47,146 research outputs found

    LOCAL AREA NETWORK MANAGEMENT (Case Study at Assessment and Development Information Technology Units Brawijaya University Malang)

    Full text link
    The purpose of this study was to know the management local area network at Assessment and Development Information Technology units, furthermore this study focusing on network management functions that applied by Assessment and Development Information Technology Units. This study will explain about the implementation of network management functions in the local area network management. The research method employ in this research is by using descriptive qualitative method by study case approach. The results of this study was in the implementation of network management functions Assessment and Development Information Technology units already applied all five network management functions in the local area network management. Each functions represented as a network management components in managing Assessment and Development Information Technology units local area network. Since the network management functions represented as a network management components it needed improvement in each network management functions policies and measurements

    Network Management: Accounting and Performance Strategies

    Get PDF
    Network Management : Accounting and Performance Strategies imparts a deep understanding of Cisco IOS embedded management for monitoring and optimizing performance, tpgether with proven best strategies for both accounting and performance management. The book concludes with chapter-length scenarios that walk you through accounting and performance management for five different applications : data network monitoring, capacity planning, billing, security, and voice network performance. The book will be indispenable to every professional concerned with network performace, effectiveness, or profitability, especially NMS/OSS architects, network and service designers, network administrators, and anyone responsible for network accounting or billing

    The econometrics of airline network management

    Get PDF
    The task of airline network management is to develop new flight schedule variants and evaluate thm in terms of expected passenger demand and revenue. Given the industry's trend towards global cooperation, this is especially important when evaluating the potential synergies with alliance partners. From the econometric point of view, this task represents a discrete choice modeling problem in which the analyst has to account for a large number of dependent alternatives. In this paper we discuss the applicability of recently proposed approaches and introduce a new multinomial probit specification designed for the airline network management task. The superior performance of the new model is demonstrated both in a simulation study and in a real-world application using airline bookings data

    Multi-layer virtual transport network management

    Full text link
    Nowadays there is an increasing need for a general paradigm which can simplify network management and further enable network innovations. Software Defined Networking (SDN) is an efficient way to make the network programmable and reduce management complexity, however it is plagued with limitations inherited from the legacy Internet (TCP/IP) architecture. In this paper, in response to limitations of current Software Defined Networking (SDN) management solutions, we propose a recursive approach to enterprise network management, where network management is done through managing various Virtual Transport Networks (VTNs) over different scopes (i.e., regions of operation). Different from the traditional virtual network model which mainly focuses on routing/tunneling, our VTN provides communication service with explicit Quality-of-Service (QoS) support for applications via transport flows, and it involves all mechanisms (e.g., addressing, routing, error and flow control, resource allocation) needed to support such transport flows. Based on this approach, we design and implement a management architecture, which recurses the same VTN-based management mechanism for enterprise network management. Our experimental results show that our management architecture achieves better performance.National Science Foundation awards: CNS-0963974 and CNS-1346688

    A recursive approach to network management

    Full text link
    Nowadays there is an increasing need for a general management paradigm which can simplify network management and further enable network innovations. In this paper, in response to limitations of current Software Defined Networking (SDN) management solutions, we propose a recursive approach to enterprise network management, where network management is done through managing various Virtual Transport Networks (VTNs). Different from the traditional virtual network model which mainly focuses on routing/tunneling, our VTN provides communication service with explicit Quality-of-Service (QoS) support for applications via transport flows, and it involves all mechanisms (e:g:, routing, addressing, error and flow control, resource allocation) needed to support such transport flows. Based on this approach, we design and implement a management layer, which recurses the same VTN-based management mechanism for enterprise network management. Comparing with an SDN-based management approach, our experimental results show that our management layer achieves better network performance

    Application-driven network management with ProtoRINA

    Full text link
    Traditional network management is tied to the TCP/IP architecture, thus it inherits its many limitations, e.g., static management and one-size-fits-all structure. Additionally there is no unified framework for application management, and service (application) providers have to rely on their own ad-hoc mechanisms to manage their application services. The Recursive InterNetwork Architecture (RINA) is our solution to achieve better network management. RINA provides a unified framework for application-driven network management along with built-in mechanisms (including registration, authentication, enrollment, addressing, etc.), and it allows the dynamic formation of secure communication containers for service providers in support of various requirements. In this paper, we focus on how application-driven network management can be achieved over the GENI testbed using ProtoRINA, a user-space prototype of RINA. We demonstrate how video can be efficiently multicast to many clients on demand by dynamically creating a delivery tree. Under RINA, multicast can be enabled through a secure communication container that is dynamically formed to support video transport either through application proxies or via relay IPC processes. Experimental results over the GENI testbed show that application-driven network management enabled by ProtoRINA can achieve better network and application performance.National Science Foundation (NSF grant CNS-0963974)

    Intelligent Network Management and Functional Cerebellum Synthesis

    Get PDF
    Transdisciplinary modeling of the cerebellum across histology, physiology, and network engineering provides preliminary results at three organization levels: input/output links to central nervous system networks; links between the six neuron populations in the cerebellum; and computation among the neurons of the populations. Older models probably underestimated the importance and role of climbing fiber input which seems to supply write as well as read signals, not just to Purkinje but also to basket and stellate neurons. The well-known mossy fiber-granule cell-Golgi cell system should also respond to inputs originating from climbing fibers. Corticonuclear microcomplexing might be aided by stellate and basket computation and associate processing. Technological and scientific implications of the proposed cerebellum model are discussed

    An information-theoretic view of network management

    Get PDF
    We present an information-theoretic framework for network management for recovery from nonergodic link failures. Building on recent work in the field of network coding, we describe the input-output relations of network nodes in terms of network codes. This very general concept of network behavior as a code provides a way to quantify essential management information as that needed to switch among different codes (behaviors) for different failure scenarios. We compare two types of recovery schemes, receiver-based and network-wide, and consider two formulations for quantifying network management. The first is a centralized formulation where network behavior is described by an overall code determining the behavior of every node, and the management requirement is taken as the logarithm of the number of such codes that the network may switch among. For this formulation, we give bounds, many of which are tight, on management requirements for various network connection problems in terms of basic parameters such as the number of source processes and the number of links in a minimum source-receiver cut. Our results include a lower bound for arbitrary connections and an upper bound for multitransmitter multicast connections, for linear receiver-based and network-wide recovery from all single link failures. The second is a node-based formulation where the management requirement is taken as the sum over all nodes of the logarithm of the number of different behaviors for each node. We show that the minimum node-based requirement for failures of links adjacent to a single receiver is achieved with receiver-based schemes
    • …
    corecore