12,278 research outputs found

    Lightweight Deep Learning Framework to Detect Botnets in IoT Sensor Networks by using Hybrid Self-Organizing Map

    Get PDF
    In recent years, we have witnessed a massive growth of intrusion attacks targeted at the internet of things (IoT) devices. Due to inherent security vulnerabilities, it has become an easy target for hackers to target these devices. Recent studies have been focusing on deploying intrusion detection systems at the edge of the network within these devices to localize threat mitigation to avoid computational expenses. Intrusion detection systems based on machine learning and deep learning algorithm have demonstrated the potential capability to detect zero-day attacks where traditional signature-based detection falls short. The paper aims to propose a lightweight and robust deep learning framework for intrusion detection that has computational potential to be deployed within IoT devices. The research builds upon previous researches showing the demonstrated efficiency of anomaly detection rates of self-organizing map-based intrusion. The paper will contribute to the existing body of knowledge by creating a hybrid self-organizing map (SOM) for the purpose of detecting botnet attacks and analyzing its accuracy compared with a traditional supervised artificial neural network (ANN). The paper also aims to answer questions regarding the computational efficiency of our hybrid self-organizing map by measuring the CPU consumption based on time to train model. The deep learning prototypes will be trained on the NSL-KDD dataset and Detection of IoT botnet Attacks dataset. The study will evaluate the performance of a self-organizing map based k-nearest neighbor prototype with the performance of a supervised artificial neural network based on validation metrics such as confusion matrix, f1, recall, precision, and accuracy score

    A cognitive based Intrusion detection system

    Full text link
    Intrusion detection is one of the primary mechanisms to provide computer networks with security. With an increase in attacks and growing dependence on various fields such as medicine, commercial, and engineering to give services over a network, securing networks have become a significant issue. The purpose of Intrusion Detection Systems (IDS) is to make models which can recognize regular communications from abnormal ones and take necessary actions. Among different methods in this field, Artificial Neural Networks (ANNs) have been widely used. However, ANN-based IDS, has two main disadvantages: 1- Low detection precision. 2- Weak detection stability. To overcome these issues, this paper proposes a new approach based on Deep Neural Network (DNN. The general mechanism of our model is as follows: first, some of the data in dataset is properly ranked, afterwards, dataset is normalized with Min-Max normalizer to fit in the limited domain. Then dimensionality reduction is applied to decrease the amount of both useless dimensions and computational cost. After the preprocessing part, Mean-Shift clustering algorithm is the used to create different subsets and reduce the complexity of dataset. Based on each subset, two models are trained by Support Vector Machine (SVM) and deep learning method. Between two models for each subset, the model with a higher accuracy is chosen. This idea is inspired from philosophy of divide and conquer. Hence, the DNN can learn each subset quickly and robustly. Finally, to reduce the error from the previous step, an ANN model is trained to gain and use the results in order to be able to predict the attacks. We can reach to 95.4 percent of accuracy. Possessing a simple structure and less number of tunable parameters, the proposed model still has a grand generalization with a high level of accuracy in compared to other methods such as SVM, Bayes network, and STL.Comment: 18 pages, 6 figure

    Development of a Reference Design for Intrusion Detection Using Neural Networks for a Smart Inverter

    Get PDF
    The purpose of this thesis is to develop a reference design for a base level implementation of an intrusion detection module using artificial neural networks that is deployed onto an inverter and runs on live data for cybersecurity purposes, leveraging the latest deep learning algorithms and tools. Cybersecurity in the smart grid industry focuses on maintaining optimal standards of security in the system and a key component of this is being able to detect cyberattacks. Although researchers and engineers aim to design such devices with embedded security, attacks can and do still occur. The foundation for eventually mitigating these attacks and achieving more robust security is to identify them reliably. Thus, a high-fidelity intrusion detection system (IDS) capable of identifying a variety of attacks must be implemented. This thesis provides an implementation of a behavior-based intrusion detection system that uses a recurrent artificial neural network deployed on hardware to detect cyberattacks in real time. Leveraging the growing power of artificial intelligence, the strength of this approach is that given enough data, it is capable of learning to identify highly complex patterns in the data that may even go undetected by humans. By intelligently identifying malicious activity at the fundamental behavior level, the IDS remains robust against new methods of attack. This work details the process of collecting and simulating data, selecting the particular algorithm, training the neural network, deploying the neural network onto hardware, and then being able to easily update the deployed model with a newly trained one. The full system is designed with a focus on modularity, such that it can be easily adapted to perform well on different use cases, different hardware, and fulfill changing requirements. The neural network behavior-based IDS is found to be a very powerful method capable of learning highly complex patterns and identifying intrusion from different types of attacks using a single unified algorithm, achieving up to 98% detection accuracy in distinguishing between normal and anomalous behavior. Due to the ubiquitous nature of this approach, the pipeline developed here can be applied in the future to build in more and more sophisticated detection abilities depending on the desired use case. The intrusion detection module is implemented in an ARM processor that exists at the communication layer of the inverter. There are four main components described in this thesis that explain the process of deploying an artificial neural network intrusion detection algorithm onto the inverter: 1) monitoring and collecting data through a front-end web based graphical user interface that interacts with a Digital Signal Processor that is connected to power-electronics, 2) simulating various malicious datasets based on attack vectors that violate the Confidentiality-Integrity-Availability security model, 3) training and testing the neural network to ensure that it successfully identifies normal behavior and malicious behavior with a high degree of accuracy, and lastly 4) deploying the machine learning algorithm onto the hardware and having it successfully classify the behavior as normal or malicious with the data feeding into the model running in real time. The results from the experimental setup will be analyzed, a conclusion will be made based upon the work, and lastly discussions of future work and optimizations will be discussed

    LiPar: A Lightweight Parallel Learning Model for Practical In-Vehicle Network Intrusion Detection

    Full text link
    With the development of intelligent transportation systems, vehicles are exposed to a complex network environment. As the main network of in-vehicle networks, the controller area network (CAN) has many potential security hazards, resulting in higher requirements for intrusion detection systems to ensure safety. Among intrusion detection technologies, methods based on deep learning work best without prior expert knowledge. However, they all have a large model size and rely on cloud computing, and are therefore not suitable to be installed on the in-vehicle network. Therefore, we propose a lightweight parallel neural network structure, LiPar, to allocate task loads to multiple electronic control units (ECU). The LiPar model consists of multi-dimensional branch convolution networks, spatial and temporal feature fusion learning, and a resource adaptation algorithm. Through experiments, we prove that LiPar has great detection performance, running efficiency, and lightweight model size, which can be well adapted to the in-vehicle environment practically and protect the in-vehicle CAN bus security.Comment: 13 pages, 13 figures, 6 tables, 51 referenc

    A Predictive Model for Network Intrusion Detection System Using Deep Neural Network

    Get PDF
    Network Intrusion Detection System (NIDS) is an important part of Cyber safety and security. It plays a key role in all networked ICT systems in detecting rampant attacks such as Denial of Service (DoS) and ransom ware attacks. Existing methods are inadequate in terms of accuracy detection of attacks. However, the requirement for high accuracy detection of attacks using Deep Neural Network requires expensive computing resources which in turn make most organisations, and individuals shy away from it. This study therefore aims at designing a predictive model for network intrusion detection using deep neural networks with very limited computing resources. The study adopted Cross Industry Standard Process for Data Mining (CRISP-DM) as one of the formal methodologies and python was used for both testing and training, using crucial parameters such as the learning rate, number of epochs, neurons and hidden layers which greatly determined the accuracy level of the DNN algorithm. These parameters were experimented with values that are lesser compared to previous studies, training and evaluation were also done on the KDD99 data-set. The varying values of accuracy obtained from this study on four models with different numbers of layers of 50-epochs and learning rate of 0.01 achieved competitive results in comparison with the previous research of 100-1000 epochs and learning rate of 0.1. Therefore, the model with two layers attained same accuracy of 0.955 as the model with three layers from the previous study out of the four models tested in this study. Also, the models with three and four layers in this study attained an accuracy of 0.956, which is 0.001greater than the previous study's models. Keywords: Network-Based IDS, Host-Based IDS, Deep Neural Network, Denial of Service, Knowledge Discovery Datase

    Illegal Intrusion Detection of Internet of Things Based on Deep Mining Algorithm

    Get PDF
    In this study, to reduce the influence of The Internet of Things (IoT) illegal intrusion on the transmission effect, and ensure IoT safe operation, an illegal intrusion detection method of the Internet of Things (IoT) based on deep mining algorithm was designed to accurately detect IoT illegal intrusion. Moreover, this study collected the data in the IoT through data packets and carries out data attribute mapping on the collected data, transformed the character information into numerical information, implemented standardization and normalization processing on the numerical information, and optimized the processed data by using a regional adaptive oversampling algorithm to obtain an IoT data training set. The IoT data training set was taken as the input data of the improved sparse auto-encoder neural network. The hierarchical greedy training strategy was used to extract the feature vector of the sparse IoT illegal intrusion data that were used as the inputs of the extreme learning machine classifier to realize the classification and detection of the IoT illegal intrusion features. The experimental results indicate that the feature extraction of the illegal intrusion data of the IoT can effectively reduce the feature dimension of the illegal intrusion data of the IoT to less than 30 and the dimension of the original data. The recall rate, precision, and F1 value of the IoT intrusion detection are 98.3%, 98.7%, and 98.6%, respectively, which can accurately detect IoT intrusion attacks. The conclusion demonstrates that the intrusion detection of IoT based on deep mining algorithm can achieve accurate detection of IoT illegal intrusion and reduce the influence of IoT illegal intrusion on the transmission effect

    An adversarial approach for intrusion detection systems using Jacobian Saliency Map Attacks (JSMA) Algorithm

    Get PDF
    In today’s digital world, the information systems are revolutionizing the way we connect. As the people are trying to adopt and integrate intelligent systems into daily lives, the risks around cyberattacks on user-specific information have significantly grown. To ensure safe communication, the Intrusion Detection Systems (IDS) were developed often by using machine learning (ML) algorithms that have the unique ability to detect malware against network security violations. Recently, it was reported that the IDS are prone to carefully crafted perturbations known as adversaries. With the aim to understand the impact of such attacks, in this paper, we have proposed a novel random neural network-based adversarial intrusion detection system (RNN-ADV). The NSL-KDD dataset is utilized for training. For adversarial attack crafting, the Jacobian Saliency Map Attack (JSMA) algorithm is used, which identifies the feature which can cause maximum change to the benign samples with minimum added perturbation. To check the effectiveness of the proposed adversarial scheme, the results are compared with a deep neural network which indicates that RNN-ADV performs better in terms of accuracy, precision, recall, F1 score and training epochs

    Deep Neural Networks for Network Intrusion Detection

    Full text link
    Networks have become an indispensable part of people's lives. With the rapid development of new technologies such as 5G and Internet of Things, people are increasingly dependent on networks, and the scale and complexity of networks are ever-growing. As a result, cyber threats are becoming more and more diverse, frequent and sophisticated, which imposes great threats to the massive networked society. The confidential information of the network users can be leaked; The integrity of data transferred over the network can be tampered; And the computing infrastructures connected to the network can be attacked. Therefore, network intrusion detection system (NIDS) plays a crucial role in offering the modern society a secure and reliable network communication environment. Rule-based NIDSs are effective in identifying known cyber-attacks but ineffective for novel attacks, and hence are unable to cope with the ever-evolving threat landscape today. Machine learning (ML)-based NIDSs with intelligent and automated capabilities, on the other hand, can recognize both known and unknown attacks. Traditional ML-based designs achieve a high threat detection performance at the cost of a large number of false alarms, leading to alert fatigue. Advanced deep learning (DL)-based designs with deep neural networks can effectively mitigate this problem and accomplish better generalization capability than the traditional ML-based NIDSs. However, existing DL-based designs are not mature enough and there is still large room for improvement. To tackle the above problems, in this thesis, we first propose a two-stage deep neural network architecture, DualNet, for network intrusion detection. DualNet is constructed with a general feature extraction stage and a crucial feature learning stage. It can effectively reuse the spatial-temporal features in accordance with their importance to facilitate the entire learning process and mitigate performance degradation problem occurred in deep learning. DualNet is evaluated on a traditional popular NSL-KDD dataset and a modern near-real-world UNSW-NB15 dataset, which shows a high detection accuracy that can be achieved by DualNet. Based on DualNet, we then propose an enhanced design, EnsembleNet. EnsembleNet is a deep ensemble neural network model, which is built with a set of specially designed deep neural networks that are integrated by an aggregation algorithm. The model also has an alert-output enhancement design to facilitate security team's response to the intrusions and hence reduce security risks. EnsembleNet is evaluated on two modern datasets, a near-real-world UNSW-NB15 dataset and a more recent and comprehensive TON_IoT dataset, which shows that EnsembleNet has a high generalization capability. Our evaluations on the UNSW-NB15 dataset that is close to the real-world network traffic demonstrate that DualNet and EnsembleNet outperform state-of-the-art ML-based designs by achieving higher threat detection performance while keeping lower false alarm rate, which also demonstrates that deep neural networks have great application potential in network intrusion detection

    Proposed algorithm for smart grid DDoS detection based on deep learning

    Get PDF
    The Smart Grid’s objective is to increase the electric grid’s dependability, security, and efficiency through extensive digital information and control technology deployment. As a result, it is necessary to apply real-time analysis and state estimation-based techniques to ensure efficient controls are implemented correctly. These systems are vulnerable to cyber-attacks, posing significant risks to the Smart Grid’s overall availability due to their reliance on communication technology. Therefore, effective intrusion detection algorithms are required to mitigate such attacks. In dealing with these uncertainties, we propose a hybrid deep learning algorithm that focuses on Distributed Denial of Service attacks on the communication infrastructure of the Smart Grid. The proposed algorithm is hybridized by the Convolutional Neural Network and the Gated Recurrent Unit algorithms. Simulations are done using a benchmark cyber security dataset of the Canadian Institute of Cybersecurity Intrusion Detection System. According to the simulation results, the proposed algorithm outperforms the current intrusion detection algorithms, with an overall accuracy rate of 99.7%.© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed
    • …
    corecore