The original estimate o f 26

simulation engines is 72% of the 36 issued for AirSF simulations, corresponding closely

with the actual usage.

It is important to note that the median values reported above reflect the average time

spent executing Soar scenarios. An additional factor can be considered and includes the

number o f simulation engines that are at any point in time either in a simulation startup

mode or in a quiescent mode waiting for the Soar agents to begin their missions.

Interestingly enough this factor is representative o f overlaps in real world FWA flight

operations. When this factor is taken into account the actual backend utilization during

the ACTD approaches 100%.

Figure 5.6 provides the average entity state update rates for the principal Soar mission

types discussed throughout this paper. It shows that the prescribed update rates were

probably met for most o f the Soar missions except in cases where more agents were

loaded onto a single workstation than were deemed reasonable by the pre-exercise tests.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

100

90

80

70

60

50

40

30

20

10

0

0600 04000700 1800 1700
Wed. 29 Oct. ThivJO O ct Fh.. 310:1

Time (EST)

Fig. 18. STOW ACTD AirSF simulation engine utilization.

Using PerfMETRICS provided valuable performance information to model developers

and testers. It helped them make reasonable assessments about the capabilities of existing

hardware to provide credible entity-on-entity level simulation to augment operational

testing. By gradually introducing critical factors in a controlled test environment and

using PerfMETRICS to measure their impact on performance, scenario design and

configuration planning for the STOW ACTD became a more quantifiable process. The

test director and site manager were provided with information needed to make tradeoffs

in hardware, software, and personnel requirements.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

aI
t
ZD

<

11

10

9

8

7

6

5

4

3

2
2 63 51 4

A ESM
* CAP
♦ CAS

Agents (per machine)

Fig. 19. STOW ACTD AirSF entity state update rates by mission type.

The DARPA STOW ACTD provided an excellent opportunity to use the framework

presented in this thesis. This use case was the first time PerfMETRICS was used to

support a real-world application. Performance information was successfully collected and

used to support decision-makers during model design and testing, and during scenario

configuration and planning. It was also used during the simulation exercise to provide

overall monitoring of the resources in the air component o f the synthetic environment.

5.2 U.S. Navy Battle Force Tactical T rainer (BFTT) A ir M anagem ent Node
(AMN)

The U.S. Navy has developed the Battle Force Tactical Training (BFTT) system

to provide shipboard training across the full spectrum of mission scenarios from unit

level, small team training (Tier I), to theater level joint training exercises (Tier III). Since

peacetime constraints have limited the funds available for adequate mission training

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

using live forces to maintain an adequate level o f military readiness, the DoD is exploring

the increased use o f simulation to augment live training. The principal technical objective

of BFTT is to create a network of coordinated training using ADS to stimulate shipboard

sensors. The BFTT system provides immediate feedback regarding the performance of

trainee(s). The implementation o f BFTT consists o f a collection o f hardware and software

components used for training scenario generation, stimulation/simulation control, data

collection, and performance monitoring. Shipboard and shore-based BFTT networks may

be interconnected to provide a larger, WAN-based synthetic battlespace.

An important BFTT training capability is Air Traffic Control (ATC). The BFTT Air

Management Node (AMN) is designed as a training tool to help keep air controllers

proficient with ATC terminology and control procedures. Principal goals in developing

the AMN are to improve upon the ATC training capabilities of the BFTT Combat

Simulation Test System (CSTS), including an improved HCI and enhanced simulation

and modeling capabilities (i.e., fidelity). An additional objective is to initiate a migration

path for BFTT using the Defense Modeling and Simulation Organization’s (DMSO) High

Level Architecture (HLA). To achieve these goals, the Naval Sea Systems Command’s

(NAVSEA) Performance Monitoring, Training, and Assessment Program Office

(PMS430) proposed the use o f simulation technologies developed during the STOW

ACTD. Various technical challenges existed regarding the integration o f STOW

technology with the BFTT system but doing so would provide a more robust and realistic

synthetic environment capable o f supporting U.S. Navy training requirements.

The AMN architecture and design (both hardware and software) is influenced by many

factors, among them the physical and environmental shipboard constraints found on U.S.

Navy combat vessels. Given these constraints, the actual AMN implementation was

limited to a total o f nine processor boards to service all the application needs o f the

AMN, including simulation engines, Human Computer Interface (HCI) applications, an

HLAODIS interface to integrate the AMN with the existing shipboard training

simulation network, and a special interface application for communicating and sharing

data with shipboard consoles used to control the simulation training environment. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

Agent Scheduler PerfM ETRICS Agent Parser

W I N H C I
S e n d _ C o m m a n d R e q u e s t - S o f tw a re

In te r ru p t ~A g e n t C re a tio n *

D e le tio n R e q u e s t
M is s io n D a ta For

A g e n t C re a tio n
S o a r A g e n t.

M is s io n S p ec ific
D ata

O u tg o in g C o m m a n d
Q u e u e

B utTertjd
R e q u e s ts

\ g e n t ' P o in t
C tjeation a n d

D e le tio n R e q u e s t

P ro c e s s A g e n t

C r e a n o n ■ D e le tio n

R e q u e s t

\ g e n t M iss io n

F iles
T r a n s m i t ' R e c e iv e

A g e n t C o m m a n d s

B u tT e re d !
A c k n o w le d g e m e n ts

In c o m in g C o m m a n d Q u e u\g e n t - to - S im u la t io n

E n g in e A llo c a tio n A g e m j/ P ijin t

C re a tio ni
A c k n o w I e d g e m e n t

\ g e n t W o rk lo a d D ata

\g e n l - io - S im u la u o n

E n g in e A s s ig n m e n ts E n tity M o d e lin g .

S im u la (io n 'a n d
S c h e d u lin g a n d L o ad

B a lan cin g) P e r fo rm a n c e

D a ta 1 S v s te m 1
P e r fo rm a n c e D a taD e te rm in e

\ g e n t L o a d
L o c a tio n

T ra n s m it i R e c e iv e
P e r fo r m a n c e D a ta B u tT er

P e r fo r m a n c e D a ta

Fig. 20. BFTT AMN dynamic load scheduling using PerfMETRICS.

final design consists o f only four processor boards designated as simulation engines and

creates performance issues related to hardware/software capabilities meeting processing

requirements o f a highly dynamic AMN scenario workload (based on TacAir-Soar

technology). The run-time architecture o f the AMN is complicated by requirements to

support dynamic creation, deletion, and control o f Tac-Air Soar agents. Operator control

of the agents is via the AMN HCI, displayed as a GUI at the BFTT Operator Console

(BOPC). What is needed is the ability to make good use o f the processing cycles on the

available processors (the 4 simulation engines). One technique to achieve this is static

load scheduling based on the existing processor and memory workload at any given

instant in time.

PerfMETRICS was selected to provide the AMN load scheduling algorithms with

requisite performance data. Using the existing communication infrastructure provided by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

PerfMETRICS to manage the agents simplified the AMN design and reduced the amount

o f new code development required to implement dynamic agent creation. This was an

important consideration given the strict AMN development schedule. Figure 5.7 shows a

Data Flow Diagram (DFD) of the AMN dynamic agent control architecture. The

PerfMETRICS collection daemon was modified to buffer application requests to create

and delete TacAir-Soar agents. Run-time performance data from the application related to

entity update rates, number o f existing entities, and other low-level operating system and

hardware performance is passed into the agent scheduler process residing in the AMN

HCI process. Initial work was done to develop different scheduling algorithms.

Development and test scheduling constraints, however, resulted in a simple round-robin

scheduling algorithm being used in the fielded system. The data infrastructure to support

different scheduling algorithms was kept in the source code and can be used to provide

performance information for future, more sophisticated scheduling algorithms.

5.3 Aviation Combined Arms Tactical Trainer-Aviation (AVCATT-A)

This case study examines the use o f PerfMETRICS to monitor, collect, and

analyze performance information to make assessments about system design and

procurement for the U.S. Army’s Aviation Combined Arms Tactical Trainer-Aviation

(AVCATT-A) trainer, a re-configurable manned simulator system. It is a dynamic,

alternative instructional concept to train and rehearse using networked simulations and

simulators in a collective and combined arms simulated battlefield environment. The

systems principal objective is to provide unit-level proficiency training for rotary wing

(helicopter) aircraft. The AVCATT-A system is currently under development and will

provide a fair fight, realistic, high intensity, task-loaded combat environment composed

of attack, reconnaissance, cargo, and utility aircraft platforms; SAF workstations; an

After Action Review (AAR) capability; a Battlemaster Control (BMC) console; and

workstations for ground maneuver, Fire Support (FS), CAS, logistics, battle command,

and engineer role players. The benchmark testing presented in this use case was intended

to help decision makers assess the use of different behavioral modeling technologies (i.e.,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

TacAir-Soar, SAF Taskframes), their impact on run-time resource requirements and

performance, and their relationship to the expected training scenario workload.

The discussion and data presented thus far clarify the fact that in typical DIS and HLA

simulation environments, large entity counts require significant computer and network

resources such that the simulation workload and its impact on run-time performance must

be carefully considered in system development. Computer and network resources must be

determined based on workload requirements of representative exercise scenarios

identified by subject matter experts. As military programs such as AVCATT-A continue

to mature, users will demand increasingly complex training scenarios; therefore it is

important to understand the simulation resource requirements. To support AVCATT-A

system design and procurement and to gain insight into the problem o f defining resource

requirements, benchmark testing was done using semi-automated and fully automated

Joint Semi-Automated Forces (JSAF) fixed and rotary-wing aircraft representations."

The goals o f the test were to provide estimates o f the number of TacAir-Soar agents and

SAF taskframe-based entities that can effectively be simulated on a specified computer

configuration. Objectives included: 1) creating a synthetic battlespace with representative

ground and air forces, 2) creating and executing SAF scenarios to generate realistic

workloads on the simulation engines, and 3) measuring the run-time performance of the

simulations while executing the SAF scenarios. Initially, the aircraft types were to

include Fixed-Wing Aircraft (FWA) and Rotary-Wing Aircraft (RWA). However the

results presented here only include FWA due to the lack of availability o f Soar-based

RWA at the time the benchmarking was performed.

The tests consisted o f populating the synthetic environment with up to 532 ground

vehicles placed in a standard JSAF terrain representation. The ground vehicles consisted

11 JSAF is the new name for the CGF application (SAF-based) developed during the STOW ACTD. JSAF
functionality continues to evolve and is used to support various DoD M&S domains.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

of Friendly (Blue) and Opposition Forces (Red). For the TacAir-Soar testing, two series

of test were run, one with the 532 ground vehicles and a second series with 270 ground

vehicles. During the tests, some o f the ground forces were given simple missions

involving entity movement. The computing platforms used to test the FWA were 400

MHz Pentium II-based personal computers configured with 384 Mbytes o f RAM and 700

Mbytes o f swap space. The computers used to generate the ground forces were 200 MHz

PH-based PCs with 256 Mbytes of RAM. The computers were connected using lObase-T

Ethernet in a network topology designed to optimize network traffic in a WAN/LAN

HLA environment. The JSAF applications used for the tests were run in HLA mode (as

opposed to DIS mode) using the STOW RTI-s, the RTI implementation specific to the

STOW application environment.

5.3.1 Taskframe Testing

The capacity tests for taskframe-based FWA consisted o f a SAF scenario with

fifty taskframe entities o f different aircraft types. The aircraft were assigned missions

normally associated with their aircraft type and included tanking, EW, DCA, CAS, etc.,

the goal being to provide realistic (representative) interactions among ground and air

entities. Initially, all fifty aircraft were loaded, but were idle in the battlespace. This

means the simulation was updating the state information for each entity. Since the entities

were idle, the workload generated by each was minimal. At periodic intervals each

aircraft (or section o f aircraft) initiated its mission, increasing the simulation workload on

the test platform. After all entities were launched, the simulation was allowed to run in a

steady state for approximately ten minutes. The taskframe entities were then deleted from

the simulation at regular intervals until the FWA entity count was zero. The total time for

a single execution was approximately 60 minutes. This test was repeated five times and

the results recorded.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

18

16

14

12

1 10
S s

6

4

2

0
23415PM 25115PM 10756 PM 124:35PM 141 15 PM

Time

Fig. 21. Entity state update (tick) rate for FWA taskframe test.

The results o f the testing indicate that between 40 and 50 taskframe entities (FWA) can

be simulated on a single JSAF simulation engine operating as a backend (i.e., no GUI).

Performance data from the five executions were analyzed using Analysis of Variance

(ANOVA) to determine the mean tick rate and entity state update performance of the

simulation for the given workload. For the purpose o f the results presented here, Tick rate

is defined as the number of times per second (Hz) that an entity has its state information

updated. Entity State Update Performance is defined as the percentage o f the total

number o f entities that are meeting their prescribed update rates over a window of time:

in this case the prescribed update rate is 2 Hz and the sampling window is 60 seconds.

For the set o f execution samples, ANOVA assumptions were verified by examining the

residuals output. In some cases the sampling assumptions were marginally acceptable.

More important, however, is the practical significance o f the observations presented in

Figure 5.8 Specifically for all five samples (executions), the observed entity tick rates

were similar.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

---------------- Entity Stale Update Performance
-------------- Active Vehicle Count
-------------- Update (Tick) Rate___________

100 — - 4 0

- 3 0

-2 0 <

- 1 0

- 0

141 15 PM25115 PM 10755 PM 12415 PM

Time

Fig. 22. Entity state update performance and update (tick) rate for a sample FWA
taskframe execution.

Figure 5.9 shows the entity tick rates and the entity state update performance for one of

the executions. Active entity count is shown along the right-hand Y-axis. Entities were

considered active while executing their missions. Note that the active entity count only

went to forty for the tests because ten of the fifty total aircraft were RWA that sat idle

because they could not be assigned missions. These idle RWAs however, were still ticked

and therefore did contribute to the simulation workload. The large drop in update (tick)

rate and the corresponding drop in the entity state update performance coincide with the

peak levels o f interaction and aircraft activity during run-time. The data shows that,

assuming the highest levels o f entity activity and interaction, it is possible to simulate as

many as forty active FWA (and additionally tick ten low activity aircraft) and still

maintain acceptable update rates (4 HZ) and overall entity state update performance

(ninety percent). The statistical analysis indicates that, with 95 percent certainty, one can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

TABLE 6
Update Rate and Entity State Update Performance For TacAir-Soar Scenarios

532 Remote Ground V ehicles 260 Remote Ground Vehicles

4 agents 6 agents 8 agents to
agents

4 agents 6 agents 8 agents 10
agents

Update (Tick)
Rate

5.7 Hz 4.0 Hz 2.6 Hz 1.7 Hz 5.3 Hz 3.8 Hz 3.1 Hz 2.3 Hz

Entity State
Update
Performance

99.8 % 89.3 % 73.0 % 37.0 % 99.8 % 96.3 % 82.4 % 61.5%

expect an average tick rate o f between 6.6 and 6.8 Hz. The average entity state update

performance will be between 92.64 and 93.65 percent.

5.3.2 TacA ir-Soar Testing

The capacity tests for the TacAir-Soar agents consisted o f scenarios with four, six,

eight, and ten agents per machine. All aircraft were initialized to execute Strike missions

(i.e., attacking ground targets) since these missions are known to generate the greatest

simulation/Soar workload for a given entity count. The aircraft (F-16Cs with laser-guided

bombs) were placed at initial points approximately ten minutes (real-time) from the

targets (ground OPFOR). They would fly to the targets and after dropping their ordnance,

would egress back to the initial point. As mentioned, for the TacAir-Soar testing, two

series were run with the same scenario just described. The first series consisted of 532

ground vehicles and the second series consisted o f 260 ground vehicles. The objective of

running the second series was to assess the impact of the ground entity count on

simulationySoar performance. The time for a single execution was fifteen minutes and

each execution was repeated five times for each test series.

The results o f the TacAir-Soar testing are presented in Table 5.2. There appeared to be a

marginal improvement in run-time performance for the case with fewer ground vehicles;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

For 532 ground vehicles, six TacAir-Soar agents per simulation engine appear to be the

optimal number given the compute resources employed. For the case with 260 ground

vehicles, six to eight agents can be run on the same simulation engine. It is important to

note the agents still continue to run their missions despite overloading and that in some

overloaded cases agent behavior may still be valid.

The problem is we cannot be confident in the validity o f the interactions because of the

possibility of reordering and delays in simulation. Although anecdotal in nature,

observations made during the tests did indicate better simulation and agent behavior

during the test series with 260 ground vehicles and it appeared that the Soar agents

actually achieved a higher ratio of kills when delivering ordnance. These observations,

however, were not quantified. Performance data from the five executions of each

scenario, from both test series, were analyzed using ANOVA to determine the mean tick

rate and entity state update performance o f the simulation for the given workload. For the

set o f execution samples, ANOVA assumptions were verified by examining the residuals

output. In some cases the sampling assumptions were marginally acceptable. As shown

during the discussion o f the FWA taskframe test results. Figure 5.10 illustrates how the

observed entity tick rates are strongly correlated among sample executions. This

particular plot shows the execution samples for eight agents with 532 remote ground

vehicles.

Figure 5.11 shows a time series of update rates o f the Soar agents from one execution of

each test with 260 remote ground vehicles. The plotted data are actually the moving

averages o f the update rates over the duration o f the execution. The pronounced drop in

the tick rate is indicative o f the final approach after acquiring the target, the release of the

ordnance, followed by the start of the egress from the target area (where the tick rate

starts to raise).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

5.0 ~

4.5

4.0 -

3 3.5 -

§ 3.0 -

2.5

2.0 -

Time

Fig. 23. Entity state update (tick) rate for 8 TacAir-Soar agents;
532 remotes ground vehicles.

The results o f the study clearly show the increased computational costs associated with

more sophisticated Soar mission behavior modeling. But for training systems with

constrained numbers o f operators/trainers (such as in AVCATT-A), fully autonomous

behavior modeling using technologies such as TacAir-Soar can significantly reduce

operator workload. This fact becomes even more critical given the goals to create larger

and more realistic training exercises, translating to higher entity counts and increasingly

complex simulation environments. AVCATT-A can benefit from both behavioral

modeling technologies by using benchmark studies as presented here, to determine an

appropriate ratio o f fully autonomous and semi-autonomous entities during scenario and

system design. TacAir-Soar intelligent agents can generate highly realistic RWA and

FWA representations while significantly reducing the required number o f simulation

operators to meet exercise objectives. Less costly taskframe-based entities can then be

used to provide greater density to the synthetic battlespace, enhancing the realism of the

synthetic environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

O — 4 A jH its
+ — 6 Agents
x — 8 Agents # — 10 Agents

6.4

5.8

5.2

4.6

4.0

3.4

2.8

2.2

1.6

1.0

Time

Fig. 24. Entity state update (tick) rate for TacAir-Soar agents;
260 remote ground vehicles.

The benchmark testing results obtained during this use case provided useful information

to decision-makers trying to make reasonable assessments about the capabilities o f

existing hardware and software to provide credible entity-on-entity level simulation to

augment the AVCATT-A training system. By varying critical factors in a controlled test

environment and measuring their impact on performance, scenario design and

configuration planning for CGF becomes a more quantifiable process.

5.4 U.S Air Force Distributed Mission Training (DMT)

The last use case for the research presented in this thesis is to support assessments

related to technology insertion, specifically to understand the impact o f using STOW

technology to link virtual cockpit (human-in-loop) simulators. The U.S. Air Force is

currently defining requirements for a new training system and plans to use emerging

distributed simulation technologies to enhance the effectiveness o f the training

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

environment. The U.S. Air Force has previously relied on aircraft as the primary

mechanism for mission training. Peacetime constraints have now limited the funds

available for adequate mission training using real aircraft. To maintain an adequate level

o f military readiness, the DoD is exploring the increased use o f simulation to support

operational training, such as the Air Force’s Distributed Mission Training (DMT)

program. DMT is a shared training environment comprised of live, virtual (manned), and

constructive (computer generated) simulations. The principal technical objective of DMT

is to create high fidelity manned simulators networked with other air, ground, and sea

forces in a realistic synthetic battlespace. The simulators will support the full spectrum of

training from unit-level, small team training, to theater-level joint training exercises, and

can potentially be employed to support analyses, and test and evaluation.

5.4.1 Technology Insertion

Following the successful completion of the STOW ACTD, DARPA initiated follow-on

work to enhance and improve the SAF implementations, increase overall STOW system

performance, and transition STOW technology to other programs. One such effort was

the Distributed Mission Training (DMT) Experiment. Various technical challenges exist

regarding the integration of constructive, virtual, and live simulations intended for use in

the DMT program and were discussed in Section 1. One technical issue is interoperability

among DIS- and HLA-based systems. The key implementation component to integrate

STOW technology with existing DIS-based virtual cockpit simulators is an HLA

Interface. DARPA developed the interface to share virtual and constructive simulation

data; translating between the HLA/RTI-based data packets associated with the STOW

synthetic battlespace and the DIS-based data packets used by the Air Force Research

Laboratory (AFRL) virtual simulators located in Mesa, Arizona.

A primary goal of the DMT Experiment was to characterize the impact o f integrating

STOW technology (i.e., HLA-based synthetic forces and synthetic environment) and a

DIS-based virtual training environment, specifically, the throughput and latency as seen

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

by the virtual component of simulation state data generated by the synthetic forces and

synthetic environment components o f the STOW federation. The principal performance

objective o f the integration was to provide federate state data to the virtual simulation

hosts at a sufficient rate to maintain the quality o f the training experience. Assessing the

success or failure o f meeting this objective required evaluating run-time performance by

identifying the system’s shared hardware and software resources, understanding the

utilization and contention for these resources, and quantifying the delays imposed by

using these resources.

The data update rate requirements for the virtual simulator’s image generator had an

upper bound estimated to be 60 Hz, however, the data rate at the virtual simulator’s

network interface was significantly less than the image generator’s access. Thus, to meet

the performance objectives, HLA Interface updates needed to occur at a rate that was

consistent with the data requirements for the virtual simulation host. The performance

criteria for this evaluation required measuring the speed and utilization o f the D IS^H LA

data interface. Metrics were latencies, throughputs, and effective bandwidth at various

levels in the protocol (communications) stack. End-to-end performance was important

and timing data was aggregated to provide a measure o f the overall communications

performance. The principal mechanism chosen to support this performance analysis was

PerfMETRICS. Its functionality was extended to provide remote control of all HLA

interfaces and display the relevant performance information.

5.4.2 Assessing the Performance Impact - High-level

Original test plans were extensive but contention for the virtual cockpits by other tasks

within the DMT Experiment and other programs required restricting the test time. Two

test scenarios were designed to characterize latencies through the HLA Interface as a

function o f workload (i.e., data packet throughputs, the number o f virtual cockpits, and

the number o f Computer-Generated Forces, or CGF). The latency measurements include

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

transport delays, delay across the RTI (HLA publications/subscriptions), data packet

translation delays, and end-to-end delay (as seen at the HLA Interface).

The first scenario was designed to capture data throughput rates representative of

different levels o f pilot activity during air-to-air engagements. Specifically, low, medium,

and high-levels o f maneuvering providing different rates o f changing aircraft position and

orientation. The second scenario was designed to observe the impact o f ground CGF and

STOW synthetic natural environments on the relevant performance metrics. Ground CGF

consisted of Blue and Red forces laid down in a region of high-resolution terrain.

Buildings, tank ditches, and other STOW dynamic terrain objects were also used to

populate the synthetic battlespace. The test scenario consisted of sending TacAir-Soar

agents on a strike mission and having the virtual cockpits ‘chase’ the agents to observe

the environmental enhancements provided by STOW SE. The premise o f the scenario

design was that the SE would induce the additional processing and communications

overheads desired for this performance study.

The PerfMETRICS monitoring system was extended to specifically measure network

latencies and data throughputs for the DMT Experiment and also provides feedback to

and control o f monitored applications. PerfMETRICS was used to gather all data except

the LAN and WAN transport delays and the bandwidth utilization on the HLA network.

For the transport delay measurement, a program was implemented using an echo-based

measurement mechanism representative o f multi-cast communications up to the point

where the RTI receives data from a multicast port. Two instances o f the program were

run, one instance collecting WAN traffic from virtual cockpit simulators located at the

Theater Air Command and Control Simulation Facility (TACCSF) in Albuquerque, New

Mexico, and another collecting LAN traffic at AFRL. Bandwidth utilization on the HLA

network was captured using a PC-based network analyzer.

Results from data collection at one o f the HLA Interfaces during the air-to-air tests are

depicted in Figures 5.12 - 5.15. Note that data for all HLA Interfaces were similar, as

was expected. The data presented are from the third air-to-air test where pilot activity was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

100100
Entity Count j

- 80

- 60 S

1 40 - 40 O

- 20"O 20
Delay

J - 0

5:17:11 PM 5:42:12 PM

Fig. 25. Latency vs. entity count (Air2Air).

. L i k .
i i i i i i i

20 4.5 7.0 9.5 120 14.5 17.0
I I I I I I I

95% Confidence Interval for Mj

i i i i i i i i i i
7.6 7.7 7.8 7.9 8.0 8.1 &2 43 84 85

I 1 I I I I I I I I

95% Confidence Interval for fvtedian

Anderson-Darting Normality Test
A-Squared: 5.946
PAfclue: 0.000

Mean 7.86688
StDev 3.08215
Variance 9.49966
Skewness -2.1E-01
Kurtosis -5.4E-01
N 632

Mnimum 0.7600
IstQuartile 6.1250
Median 82300
3rdQuariile 9.9075
^ta»mum 16.9300

95% Confidence Interval for Mj

7.6261 8.1076
95% Confidence Interval for Sgma

2.9211 32622
95% Confidence Interval for futedian

7.9800 8.5025

Fig. 26. Latency description (Air2Air).

representative of close-in combat such that the aircraft exhibits rapid changes in position

and orientation. Note that this level o f activity was not sustained throughout the test. The

data as presented in Figure 5.12 indicates that, for the given scenario and workload (up to

102 entities), end-to-end delays as seen by the interfaces are loosely correlated with entity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

60 H
To DIS PortQ.a

co 48

Q.
36 -

24 -

S, To RTI
f ' i » 1 1. / 'u V '

5:17:11 PM 5:4212 PM

Fig. 27. Entity state throughputs (Air2Air).

count. Figure 5.13 provides descriptive measures o f end-to-end latency as defined for this

study, namely the time it takes a packet to be transmitted between the DIS ports of any

two HLA interfaces linking the associated virtual cockpits. One significant observation of

the data in this figure is the deviation in latencies, where over fifty percent o f the values

range between six and ten milliseconds. This is inconsistent with preliminary studies

where deviations about the mean latency were relatively ‘tight’. In the broader scope, the

update rates provided to the simulators were sufficient for providing the pilots with a

good visual perception o f the synthetic airspace.

The data presented in Figure 5.14 and 5.15 are useful for examining interface

performance. For the given scenarios, entity state data dominated the throughput at the

HLA Interfaces. Figure 5.14 shows the expected increase in throughput as a result o f

increasing numbers o f entities. The throughput from the cockpit is fairly constant; the

plot shows correlation between the DIS and RTI throughputs (observed as spikes in the

plot’s moving averages). This is most likely an artifact o f the pilots reacting to each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

i
211

I
I

214 217
I I

1 I
220
I

95% Confidence Interval for Mi

2030I
2040

I

95% Confidence Interval for Median

Anderson-Darling Normality Test
14.378
0.000

ArSquared:
P-Vaiue:

Man
StDev
Variance
Skewness
Kurtosis
N

Mnimum
IstQuartile
Mdian
3rd Quartile
Maximum

203620
0.02040

4.16E-04
1.45036
7.53854

632

2.01000
202000
203000
205000
2.21000

95% Confidence Interval for Mi
203461 203780

95% Confidence Interval for Sigma
0.01933 0.02159

95% Confidence Interval for Mdian
203000 2.04000

Fig. 28. Avg. access to DIS port (Air2Air).

other’s maneuvers, creating an increased rate o f change in aircraft orientation and

position and resulting in increases in the entity state outputs at both interfaces.

The significant point about this is the run-time performance of the HLA Interface did not

degrade as throughputs increased during these tests. The current implementation o f the

HLA Interface is configured to read the DIS UDP port at a 500 Hz rate (every 2 msecs.).

Figure 5 .15 shows the average access delay for reading the port, which deviates only on

the order o f microseconds despite an increasing load o f traffic through the interface. This

indicates that for the given workload the HLA Interface is able to complete all other

processing and return to read its DIS port within microseconds o f its scheduled time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

Entities
30

Total Thrptv

C. ^

50

o 12
Entity State^.
Thrpt / '

6

Env. Thrpt

0

_ 100

- 80

m
60 § .

O
4 0 ®

3

20

Fig. 29. Throughputs vs. entity count (Air2Gmd).

95% Confidence Interval for Mr

i
4.0i

i
4.1
I

i
42I

l
4.3
I

l
4.4
I

Aiderson-Dariing Normality Test
A-Squared: 5.031
P-V&lue:

fi/tean
StOev
Variance
Skewness
Kudos is
N

Mnimum
IstQuartile
Msdian
3rd Qjartile
IVfeMmum

0.000
4.31514
0.69980

0.489725
0.730218
-3.9E-01

213

3.17600
3.78800
4.15400
4.82867
6.06333

95% Confidence Interval for Mi
422062 4.40966

95% Confidence Interval for Sigma
0.63906 0.77341

95% Confidence Interval lor bfediar
3.99926 423861

95% Confidence Interval Ibrfcfedian

Fig. 30. Latency description (Air2Gmd).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

15 - i

10 -

eg
(U

Q
■o

tu

9-20:13 PM 9:36:55 PM

Fig. 31. End-to-end latency (Air2Gmd).

Figure 5.16 shows data gathered from Viper 3 (one o f the F-16C virtual cockpits) during

the last air-to-ground test. This test consisted o f a workload generated by seven TacAir-

Soar agents, two virtual cockpits, over ninety ground-based CGF companies o f Red and

Blue tanks, and SE data that included dynamic terrain (buildings, road craters, etc.),

diurnal effects (night and day changes), smoke plumes, and road craters. The data shows

total. Entity State, and environmental PDU throughputs to the HLA Interface DIS port.

Additionally, the plot shows the influence of the STOW CGF. The end-to-end latency, as

seen by the interfaces, is better than the air-to-air test. Measures are presented in Figure

5.17 and 5.18. The data show a mean end-to-end latency of 4.3 milliseconds and ranges

between three and six milliseconds. It is possible that the lower latency in this test could

be attributed to the lack o f additional traffic from TACCSF, which was also conducting

tests during the air-to-air tests.

5.4.3 Assessing the Performance Impact - Low-level

LAN transport delays are presented in Table 5.3. The results reinforce the point that in a

LAN environment most o f the data latency is introduced at the application level. For

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

STOW federates that means processing and queuing delays in the RTI and application

code. For the HLA Interface, that predominately means processing and queuing delays

within the RTI since processing time associated with the data translation is on the order

o f microseconds. Transport delays for the network connection with TACCSF are reported

in Table 5.4. As expected, the ‘time o f flight’ on the WAN is significantly greater than on

the LAN, averaging around twelve milliseconds during all the tests. TACCSF was

simulating an AW ACS aircraft and only reported data during the air-to-air test. The

average latency across the RTI was 32.4 milliseconds. However, this was derived from a

very small sample set during one test and should not be used as an estimate o f expected

application latencies given workloads similar to these tests.

Table 5.5 presents the bandwidth utilization on the HLA network during the four test

scenarios. The significant point is that the scenarios used in this study did not generate

traffic that came even close to taxing the 10 Mbps network; the air-to-air scenarios

exhibiting close-in combat maneuvering generated bandwidth that approached the

capacity o f the T1 data link used to connect sites on the WAN (ARFL and TACCSF).

The higher numbers associated with the air-to-air test are most likely a result o f the

additional test traffic generated from TACCSF and the higher entity state throughputs

associated with the virtual cockpits and CGF.

One of the primary concerns associated with this use case was the performance o f the

HLA Interface, since it had stringent requirements for providing state data at a rate that

would not adversely impact the visual systems used in the virtual cockpits. The data

presented is significant because of widespread skepticism about integrating HLA and the

RTI with virtual cockpits having stringent real-time processing requirements (driven by

the man-in-loop visualization requirements). The data gathered during the study show

that even in the presence of increasing simulation workloads and network traffic, the

HLA Interface can adequately translate and transmit STOW/HLA data to the virtual

cockpits. Data translation times are on the order o f microseconds, and the interface

implementation reduces latency by servicing its DIS and RTI ports at a 500 Hz rate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

TABLE 7
LAN Transport Delays (msecs.) - HLA Network

Test Avg. Min. Max.

AirZAir -H igh Movement .22 .20 .54

AirZGmd -n o CGF, no SE .22 .21 .37

AirZGmd -n o CGF, SE .27 .21 1.84

AirZGmd -CG F, SE .32 .21 3.6

TABLE 8
WAN Transport Delays (msecs.) - HLA Network

Test Avg. Min. Max.

AirZAir - High Movement 12.99 11.01 35.51

AirZGmd - no CGF, no SE 12.02 11.08 15.93

AirZGmd - no CGF. SE 12.94 11.15 39.91

AirZGmd - CGF, SE 13.15 11.10 25.43

TABLE 9
Bandwidth Utilization - HLA Network

Test Percent Usage (%)

Air2Air - High Movement 11.81

AirZGmd - no CGF, no SE 3.37

AirZGmd - no CGF, SE 2.62

A irZ G m d-C G F, SE 5.4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

The performance monitoring and measurement framework presented in this thesis was

successfully used as a basis to develop the test and measurement methodology for the

DMT Experiment. The raw performance data was presented at a level of abstraction

sufficient for detailed analysis o f resource utilization to relate federation performance to

scenario workload so as to be meaningful to persons making decisions about the

suitability of STOW technology for integration with real-time virtual cockpit simulators.

5.5 Use Case Sum m ary

This section has presented a series of case studies, each highlighting the use o f the

PerfMETRICS monitoring system to gather data meaningful to different decision-makers

for different aspects o f a distributed simulation environments including model

development, exercise configuration and control, resource utilization assessments, and

capacity planning. The monitoring has included simulations and other applications that

integrate live, virtual, and constructive (simulation) components. The variety of relevant

performance information includes system level (hardware and operating system)

performance metrics, performance measures associated with simulation infrastructure,

modeling performance, and networking performance metrics. The execution

environments include training, operational, analysis, and acquisition for the U.S. Navy,

U.S. Army, and U.S. Air Force.

Table 5.6 provides an abbreviated list of the performance metrics used to support

performance analysis and assessments during these case studies. The application of the

framework presented in Section 3 and the PerfMETRICS monitoring system described in

Section 4 support the performance analysis activities during these case studies and also

support the conclusions for this thesis research in the next section.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

TABLE 10
Use Case Metrics Summary

MODEL DESIGN AND TESTING

1) IP PPS as F(time)
2) Remote Vehicle Count by Mission Type
3) Remote Radio Count by Mission Type
4) RTI Tick Processing by Mission Type
5) Correlation Values for above

SCENARIO CONFIGURATION

6) Available workstations
7) Mission types
8) Entity count
9) Number o f Missions

RESOURCE MONITORING

10) Average Utilization o f available simulation engines
11) Average Entity Update Rate by Mission Type

LOAD SCHEDULING

12) Entity Update Rate
13) Entity Count
14) Memory Utilization

TECHNOLOGY ASSESSMENT & CAPACITY PLANNING

15) Local Entity Count by Behavioral Model Type
16) Remote Entity Count
17) Entity State Update Performance by Behavioral Model Type
18) Entity Update (Tick) Rate by Behavioral Model Type

TECHNOLGY INSERTION IMPACT

19) Entity Count as F(time) by Mission Type
20) End-to-end delay as F(time) by M ission Type
21) Average Latency and Variance as F(time) by Mission Type
22) Entity State Throughput as F(time) by Mission Type
23) Average Network Access Rate
24) Total Throughput
25) Environmental Throughput
26) LAN Transport Delays
27) WAN Transport Delays
28) Bandwidth Utilization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

SECTION 6

CONCLUSIONS

The origins o f this research stem from the practical need to understand the run

time behavior of an inherently complex distributed computing domain, specifically that

of advanced distributed simulations. The complexity exists due to the proliferation o f

enabling technologies used in ADS environments, the abstract nature of modeling real-

world environments, and the interaction of various factors that affect the run-time

behavior o f distributed computing applications. Different persons associated with the

design, configuration, and control o f distributed simulations need to understand the

impact o f decisions made regarding the allocation and use o f the various logical and

physical resources comprising the distributed run-time environment. Characterizing run

time behavior is a key aspect to providing decision-makers with an understanding of

technology factors contributing to performance bottlenecks in these environments, and

providing a mechanism to monitor and collect run-time performance data supports

meaningful assessments about the degree to which simulation objectives are achieved.

The original proposal for this research maintained a hypothesis that there exists a

generalized framework for performance analysis o f distributed simulations. The

objectives intended to define an abstract representation o f all distributed simulations and

to present a series o f formal techniques that support a direct mapping from the

performance abstraction to a set o f performance metrics. In reality, this proposition far

exceeds the scope of this thesis research. Although such an abstraction may in fact exist,

the diversity of application domains for distributed simulations and an almost infinite

number of goals for the evaluation o f run-time performance make the proof o f this

hypothesis a daunting task. The specification of a credible, generalized abstraction of

distributed simulation performance and the definition o f a robust set o f related

performance metrics would be a difficult goal to achieve in any time period.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

However, one achievable aspect o f the original proposal was the use o f DIS and HLA

simulation environments as a case study for demonstrating the utility o f a framework for

the analysis of distributed simulations. Initial research, focused on the original thesis

objectives, quickly led to the realization that DIS and HLA simulations were sufficiently

complex M&S environments and provided boundary conditions for a practical

specification of a performance analysis framework. The well-defined and formalized

DoD functional areas that use M&S applications and the common set o f real-world

representations manifesting themselves within DIS and HLA simulations delineate the

characterization o f distributed simulation performance to those run-time performance

factors related to the simulation o f real-world objects and some space/time analog of the

real-world environments in which they interact. The description o f real-world objects,

object interactions, and environments is meaningful to persons making decisions about

the design, configuration, and control o f DIS and HLA simulations. These three

activities and the recurring focus on objects and their interactions provide the basis for

proposing an architectural framework for the performance analysis o f DIS and HLA

simulations. The research objectives presented in Section 1 o f this thesis are modified

from the original proposal only in the context of constraining the definition of a

performance analysis framework to its application in a M&S domain that demands

practical solutions to time-critical problems.

The use cases presented in Section 5 illustrate the utility o f a unified framework (defined

in Section 3) to provide a cohesive process for DIS and HLA performance analysis;

specifically to be able to: I) delineate the system boundaries based on the execution

domain (e.g., training, analysis) and analysis objectives (e.g., model design, exercise

control), 2) select the appropriate performance metrics, 3) consider the impact o f different

workloads (scenarios) on run-time performance, and 4) analyze, interpret, and present the

performance information to decision-makers. The remainder o f this section provides an

evaluation of the work accomplished during this thesis research as it relates to the

research objectives presented in Section 1.3 and concludes with a discussion o f its

significance and the future direction in which this research should move.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

6.1 Evaluation

Objective 1. Define a framework useful for characterizing DIS/HLA simulation

performance. The framework shall include a conceptualized view o f performance in

the context o f DIS and HLA simulations, and a taxonomy o f performance measures

useful to different decision-makers involved with the DIS / HLA life-cycle.

The framework defined in Section 3 and represented in Figure 3.4 provides a

unified architecture (conceptualized view) for performance analysis o f DIS and HLA

simulations. The framework considers relevant execution domains (training, analysis,

acquisition, and operational) as outlined in the U.S. DoD Modeling and Simulation

Master Plan which employ, or are candidates for employing DIS and HLA-based

simulation technologies. Although not explicitly shown in the framework diagram, the

manner in which simulation technologies are applied within each domain manifests itself

as an actual scenario workload, another significant aspect affecting run-time performance

and explicitly considered in the analysis framework. Refinement o f the framework as it

applies to each domain results in a definition of the principal activities associated with

any simulation life-cycle, specifically the design (and development), the configuration

(and planning), and the run-time control (and monitoring) o f the simulation

environment.12

The framework considers performance measures relevant to DIS and HLA-based

environments based on the physical and logical resources and services used to implement

a distributed simulation environment. The performance measures are categorized by

architectural layers (abstractions) o f different simulation components and result in the

definition of system level metrics to capture lower levels o f system performance (network

and operating system), simulation infrastructure metrics to capture overheads associated

i: Requirements and project management activities can also be considered principal activities in a
simulation life-cycle (or more generally any software development life-cycle), but they are not considered
in the framework because o f their obscure, indirect influence on run-time performance o f a simulation
environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

with executing simulation models (the implementation costs of using simulation), and

model performance metrics (object-based physical and behavioral representations) to

characterize the run-time performance of the different model implementations. The

framework establishes the linkage between the identified performance measures and their

intended use (analysis to support design, configuration, and control activities) by defining

an interface (the PerfMETRICS implementation in the context o f this research) to provide

a conduit for run-time acquisition o f the relevant performance metrics and their

aggregation into meaningful information for decision-makers.

Regarding framework utility, DIS are based on an IEEE standard that specifically embeds

the notion of physical and behavioral representations into an application-level protocol.

This facilitates the applicability o f the framework’s taxonomy of performance measures

to all DIS-based environments and when considered in conjunction with a common set of

analysis objectives (i.e., supporting design, configuration, and/or control activities),

provides a flexible architecture for performance analysis. The HLA embodies the latest

evolution o f distributed simulation protocols (within the U.S. DoD) and a generally

accepted view is HLA is a surrogate for legacy and new simulation environments that

would otherwise be using DIS. As such, the objectives for performance analysis between

DIS-based and HLA-based environments will be similar, except for additional

requirements to understand the costs associated with the HLA RTI and the intrinsic

services it provides for managing the distributed simulation environment. This fact

suggests the framework is also generally applicable to HLA environments. Finally, from

a pragmatic standpoint, and perhaps most significantly, the conceptual soundness o f this

framework is demonstrated by its continued acceptance and use to support real-world

DoD M&S-based exercises; providing a standard set o f DIS and HLA performance

measures that are relevant and useful for analysis in different simulation domains,

examples o f which have been presented as use cases (that span a four year duration) in

Section 5 o f this thesis report. Table 6.1 summarizes the programs and applications that

have utilized the framework, and specifically PerfMETRICS, to support modeling and

simulation design, configuration, and control activities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 6

TABLE 11
Summary of Framework and PerfMETRICS Utilization

DARPA STO W ACTD (U.S. DoD R&D program)
JSAF - Air Component
JSAF - Marine Corp Component

DMT Experim ent (U.S. Air Force - Constructive and Virtual Environment)
JSAF
H L A ^ D IS Interface

BFTT A ir M anagem ent Node (U.S. Navy - Constructive and Live C4I Environment)
JSAF
HCI (Human Computer Interface process)
H L A ^ D IS Interface

AVCATT-A (U.S. Army - Constructive and Virtual Environment)
JSAF
ModS A F
OTBSAF

Objective 2. Develop a measurement, monitoring, and analysis infrastructure useful

for supporting DIS and HLA simulation performance analysis.

This thesis research has resulted in the design and development o f the

PertMETRICS monitoring system. PerfMETRICS satisfies basic requirements for

software-based monitoring in a real-time distributed simulation environment. It provides

centralized or distributed monitoring of networked simulation engines, the workstations

hosting those simulations, and the specific models executing inside the simulation

engines. It supports data collection and provides mechanisms to support data analysis,

and data presentation. The PerfMETRICS communications infrastructure also supports

dynamic control o f the monitoring environment, error notification and logging, and

execution control o f applications (including simulations) instrumented with the

PerfMETRICS monitoring code.

From the beginning, the PerfMETRICS design included the same basic taxonomy of

performance measures presented in this thesis. The architecture has proven to be

extensible and the implementation robust enough to meet changing analysis requirements

for programs such as the STOW ACTD, the DMT Experiment, BFTT AMN, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

AVCATT-A. Since the collection daemon is loosely-coupled with the monitored

applications, it does not have an architectural dependency meaning that PerfMETRICS is

readily amenable to monitoring DIS or HLA-based applications, or both within the same

exercise (when a D IS^H L A Interface is present to support this configuration).

The PerfMETRICS monitoring system does not contain sophisticated data analysis

mechanisms or data visualization tools, and in itself cannot be considered a decision-

support tool. It is best viewed as a “lightweight” , yet robust monitoring and data

collection tool sufficient for providing timely performance information to persons trying

to make decisions about how to design and implement simulation models, configure the

simulations and associated scenarios, and monitor and control the run-time execution

environment. PerfMETRICS is but one alternative to support DIS and HLA run-time

performance analysis but it proved to be very effective in its application to the “real”

environments presented in the use cases. Research results from its use are not only

reported in this thesis, but have also been disseminated to a broad simulation

development community via conference publications, after-action reviews, and technical

interchange meetings.

Objective 3. Relate the costs o f obtaining the performance information for use in

both dynamic and static performance analyses in terms o f the intrusiveness o f run

time monitoring and measurements o f DIS/HLA simulations.

Discussing the intrusiveness o f run-time monitoring really means assessing the

cost of data collection weighed against the value o f that data and the possibility that data

collection will change model or simulation behavior. Thus a real need exists to

understand monitoring and measurement overheads so appropriate choices can be made.

Quantitative studies were initiated early on during PerfMETRICS development. Native

UNIX code profilers were used as a means to measure the impact of specific

instrumentation strategies. Performing these studies throughout the development

evolution resulted in the recognition o f three principle factors when making tradeoffs in

measurement and monitoring costs and the value (essentialness) o f data. They are: data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

granularity, data rate, and data volume. An example o f collecting data at different

granularity levels is to gather performance data on a specific class o f entity as opposed to

every instance of an entity in a specific class. This proved to be the case during

PerfMETRICS development; not only were the run-time overheads of tracking and

buffering data for individual entities too great, but user requirements emphasized

understanding the impact o f certain entity types and their missions on overall scenario

performance. This resulted in the implementation o f a more course-grained view of

entity-based performance data, specifically aggregated by entity class (e.g., air, ground,

water).

Data rate impacts, in some cases, can be significant. Instrumented models that exhibit

low-processing, high-update rates can impose greater monitoring overheads than a model

that is more compute-bound and whose update rate is much less frequent. This was

observed during the DARPA STOW development effort. Simulations modeling fewer

numbers of fixed-wing aircraft (compute/memory bound model updates) exhibited lower

monitoring costs (intrusiveness) than simulations modeling large numbers o f tanks

(simpler models but having more updates). The monitoring costs were greater due to the

frequency each entity was updated (and the associated instrumentation code was

executed). Data volume must also be considered because of the potential processing,

memory, and bandwidth (communications) requirements.

The significance o f the performance impact o f these factors is highly dependent upon the

value o f the data as required for analysis. The intrusiveness o f the instrumentation code is

also dependent upon the performance of the underlying hardware so improved processor

and memory performance may actually decrease the overall intrusiveness o f the

monitoring process for some instrumentation profiles. Intrusiveness is still primarily a

function of data granularity, the frequency that instrumentation code is executed (data

collection rate), and the amount o f data that is collected (data volume).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

Objective 4. Provide a baseline o f practical experiences for future work related to

performance measurement and monitoring for the design, configuration, and

control o f DIS and HLA simulations.

Regarding related efforts early on in this research, observations indicate there was

not an emphasis on establishing an infrastructure for defining and monitoring higher-

level (application) performance measures. Most efforts mainly focused on building a

communications infrastructure to gather operating system-level metrics that don’t

necessarily describe the impact o f modeling or scenario design decisions. More recent

efforts within the DMSO organization are attempting to bring together a framework for

estimating the performance requirements o f an HLA Federation [71,72]. It does consider

model components of the simulation environment (objects and their expected

interactions) but is not intended for use beyond HLA and takes an approach that is

benchmark-centric rather than emphasizing the run-time monitoring and data collection

aspects of data analysis to support design, development, configuration, and control

activities. This effort’s focus is on the estimation o f performance and resource planning.

The significant aspect of this thesis research is it provides a more generalized definition

of performance for DIS and HLA-based simulation environments. The use cases provided

practical experience in real world programs, established a baseline of performance

measures useful for characterizing the run-time performance o f a diverse set of modeling

and simulation applications, and identified some o f the limitations o f the current

performance monitoring implementations (including PerfMETRICS). The lessons learned

are useful for extending or generalizing the framework, and enhancing or developing a

new data collection methodology.

6.2 Evaluation Summary

The evaluation of research objectives has shown the utility and breadth of application

of the performance framework and its effectiveness at providing meaningful and useful

information to persons making decisions about the design, configuration, and control o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

DIS and HLA simulation environments. The positive impact o f using the framework

(specifically the performance measures and PerfMETRICS) on real-world programs is

evident as users were able to authoritatively (quantitatively) answer specific questions

regarding model design, workload partitioning, and resource utilization (STOW ACTD

and AVCATT-A). The taxonomy of performance measures appeared robust as witnessed

in the use o f PerfMETRICS in an “active” vice “passive” mode o f operation, providing

dynamic load scheduling o f simulation workloads (BFTT AMN). The data collection

methodology and implementation proved to be flexible in the presence of evolving

requirements to monitor different kinds o f applications (e.g., DIS<f>HLA Interface) and

support assessments regarding the impact o f changing technologies (DMT Experiment).

From its initial (and successful) use during the STOW ACTD, the defined performance

measures and PerfMETRICS infrastructure have demonstrated the added value o f making

performance monitoring and data collection an integral component o f any DIS and HLA-

based architecture. It is entirely too difficult to anticipate run-time performance problems

due to what is typically a complex set o f objects and interactions and increasing demands

on the scale (size) o f the distributed simulation environments. The unified framework

presented in this thesis provides the mechanism to support near-real time assessments

regarding the impact o f certain modeling and simulation design and configuration

alternatives.

6.3 Practical Significance and Contribution

This section o f conclusions can best be summarized by saying the framework presented

in this thesis research is based on practical experiences gained while participating in the

real-world programs presented as use cases in this research. The use cases are associated

with performance of DIS or HLA-based (or both) simulations, however, this does not

preclude the practical application o f the techniques, tools, and analysis objectives to other

distributed simulation environments. Recurring objectives appeared in each use case

based on the need to understand the performance impact o f specific scenario workloads

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

(objects, object interactions, and synthetic environments). The recurring analysis

objectives and the ability to meet those objectives for each of the use cases provide a

credible basis for assessing the framework. The taxonomy seems robust in its coverage of

relevant performance measures for each use case. This fact highlights a significant

contribution o f this research, namely it provides a framework to help decision-makers

build a performance monitoring and analysis infrastructure into the overall design and

configuration o f a simulation environment. Not considering the simulation-centric

performance measures, the framework in general is reusable (as is the PerfMETRICS

implementation) and as such could be considered useful in any distributed computing

environment where understanding run-time complexity and the problems it creates is

desirable.

The fact that the use cases occurred over a period o f four years, and the fact that

PerfMETRICS was selected as integral part o f the system development and analysis

within these programs is a testament to the reasonableness o f the system design and it

adequacy to meet changing analysis objectives by providing a flexible and extensible

implementation. Over the life of the current PerfMETRICS implementation, it has been

interesting to see other monitoring systems within the same community end up being re

architected so as to be similar in design to PerfMETRICS. This is in large part due to the

simple and clean approach to implementing a daemon-based architecture with simple,

minimally-intrusive, and well-defined interfaces with the application being monitored.

6.4 Future Research

Coinciding with the successful achievement o f thesis objectives comes the

realization that opportunities exist to extend this research and its application to DIS and

HLA-based simulation environments, as well as other distributed computing

environments. Future research and development activities include: I) enhancements or

extensions to the existing PerfMETRICS implementation, 2) improvements to the utility

o f the proposed framework, and 3) continuing to actively employ the use o f the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

framework and monitoring infrastructure in existing or future programs. Useful

modifications to PerfMETRICS include:

■ Variable-Iength data packets; PerfMETRICS uses a statically defined protocol

packet for sharing performance data. Currently, this packet specification must be

changed on a "per application” basis depending on the kind o f performance data

desired. This also requires modifications to the collection code that must log or

display the relevant performance information. Although this will add processing

overheads to the collection daemon packet processing routine, the benefits in terms of

system flexibility/extensibility and packet bandwidth reduction are expected to

outweigh the processing costs.

* Dynamic selection of monitored, collected, and displayed perform ance measures;

Data collection and presentation requirements may change in between or during the

execution of a distributed simulation exercise depending on the type o f analysis

activity. The ability to specify and filter information that is collected and displayed is

desirable. This makes data analysis and interpretation easier as well as reducing

bandwidth requirements related to PerfMETRICS monitoring and collection

processing, network transmission, and data logging.

■ M ore extensive run-tim e visualization/graphics; PerfMETRICS currently provides

the capability to concurrently display performance data in a tabular format for

multiple-applications. An earlier SGI-based version o f the PerfMETRICS GUI

provided a time-series plot capability allowing a person to see the correlation between

selected performance measures as a function o f time. This capability needs to be re

implemented. Additional graphical displays could include 3-dimensional

presentations to support more complex, multi-variate analysis methods.

■ Dynamic load modules; Incorporating this functionality into PerfMETRICS supports

run-time monitoring o f DIS, HLA, or both protocol environments; the objective being

to structure the implementation to be more o f a “composable” system. An example is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

to load a Federation Management module to allow the PerfMETRICS collection

daemon to collect federation Management Object Module (MOM) data.

Implementing dynamic load modules also supports the integration o f relevant data for

monitoring different application types reporting different performance metrics. An

added benefit is the possibility o f smaller PerfMETRICS binaries and associated

working sets since the related processes would only have memory requirements for

the code that is actually used for a specific monitoring task.

■ Autom ated and less intrusive instrum entation techniques; Its not clear that hand-

instrumented application code is not necessary for analysis activity involving the use

of PerfMETRICS. However, it is possible to implement automatic code generation

for some instrumentation “hooks”. Possibilities include count and timing data

associated with the DIS and RTI communications infrastructure or other

shared/reused software components that have well-defined interfaces. Modifications

to PerfMETRICS to further reduce the intrusiveness o f the measurements process

include utilizing system time information stored in a shared memory block

(maintained by xntp) and better use of inline code substitution techniques (macros) to

reduce overheads o f frequently called data collection functions.

■ Integrated pre-processing data analysis module; The present implementation of

PerfMETRICS requires performance data saved to a log file to be pre-processed with

a separate application, before being imported and used in a post-exercise analysis

mode. It would be better if this pre-processing function was tightly-coupled with the

PerfMETRICS GUI to provide a more user friendly interface to select the data

desired for analysis. Additionally, analysis tools could be instantiated using the

PerfMETRICS GUI to provide a more cohesive analysis environment for the end

users. This level o f automation would also make the end-to-end monitoring,

collection, and analysis process more suitable for real- and near real-time decision

support functions during the conduct o f a simulation exercise.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

■ Reuse assessments of other monitoring and analysis components; the objective

being to increase the overall functionality o f the PerfMETRICS monitoring,

collection, and analysis environment. Any functional enhancements to the existing

PerfMETRICS implementation in terms of code generation should be weighed

against alternatives such as the reuse o f other open source applications. Additional

activity should include the migration (porting) o f the PerfMETRICS implementation

for use in a Win32 (Windows and NT) environment. It would be especially useful to

be able to readily connect a Window-based laptop computer into any DIS / HLA

environment configured to use PerfMETRICS.

■ Dynamic multi-level, multi-resolution modeling; PerfMETRICS can be modified to

supply relevant performance data and control information to support the dynamic

instantiation of model representations at differing levels of fidelity. An example is to

implement run-time switching between taskframe-based and TacAir-Soar-based

behavioral representations for a specific entity. PerfMETRICS control packets could

also be used to selectively “turn on” or “turn-off’ different levels o f detail in specific

model representations. Included in these enhancements is the implementation of

different load-scheduling algorithms based on different factors effecting run-time

performance and the feedback mechanism already implemented in PerfMETRICS.

Improvements to the performance analysis framework include:

■ Specification of aggregate / global perform ance measures; a more robust set of

performance metrics could be identified to provide an aggregated view o f simulation

and system performance across the entire distributed simulation (WAN/LAN)

environment. In general, a richer set o f performance measures within the framework

would be useful, the objective being to relate application and model-level complexity

to run-time performance.

■ Specific techniques applicable to perform ance analysis; Given the specification of

additional performance measures, second-order analysis techniques could be applied,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

such as sensitivity analysis characterizing the global distributed simulation

environment given some increase in the scenario workload. Additional methodologies

and mechanisms could be used to perturb the system and understand the global

impact (stability, reliability, validity) o f variations / fluctuations in some subset of

distributed simulation applications.

■ Complexity/scalability classifications; It would be useful to be able to provide

reasonable estimates o f expected performance based on the run-time interactions and

compute resources used by any given scenario. This capability would be useful, for

example, to provide “look-ahead” and allocate resources based on scenario dynamics.

■ Automated, traceable m apping function between the fram ew ork, the relevant

perform ance measures, and the analysis objectives; Right now, the process by

which relevant performance metrics are identified and used to support data analysis is

based on the experience level o f the analyst and his ability to explicitly define the

data requirements for any given analysis function. It would be very useful too provide

the capability to automatically identify relevant performance measures (from the

frameworks taxonomy) and relate those to specific kinds o f DIS and HLA

performance analysis objectives, for which they are suitable. This capability might be

a good candidate for some kind o f intelligent agents or other cognitive model.

■ A component of the fram ew ork to include the integration o f live C4I systems;

Large-scale integration of real-world systems (e.g., C4I) with constructive simulation

environments is and artifact o f successes using DIS and HLA-based simulations and

more stringent requirements for the use o f modeling and simulation to augment the

different DoD training, engineering, and analysis domains. C4I systems as used by

the military have many unique communications and timing requirements. The

semantic information associated with a C4I interface can significantly impact

behavioral models inside the synthetic battlespace. Enhancements to the framework

and its representation should account for the behavioral effects o f C4I interfaces as

well as the indirect impact on physical representations controlled by those behaviors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

■ Composable taxonomy of perform ance measures based on distributed

application type and analysis requirem ents; this desirable enhancement is based on

the contention that the framework is extendible to non-DIS / HLA domains. The

benefits would be manifested in a tool that supported the identification of

performance measures and the automatic configuration o f PerfMETRICS

(composability) to monitor and collect performance data.

This section (and dissertation) concludes with a discussion related to opportunities for

utilizing and extending this thesis research to support existing and future programs, as

well as other non-DIS and HLA distributed computing environments. As previously

stated, although some performance issues may be unique to distributed simulations, many

are applicable to distributed computing applications in general and the expectation is that

much of what has been presented here will be useful for performance analysis across a

broader spectrum of application domains (as opposed to distributed simulation). The

notion o f performance bottlenecks associated with layered communications protocols,

data translations, task scheduling, fault tolerance, process migration, object management,

and other architectural technologies and mechanisms provides a natural overlay o f other

applications domains to the ones presented in this thesis.

Despite the maturation o f distributed simulation architectures, most systems development

efforts invariably appear to either make run-time performance an after thought in terms of

system architecture or alternatively pursue the “holy grail” o f performance analysis in the

context of prediction. Additionally, programs frequently decouple performance analysis

from configuration and control activities in terms of the overall system architecture,

which necessarily seems to demarcate an important group o f persons (configuration

planners and exercise support personnel) from information they require to make effective

decisions. This can result in redundant information flows when another mechanism is

implemented to get the required data. PerfMETRICS provides a practical approach to

run-time performance analysis. The framework and monitoring infrastructure represent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

reasonable tradeoffs in terms of valuable information, monitoring intrusiveness, and

implementation complexity.

PerfMETRICS and the performance analysis framework embodied in its implementation

are currently being considered for use in additional DoD programs. The framework

represents the notion of a unified and integrated model of performance characterizations

across most simulation life-cycle activities, most significantly the design, development,

configuration, and control o f distributed simulation environments. The following near-

term DoD programs have been identified as potential candidates to benefit from the

results o f this thesis:

■ YVarfighting Concepts to Future W eapon System Design (W ARCON); A program

with objectives to develop an integrated acquisition environment that couples

examination of warfighting concepts and weapon system design. The system

architecture includes the integration o f engineering and operational simulations. The

interoperability o f disparate simulation architectures has an array o f modeling and

simulation issues that impact run-time performance.

■ AVCATT-A; Preliminary work to support this program’s contract proposal was

presented in the use cases. This program has now started the design and

implementation phases and as such has a need to understand the run-time

performance impact of any design decisions. A requisite tool needs to provide low-

level model analysis to understand the details o f sub-model behaviors, the objective

being able to assess overall model performance based on the run-time interactions of

model and sub-model components.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

* NWDC / MBC; has identified a desire to investigate the thesis framework and

PerfMETRICS infrastructure to support run-time performance analysis in Maritime

Battle Center M&S activities (e.g.. Fleet Battle Experiments). Thesis results will be

useful to establish system-level requirements for a unified approach to understand

constructive simulation performance as well as understand the performance impact of

integration of M&S components and live C4I systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

REFERENCES

[1] G. Coulouris, J. Dollimore, T. Kindberg, Distributed Systems, Concepts and

Designs. Addison Wesley, 1994.

[2] S. Mullender. Distributed Systems. ACM Press, 1993.

[3] T.L. Casavant, M. Singhal, Readings in Distributed Computing Systems. IEEE

Computer Society Press, 1994.

[4] C.M. Krishna, K.G. Shin, Real-Time Systems. McGraw-Hill, 1997.

[5] S.H. Son. Advances in Real-Time Systems. Prentice Hall, 1995.

[6] K. Hwang, Advanced Computer Architecture - Parallelism, Scalability,

Programmability’. McGraw-Hill, 1993.

[7] M.L. Simmons, Debugging and Performance Tuning fo r Parallel Computing

Systems. IEEE Computer Society Press, 1996.

[S] U.S. DoD Modeling and Simulation (M&S) Master Plan, October, 1995.

http://www.dmso.mil/docslib/mspolicy/msmp/1095msmp/.

[9] W.P. Hughes, Military Modeling fo r Decision Making. Military Operations

Research Society, 1997.

[10] A.R. Pope, D.C. Miller, “The SIMNET Communications Protocol For Distributed

Simulation,” Proc. o f the Sixth Annual Technology In Training and Education

(TITE) Conference, March 1988.

[11] D.C. Miller, A.R. Pope, R.M. Waters, “Long-Haul Networking of Simulators,”

Proc. o f the Tenth Interservice/Industry Training Systems Conference, December

1989.

[12] D.C. Miller, “The SIMNET Architecture For Distributed Interactive Simulation,”

Proc. o f the Summer Computer Simulation Conference, July 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.dmso.mil/docslib/mspolicy/msmp/1095msmp/

140

[13] E.P. Harvey, P.A. Bonanni, “Simulator Network Brief,” Presented to Fighter

Wing One at NAS Oceana, Virginia, November 1989.

[14] A.R. Pope, “The SIMNET Network and Protocols,” BBN Report Number 7102.

BBN Laboratories, July 1989.

[15] “IEEE Standard for Distributed Interactive Simulation - Application Protocols,”

IEEE Standards Board, Technical Report IEEE-Std-1278.1-1995, New York,

1995.

[16] “IEEE Standard for Distributed Interactive Simulation - Communication Services

and Profiles,” IEEE Standards Board, Technical Report IEEE-Std. 1278.2-1995,

New York, 1995.

[17] "Rationale Document: Entity Information and Entity Interaction in a Distributed

Interactive Simulation,” Institute fo r Simulation and Training, 1ST Report

Number IST-PD-91-l. University ofCentral Florida, January 1992.

[18] M. Tambe, W.L. Johnson, R.M. Jones, F. Koss, J.E. Laird, P.S. Rosenbloom, K.

Schwamb, “Intelligent Agents for Interactive Simulation Environments,” AI

Magazine, vol. 16, no. I, pp. 15-39, 1995.

[19] J.E. Laird, K.J. Coulter, R.M. Jones, P.G. ICenny, F. Koss, P.E. Nielsen,

“Intelligent Computer Generated Forces in Distributed Simulations: TacAir-Soar

in STOW-97,” Proc. 1999 Spring Simulation Interoperability Workshop, Paper

No. 98S-SIW-212, March 1998.

[20] Aggregate Level Simulation Protocol Home Page, http://alsp.ie.org/alsp.

[21] “Aggregate Level Simulation Protocol (ALSP) Program Status and History,”

Technical Report MTR-93W0000079, The Mitre Corporation, March 1993.

[22] A.L. Wilson. R.M. Weatherly, “The Aggregate Level Simulation Protocol: An

Evolving System,” Proc. 1994 Winter Simulation Conference, December 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://alsp.ie.org/alsp

141

[23] M.C. Fischer, “Aggregate Level Simulation Protocol (ALSP), Future Training

with Distributed Interactive Simulations,” Proc. 1995 International Training

Equipment Conference, April 1995.

[24] J.S. Dahmann, R.M. Fujimoto, R.M. Weatherly, “The Department o f Defense

High Level Architecture,” Proc. 1997 Winter Simulation Conference, December

1997.

[25] Defense Modeling and Simulation Office, http://www.dmso.mi 1.

[26] S.G. Purdy, R.D. Wuerfel, “A Comparison o f HLA and DIS Real-Time

Performance,” Proc. 1998 Spring Simulation Interoperability Workshop, Paper

No. 98S-SIW-042, March 1998.

[27] S. McGarry, “An Analysis o f RTI-s Performance in the STOW 97 ACTD,” Proc.

1998 Spring Simulation Interoperability Workshop, Paper No. 98S-SIW-229,

March 1998.

[28] D.B. Cavitt, J. Bell, M. Checchio, C.M. Overstreet, K.J. Maly, “Performance

Monitoring for the Design, Configuration, and Control of DIS/HLA Exercises,”

Proc. 1998 Spring Simulation Interoperability Workshop, Paper No. 98S-SIW-

066, March 1998.

[29] L.D. Budge, R.A. Strini, R.W. Dehncke, J.A. Hunt, “Synthetic Theater o f War

(STOW) Overview,” Proc. 1998 Spring Simulation Interoperability Workshop,

Paper No. 98S-S1W-086, March 1998.

[30] G.E. Lukes, G. Goodman, “Synthetic Environments and Lessons Learned from

the STOW-97 ACTD,” Proc. 1998 Spring Simulation Interoperability Workshop,

Paper No. 98S-SIW-097, March 1998.

[31] G.E. Lukes, P.A. Birkel, “Synthetic Environments - Final Technical Report,”

Prepared fo r the Defense Advanced Research Projects Agency, Document

Control Number 98-5-3100, 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.dmso.mi

142

[32] R. Cole, B. Root, L. O ’Ferral, J. Tarr, “STOW Network Technologies and

Operational Lessons Learned, ” Proc. 1998 Spring Simulation Interoperability

Workshop. Paper No. 98S-SIW-103, March 1998.

[33] J. Tsai, S. Yang, Monitoring and Debugging o f Distributed Real-Time Systems,

IEEE Computer Society Press, 1996.

[34] B. Plattner, “Real-Time Execution Monitoring,” IEEE Trans. Software Eng., Vol.

SE-10, No. 6, pp. 756-764, Nov. 1984.

[35] D.C. Marinescu, J.E. Lumpp, T.L. Casavant, H.J. Siegel, “Models for Monitoring

and Debugging Tools for Parallel and Distributed Software”, J. Parallel and

Distributed Computing, Vol. 9, pp. 171-183, June 1990.

[36] S.E. Chodrow, F. Jahanian, M. Donner, “Run-Time Monitoring o f Real-Time

Systems”, Proc. Real-Time Systems Svntp., pp. 74-83, IEEE Computer Society

Press, 1991.

[37] J. Joyce, G. Lomow, K. Slind, B. Unger, “Monitoring Distributed Systems”. ACM

Trans. Computer Systems, Vol. 5, No. 2, pp. 121-150, May 1987.

[38] P.S. Dodd. C.V. Ravishankar, “Monitoring and Debugging Distributed Real-Time

Programs", Software-Practice and Experience, Vol. 22, No. 10, pp.863-877, Oct.

1992.

[39] B.P. Miller, C. Macrander, S. Sechrest, “A Distributed Programs Monitor for

Berkeley UNIX”, Software-Practice and Experience, Vol. 16, no. 2, pp. 183-200,

Feb. 1986.

[40] H. Tokuda, M. Kotera, C.W. Mercer, “A Real-Time Monitor for a Distributed

Real-Time Operating System”, Proc. ACM Workshop Parallel and Distributed

Debugging, ACM Press, 1988.

[41] C.M. Pancake, M.L. Simmons, J.C. Yan, “Performance Evaluation Tools for

Parallel and Distributed Systems,” Computer, pp. 17-19, November 1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

[42] M.T. Heath, A.D. Malony, D.T. Rover, “The Visual Display o f Parallel

Performance Data”, Computer, pp. 21 - 28, November 1995.

[43] S. Fickas, M.S. Feather, “Requirements Monitoring in Dynamic Environments,”

Proc. o f the Second IEEE International Symposium on Requirements

Engineering, IEEE Computer Society Press, March 1995.

[44] H. Jakela, “Performance Visualization of a Distributed System: A Case Study,”

Computer, pp. 30 - 36. November 1995.

[45] B.P. Miller et.al., “The Paradyn Parallel Performance Measurement Tool,”

Computer, pp. 37 -46, November 1995.

[46] P.M. Dickens, P. Heidelberger, D.M. Nicol, “Timing Simulation o f Paragon

Codes Using Workstation Clusters,” Proc. o f the 1994 Winter Simulation

Conference, pp. 1347-1353, December 1994.

[47] P.M. Dickens, P.Heidelberger, D.M. Nicol, “Parallelized Direct Execution

Simulation of Message-Passing Parallel Programs,” Technical Report 94-50,

ICASE, July 1994.

[48] S.R. Sarukkai, P. Mehra, “Automated Scalability Analysis o f Message-Passing

Parallel Programs”, IEEE Parallel & Distributed Technology, pp. 21-32, Winter

1995.

[49] R.M. Fujimoto, “Parallel Discrete Event Simulation,” Communications o f the

ACM , Vol. 33, No. 10, pp. 31-53, October 1990.

[50] R.M. Fujimoto, “Performance of Time Warp under synthetic workloads,” Proc. o f

the SCS Multiconference On Distributed Simulation, Vol. 22, pp 23-28, January

1990.

[51] B. Falsafi, D.A. Wood, “Cost/Performance o f a Parallel Computer Simulator,”

Proc. o f the 8th Workshop on Parallel and Distributed Simulation, pp. 173-181,

July 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

[52] C.D. Carothers, B. Topol, R.M. Fujimoto, J.T. Stasko, V. Sunderam, Technical

Brief presented at 1997 Winter Simulation Conference, December 1997.

[53] R. Vrablik, W. Richardson, “Benchmarking and Optimization o f ModSAF,”

Modular Semi-Automated Forces: Recent and Historical Publications, LADS

Document Number 94007 v. 1.0, May 1994.

[54] E. White, “ModSAF 1.4 Reverse Engineering Report,” Applied Research

Laboratories, The University o f Texas at Austin, April 1995.

[55] J.E. Smith, L.C. Schuette, K.L. Russo, D. Crepeau, “Rational Characterization Of

The Performance O f Distributed Synthetic Forces,” Proc. o f the 14th DIS

Workshop on Standards fo r the Interoperability o f Distributed Simulations, pp.

665-673, March 1996.

[56] R.K. Guha. M.A. Bassiouni, “A Framework for Modeling High Level

Architecture (HLA) Using Petri Nets,” Proc. o f the 14th DIS Workshop on

Standards fo r the Interoperability o f Distributed Simulations, pp. 515-521, March

1996.

[57] S. Srinivasan, R.F. Reynolds, “Performance Modeling for the High Level

Architecture,” Proc. o f the I5'h DIS Workshop on Standards fo r the

Interoperability o f Distributed Simulations, pp. 951-959, March 1996.

[58] S. Srinivasan, R.F. Reynolds, “Communications, Data Distribution and Other

Goodies in the HLA Performance Model,” Proc. 1997 Spring Simulation

Interoperability Workshop. Paper Number 97S-SIW-050, April 1997.

[59] R.R. Nair, D.N. McGregor, B.J. Root, “Data Collection Using SNMP In The DIS

Environment,” Proc. o f the 14th DIS Workshop on Standards fo r the

Interoperability o f Distributed Simulations, pp. 361-371, March 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

[60] VV.P. Sudnikovich, A. Huynh, J. Pasirstein, R. Wood, W. Walker, “A Proposal

For Simulation Performance PDUS,” Proc. o f the 14th DIS Workshop on

Standards fo r the Interoperability o f Distributed Simulations, pp. 951-959, March

1996.

[61] J.F. Stender, “Simulation Management for Large Exercises”, Proc. o f the 14th DIS

Workshop on Standards fo r the Interoperability o f Distributed Simulations, pp.

893-896, March 1996..

[62] “ IEEE Recommended Practice for Distributed Interactive Simulation - Exercise

Management and Feedback (Working Draft Proposal),” IEEE Standards Board,

lEEE-Std-1278.3-1995, Washington, D.C., 1995.

[63] B. Butler, “Changes To The Standards Document: Recommended Practice For

Distributed Interactive Simulation - Exercise Management And Feedback,” Proc.

o f the 14th DIS Workshop on Standards fo r the Interoperability o f Distributed

Simulations, pp. 523-534, March 1996.

[64] J. Swauger, “Desired Capabilities o f DIS Exercise Support And Feedback Tools,”

Proc. o f the 14th DIS Workshop on Standards fo r the Interoperability o f

Distributed Simulations, pp. 639-645, March 1996.

[65] T.J. Mowbray, R. Zahavi, The Essential CORBA, Systems Integration Using

Distributed Objects, John Wiley & Sons, Inc., New York, 1995.

[66] K. Hunt, J.S. Dahmann, R. Lutz, J. Sheehan, “Planning For The Evolution o f

Automated Tools In HLA,” Proc. 1997 Spring Simulation Interoperability

Workshop, Paper Number 97S-SIW-067, April 1997.

[67] S.G. Purdy, R.D. Wuerfel, “A Comparison O f HLA And DIS Real-Time

Performance,” Proc. 1998 Spring Simulation Interoperability Workshop, Paper

Number 98S-SIW-042, April 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

[68] R.D. Wuerfel, R. Johnston, “Real-Time Performance O f RTI Version 1.3,” Proc.

1998 Fall Simulation Interoperability Workshop, Paper Number 98F-SIW-125,

Sept. 1998.

[69] R.D. Wuerful, J.S. Olszewski, “Defining RTI Performance,” Proc. Spring

Simulation Interoperability Workshop. Paper Number 99S-SIW -100, April 1999.

[70] R.D. Wuerful, J.S. Olszewski, “An RTI Performance Testing Framework,” Proc.

Spring Simulation Interoperability Workshop, Paper Number 99F-SIW-127, Sept.

1999.

[71] R. Richardson, J.S. Dahmann, R. Weatherly, R. Briggs, “High Level Architecture

Performance Framework,” ITECpresentation brief, April 1998.

[72] “Federation Execution Planner’s Workbook, Version 1.3 User’s Guide,” Defense

Modeling and Simulation Agency. 1999.

[73] P.H. Winston, Artificial Intelligence, Addison Wesley, 1992.

[74] “Standard for Integration Definition for Function Modeling (IDEFO),” Mat'I

Bureau o f Standards, December 1993.

[75] A. Ceranowicz, “STOW 97-99,” Presented at the ALL-STOW Conference. June

1998.

[76] J.O. Calvin, C. J. Chiang, S.M. McGarry, SJ.Rak, and D.J. Van Hook, “Design,

Implementation, and Performance of the STOW RTI Prototype (RTI-s),” Proc.

1997 Spring Simulation Interoperability Workshop. Paper Number 97S-SIW-019,

April 1997.

[77] B.A. Shirazi, A.R. Hurson, K.M. Kavi, Scheduling and Load Balancing in

Parallel and Distributed Systems, IEEE Computer Society Press, Los Alamitos,

1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

APPENDIX A

PERFMETRICS GUI USER’S GUIDE AND DATA DICTIONARY

Introduction

This user's guide provides an overview of the PerfMETRICS monitoring system and how

to use it to monitor DIS/HLA-based simulations. PerfMETRICS detects, collects, and

displays high-level performance metrics that describe behavior o f the physical and logical

resources and services used in the design and implementation o f DIS and High Level

Architecture (HLA) simulations. Run-time and post-exercise feedback of performance

information can provide meaningful information as a guide in making decisions about the

configuration and control of the available hardware and software resources; the goal is to

provide information needed by exercise planners and managers. This performance

information can also be used to support modeling and simulation requirements and

design.

Quick Startup Procedures

1) Start all simulations required for performance monitoring. Note that the simulations

must be run either as root or as the same user (uid or effective uid) as the

PerfMETRICS collection daemon running on that workstation (safuser in the

WISSARD lab).

2) Login as safuser on the workstation designated as the PerfMETRICS monitoring

station (perfmon in the WISSARD lab).

3) Select the PerfMETRICS button on the icon bar o f the window manager.

4) View the desired simulation engine by pressing the right hand mouse button and

selecting the appropriate workstation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

Software and H ardw are Requirements

The current PerfMETRICS implementation collects and reports performance information

from hand-instrumented, ModSAF-based simulations. The system has only been tested

on Silicon Graphics (SGI) and Linux-based Workstations. Note that the system level

information is not currently available on SGI Workstations. To compile the

PerfMETRICS instrumentation code, the PERFMETRICS compiler directive must be

used during the build process and the functions provided in the libodumetrics software

library must be linked into the simulation executable.

The PerfMETRICS collection daemon is written in ANSI C. The native SGI and Linux

C-compilers are suitable for compiling the collection daemon. The simulation engines

and the monitoring control station must be configured for ClNIX System V IPC and

Multicast/IP networking. As mentioned in the Quick Start section, the simulation process

and the collection daemon process must have either the same uid or effective uid to

properly communicate.

The PerfMETRICS Graphical User Interface (GUI) is a Motif-based application that

currently requires the SGI Viewkit libraries. As such the GUI must be run on an SGI

Workstation with Viewkit support. It may be displayed remotely on non-SGI systems by

setting the appropriate display environment variable (DISPLAY).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

Using The PerfM ETRICS GUI

1. Starting the PerfMETRICS GUI. See quick start procedure

2.The User Interface Use the right mouse button to select a specific machine for viewing.

Admin Button

New View to create another window; this is useful when trying to observe

or compare performance data from two or more simulations.

Data Logging to start and stop saving the data to a file.

Exit to quit PerfMETRICS; ALWAYS USE THIS BUTTON to quit

PerfMETRICS instead of killing from the window manager.

Config Button: Unused at this point

Views Button: Toggles between global, local, and monitoring views; local view

is currently the only view that display data.

Plot Button: Opens up a plotting window to display X-Y plots o f selected

performance variables. The most useful at this time is comparing "Slack in Tick

Rate" and "Entity Update Performance". To do this:

■ Open the Selection Button.

■ Select Preferences.

■ Check the box beside these variables.

■ Select Apply, then Dismiss.

3. Interpreting the Data : See Data Dictionary table; Adjust the window panes to view

appropriate entity, simulation, and system level performance data.

GUI D ata Dictionary

The following table describes the tabular data presentation o f the PerfMETRICS GUI.

Note that PerfMETRICS monitors and collects more data than actually displayed on the

GUI.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

Item Description Units
ENTITY
INFORMATION

E ntity C o u n t s

Locals The number o f local vehicles (being simulated on a workstation) Integer count

Remotes The number o f remote vehicles (whose entity state is seen by a
workstation)

Integer count

Other The number o f all other local and remote entity types (e.g.,
aggregates, radio, etc.)

Integer count

P hase P r o c e s s in g
T iming

PDU In The relative time spent processing incoming PDUs relevant for
entity state data: over the past 10 seconds (% interval), relative to the
total time spent ticking entities (% total tick), and relative to the
entire simulation time (% total sim).

Percent (%)

PDU Out The relative time spent processing outgoing PDUs relevant for entity
state data: over the past 10 seconds (% interval), relative to the total
time spent ticking entities (% total tick), and relative to the entire
simulation time (% total sim).

Percent (%)

| Hull
i

The relative time spent processing entity kinimatics (e.g., flight
dynamics model): over the past 10 seconds (% interval), relative to
the total time spent ticking entities (% total tick), and relative to the
entire simulation time (% total sim).

Percent (%)

j Turret The relative time spent processing an articulated part (turret): over
the past 10 seconds (% interval), relative to the total time spent
ticking entities (% total tick), and relative to the entire simulation
time (% total sim). Note this is only relevant for tanks and other
ground vehicles containing turrets.

Percent (%)

Gun The relative time spent processing entity weapon systems: over the
past 10 seconds (% interval), relative to the total time spent ticking
entities (% total tick), and relative to the entire simulation time (%
total sim).

Percent (%)

Sensor The relative time spent processing entity sensor systems: over the
past 10 seconds (% interval), relative to the total time spent ticking
entities (% total tick), and relative to the entire simulation time (%
total sim).

Percent (%)

Tasking The relative time spent processing entity behaviors: over the past 10
seconds (% interval), relative to the total time spent ticking entities
(% total tick), and relative to the entire simulation time (% total sim).
Note that for SOAR agents this is the behavioral processing times
and for SAFOR this is the time spent executing task (taskframes).

Percent (%)

GUI The relative time spent processing entity graphical display logic:
over the past 10 seconds (% interval), relative to the total time spent
ticking entities (% total tick), and relative to the entire simulation
time (% total sim).

Percent (%)

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

SIM ULATIO N
INFO RM ATIO N

Slack In Tick Rate The time within a 500 millisecond window that is available after
processing all entities.

Milliseconds

Entity Update
Performance

The relative number o f entities meeting their prescribed update rate
(2 Hz.) over some specified time period (60 second default in
ModSAF)

Percent (%)

Update Rates The current rate that entity state is being updated (ticked): for local
vehicles (local veh.), for remote vehicles (remote veh.), and all other
vehicles (other). Note that this corresponds with what is referred to
as the "SAF frame rate".

Cycles / Sec. (Hz)

Entity Tick Time The time spent updating (ticking) entity state relative to the total
simulation time: over the past 10 seconds (% interval), and since
simulation startup (% total sim).

Percent (%)

Idle Scheduler The scheduler's idle time (spin time in the case o f ModSAF) relative
to total simulation time: over the past 10 seconds (% interval), and
since simulation startup (% total sim).

Percent (%)

RTI Tick Time The time spent in the RTI (ticking) relative to total simulation time:
over the past 10 seconds (% interval), and since simulation startup
(% total sim).

Percent (%)

Real Time Wall clock time since simulation startup. Seconds

User Time Time spent executing simulation code. Seconds

System Time Time spent in operating system code on behalf o f the simulation
process.

Seconds

Mean Soar Decision
Time

Average time for a single Soar decision cycle (mean value over a
ten-second interval).

Milliseconds

Mean RTI Processing
Time

Average time for a single RTI tck (mean value over a 10 second
interval

Milliseconds

SYSTEM
INFO RM ATIO N

CPU Processor type: Operating System

User Relative time spent executing user processes since system boot up. Percent (%)

System (Kernel) Relative time spent executing operating system code since system
boot up.

Percent (%)

Idle Relative time spent idle since system boot up. Percent (%)

M e m o r y

Total Physical Total amount o f memory configured on w orkstation (simulation
engine).

Kilobytes (kB)

Used Total amount o f memory allocated by operating system to processes
(including the simulation).

Kilobytes (kB)

Free Total amount o f available memory Kilobytes (kB)

Total Swap Total amount o f swap space configured on workstation (simulation
engine).

Kilobytes (kB)

Used Total amount o f swap space used by the operating system Kilobytes (kB)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

Free Total amount o f free swap space Kilobytes (kB)

Page In The operating system page rate over the past 10 seconds (newly
allocated pages). Note this is the operating system ’s activity on
behalf o f a specific process.

Pages / Second

Page Out The operating system page rate over the past 10 seconds (pages that
are freed by writing data out). Note this is the operating system’s
activity on behalf o f a specific process.

Pages / Second

Swap In The operating system swap rate bringing processes in for execution.
Note this is the operating system's activity in order to provide fair
CPU time to all processes.

Pages / Second

Swap Out The operating system swap rate taking processes out o f exeuction.
Note this is the operating system's activity in order to provide fair
CPU time to all processes.

Pages / Second

N e t w o r k

Packets Received IP packet receive rate for the last 10 seconds Packets / Second

Receive Errors IP packet receive errors for the last 10 seconds Packets / Second

Packets Sent IP packet send rate for the last 10 seconds Packets I Second

Send Errors IP Packet send errors for the last 10 seconds Packets / Second

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

APPENDIX B

FUTURE W ORK - RESEARCH AND DEVELOPMENT ALTERNATIVES

V ariab le-leng th d a ta packets X X X X

D ynam ic selection o f m on ito red , collected, and
d isplayed perfo rm an ce m easures

X X X X

M ore extensive ru n -tim e visualization / graph ics X X X X

D ynam ic load m odules X X X X

A utom ated an d less in tru s iv e in strum en ta tion
techn iques

X X X X

In teg ra ted p re-processing d a ta analysis m odule X X X

R euse assessm ents o f o th e r m onito ring an d analysis
com ponents

X

D ynam ic m ulti-level, m ulti-reso lu tion m odeling
su p p o rt

X X X

Specification o f aggregate/g lobal perfo rm ance
m easures

X X X

Specific techniques app licab le to perfo rm ance analysis X X X

Com plexity classifications X X X X

A utom ated , traceab le m app ing function betw een th e
fram ew ork , th e relevan t perfo rm an ce m easures, an d
the analysis objectives

X

A com ponent o f th e fram ew o rk to include the
in teg ra tion o f live C 4I system s

X X X X

C om posab lc taxonom y o f perfo rm ance m easures based
on d is tr ib u ted application type an d analysis
requ irem en t

X

154

VITA

David B. Cavitt was bom on January 28, 1959 at Patuxent, Maryland. He grew up as a Navy

dependent, but slipped up on the opportunity to pursue a career in Naval Aviation, as his father

and older brother had before him. As it turns out a better plan included taking the hand of his

lovely wife, Ellen; children followed and then higher education called him away from his career

as a boat builder.

Mr. Cavitt tended to his undergraduate studies in Computer Science at Old Dominion University

between 1985 and 1989, at which time he was awarded his Bachelors in Science Degree. He

started his career in the U.S. defense industry in 1987, working as a software engineer

developing real-time command and control software. He then had a short tenure at NASA

Langley Research Center in Hampton, Virginia before returning to Old Dominion University to

pursue graduate studies. Simulation has been an integral part o f his entire career track. The thesis

research presented in this dissertation is submitted to the faculty o f the Computer Science

Department, Old Dominion University, in Norfolk, Virginia in fulfillment o f the Mr. Cavitt’s

Ph.D. requirements.

Mr. Cavitt is currently a research engineer with BMH Associates, Inc., Norfolk, Virginia. He has

13 years o f experience in the use and development o f simulations for military and engineering

applications. His research interests include modeling and simulation, performance analysis, and

distributed systems. Mr. Cavitt is a member of ACM and IEEE CS.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Old Dominion University
	ODU Digital Commons
	Winter 2000

	An Architectural Framework for Performance Analysis: Supporting the Design, Configuration, and Control of DIS /HLA Simulations
	David B. Cavitt
	Recommended Citation

	tmp.1550517133.pdf.mZXeP

