1,007,432 research outputs found

    eCustoms Case Study: Mechanisms behind Co-operation Planning

    Get PDF
    Members of existing e-commerce trading networks constantly assess their network to identify opportunities for increased co-operation and integration of e-commerce IT systems. Failing to identify the mechanisms involved in co-operation compromises correct investment decisions. In this paper, we use Systems Thinking as a reasoning model that helps decision makers to uncover such mechanisms. We use Systems Thinking to analyse a real-world case called eCustoms, an inter-organisational network of customs organisations. The resulting model explains the mechanism of planning co-operation in terms of a feedback loop that comprises political support, operational potential, and information flow. This mechanism also explains why it is important to select potential partners for closer co-operation as early as possible, the importance of willingness to participate, and the gain or loss of decision power that joining a network implies

    Hybrid routing technique for a fault-tolerant, integrated information network

    Get PDF
    The evolutionary growth of the space station and the diverse activities onboard are expected to require a hierarchy of integrated, local area networks capable of supporting data, voice, and video communications. In addition, fault-tolerant network operation is necessary to protect communications between critical systems attached to the net and to relieve the valuable human resources onboard the space station of time-critical data system repair tasks. A key issue for the design of the fault-tolerant, integrated network is the development of a robust routing algorithm which dynamically selects the optimum communication paths through the net. A routing technique is described that adapts to topological changes in the network to support fault-tolerant operation and system evolvability

    NASDA satellite mission operation system and operations

    Get PDF
    NASDA has recently developed a new tracking and control system as a basis for future satellite mission operation. It is named type-I Space Operations and Data Systems (type-I SODS). The software of this system is separated into three parts: operation and control system, network system, and support and information system. The operation control system treats telemetry and command operations. The network system controls the communication line and ground station equipments to connect the satellite and the operation control system. The support and information system provides to other systems necessary information. JERS-1 which was launched in February of this year is the first satellite operated by type-l SODS. We explain the architecture and operation methods of this system using JERS-1 mission operations

    Design and experimental validation of a software-defined radio access network testbed with slicing support

    Get PDF
    Network slicing is a fundamental feature of 5G systems to partition a single network into a number of segregated logical networks, each optimized for a particular type of service or dedicated to a particular customer or application. The realization of network slicing is particularly challenging in the Radio Access Network (RAN) part, where multiple slices can be multiplexed over the same radio channel and Radio Resource Management (RRM) functions shall be used to split the cell radio resources and achieve the expected behaviour per slice. In this context, this paper describes the key design and implementation aspects of a Software-Defined RAN (SD-RAN) experimental testbed with slicing support. The testbed has been designed consistently with the slicing capabilities and related management framework established by 3GPP in Release 15. The testbed is used to demonstrate the provisioning of RAN slices (e.g., preparation, commissioning, and activation phases) and the operation of the implemented RRM functionality for slice-aware admission control and scheduling.Peer ReviewedPostprint (published version

    Design and Experimental Validation of a Software-Defined Radio Access Network Testbed with Slicing Support

    Get PDF
    Network slicing is a fundamental feature of 5G systems to partition a single network into a number of segregated logical networks, each optimized for a particular type of service, or dedicated to a particular customer or application. The realization of network slicing is particularly challenging in the Radio Access Network (RAN) part, where multiple slices can be multiplexed over the same radio channel and Radio Resource Management (RRM) functions shall be used to split the cell radio resources and achieve the expected behaviour per slice. In this context, this paper describes the key design and implementation aspects of a Software-Defined RAN (SD-RAN) experimental testbed with slicing support. The testbed has been designed consistently with the slicing capabilities and related management framework established by 3GPP in Release 15. The testbed is used to demonstrate the provisioning of RAN slices (e.g. preparation, commissioning and activation phases) and the operation of the implemented RRM functionality for slice-aware admission control and scheduling

    Collaboration Development through Interactive Learning between Human and Robot

    Get PDF
    In this paper, we investigated interactive learning between human subjects and robot experimentally, and its essential characteristics are examined using the dynamical systems approach. Our research concentrated on the navigation system of a specially developed humanoid robot called Robovie and seven human subjects whose eyes were covered, making them dependent on the robot for directions. We compared the usual feed-forward neural network (FFNN) without recursive connections and the recurrent neural network (RNN). Although the performances obtained with both the RNN and the FFNN improved in the early stages of learning, as the subject changed the operation by learning on its own, all performances gradually became unstable and failed. Results of a questionnaire given to the subjects confirmed that the FFNN gives better mental impressions, especially from the aspect of operability. When the robot used a consolidation-learning algorithm using the rehearsal outputs of the RNN, the performance improved even when interactive learning continued for a long time. The questionnaire results then also confirmed that the subject's mental impressions of the RNN improved significantly. The dynamical systems analysis of RNNs support these differences and also showed that the collaboration scheme was developed dynamically along with succeeding phase transitions
    • 

    corecore