
St. Cloud State University St. Cloud State University 

theRepository at St. Cloud State theRepository at St. Cloud State 

Culminating Projects in Information Assurance Department of Information Systems 

4-2020 

Lightweight Deep Learning Framework to Detect Botnets in IoT Lightweight Deep Learning Framework to Detect Botnets in IoT 

Sensor Networks by using Hybrid Self-Organizing Map Sensor Networks by using Hybrid Self-Organizing Map 

Saad Khan 
skhan1@go.stcloudstate.edu 

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds 

Recommended Citation Recommended Citation 
Khan, Saad, "Lightweight Deep Learning Framework to Detect Botnets in IoT Sensor Networks by using 
Hybrid Self-Organizing Map" (2020). Culminating Projects in Information Assurance. 100. 
https://repository.stcloudstate.edu/msia_etds/100 

This Thesis is brought to you for free and open access by the Department of Information Systems at theRepository 
at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Information Assurance by an 
authorized administrator of theRepository at St. Cloud State. For more information, please contact 
tdsteman@stcloudstate.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St. Cloud State University

https://core.ac.uk/display/346450154?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.stcloudstate.edu/
https://repository.stcloudstate.edu/msia_etds
https://repository.stcloudstate.edu/iais
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/100?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tdsteman@stcloudstate.edu


 
 
Lightweight Deep Learning Framework to Detect Botnets in IoT Sensor Networks 

by using Hybrid Self-Organizing Map  

by 

Saad Khan 

 
 
 
 
 

Thesis Paper 

Submitted to the Graduate Faculty of  

St. Cloud State University  

in Partial Fulfillment of the Requirements  

for the Degree of  

Master of Science  

in Information Assurance 

 

 

May, 2020 

 
 
 
 

Thesis Committee: 
Akalanga Maleiwa, Chairperson 

Jieyu Wang 
Farra Hazem  



2 
 

 
 

Abstract 

In recent years, we have witnessed a massive growth of intrusion attacks targeted at 
the internet of things (IoT) devices. Due to inherent security vulnerabilities, it has 
become an easy target for hackers to target these devices. Recent studies have been 
focusing on deploying intrusion detection systems at the edge of the network within 
these devices to localize threat mitigation to avoid computational expenses. Intrusion 
detection systems based on machine learning and deep learning algorithm have 
demonstrated the potential capability to detect zero-day attacks where traditional 
signature-based detection falls short. The paper aims to propose a lightweight and 
robust deep learning framework for intrusion detection that has computational potential 
to be deployed within IoT devices. The research builds upon previous researches 
showing the demonstrated efficiency of anomaly detection rates of self-organizing map-
based intrusion. The paper will contribute to the existing body of knowledge by creating 
a hybrid self-organizing map (SOM) for the purpose of detecting botnet attacks and 
analyzing its accuracy compared with a traditional supervised artificial neural network 
(ANN). The paper also aims to answer questions regarding the computational efficiency 
of our hybrid self-organizing map by measuring the CPU consumption based on time to 
train model. The deep learning prototypes will be trained on the NSL-KDD dataset and 
Detection of IoT botnet Attacks dataset. The study will evaluate the performance of a 
self-organizing map based k-nearest neighbor prototype with the performance of a 
supervised artificial neural network based on validation metrics such as confusion 
matrix, f1, recall, precision, and accuracy score.  
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Chapter I: Introduction 

The Internet of things has witnessed extraordinary growth in the past few years 

and is predicted to reach up to 20 billion devices by 2020. Heterogenous IoT devices do 

come with unprecedented vulnerabilities that are relatively easier to exploits by 

attackers. Attackers have established inherent chinks in most of IoT devices and 

continue to come up with sophisticated intrusion techniques. Hackers target IoTs with 

default set factory passwords, lack of encryption at rest and in transit, lack of password 

attempt lockout, outdated firmware, SSH listening permissions, and SQL injection 

vulnerabilities [1]. Once an IoT device has been successfully breached by a hacker after 

exploiting these vulnerabilities, the infected device becomes a part of a Botnet. The 

botnet is a collection of connected devices and computers on a network compromised 

by an attacker who can get access and successfully control all the hosts and devices 

connected within the network [2]. In 2016, the number of distributed denial of service 

attacks had reached an alarming peak of 1.35 terabytes per second that were carried 

out by Mirai malware, specifically targeting IoT devices [3]. In 2006, a large-scale botnet 

attack Mirai was able to infect 49,657 unique IPs in 165 countries, as illustrated in Table 

I, which mostly contained IoT devices such as CCTV devices, baby monitor devices, 

and routers [4].  
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Table I  

Mirai Botnet IP addresses were found in 164 countries [4] 

Country % of Mirai botnet IPs 

Vietnam 12.8% 

Brazil 11.8 

United States 10.9% 

China 8.8% 

Mexico 8.4% 

South Korea 6.2% 

Taiwan 4.9% 

Russia 4.0% 

Romania 2.3% 

Colombia 1.5% 

 

Distributed Denial of Service can be broadly categorized in protocol attacks, 

application-layer attackers, and volume-based attacks. Protocol attacks concentrate on 

depleting the victim's server or devices connected to the network.  Volume-based 

attacks are focused on flooding the target's bandwidth rendering the network connection 

unusable. The application layer targets a web server so that it cannot function correctly 

[3].  The Mirai botnet specifically targets IoT devices that come with inherent security 

vulnerabilities [5].  

Traditional signature-based detection has a significant vulnerability to zero-day 

attacks, and malware developers can alter the malware signature to avoid detection. 
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However, the recent progress in the neural network domain has resulted in a robust 

implementation of intrusion detection frameworks that have proven to demonstrate 

higher detection rates for unknown network packets containing malicious payload than 

traditional signature-based detection [6] [7] [8] .   

Problem Statement 

In intrusion detection landscape, traditional signature-based detection systems 

scan files and look for unique attributes and characteristics to determine if an object is a 

malware or a normal file. The intrusion detection system updates its repository and 

keeps millions of signatures to identify malicious files. In Cisco 2017 Annual 

Cybersecurity Report, it is reported that 95% of the malware objects are generated 

within 24 hours, which means traditional signature-based detection has inherent 

vulnerabilities [9]. In a situation where the intrusion detections system is not updated in 

a timely manner, the malicious file can bypass the intrusion detection system and 

exploit vulnerabilities. Another way attackers exploit signature-based detection is by 

altering the code within the malware object, register renaming, compressing the code, 

or by merely adding junk code [9]. 

To address this problem, the implementation of machine learning and deep 

learning models to detect zero-day attacks has proven to outperform the traditional 

signature-based intrusion detection framework [6], [7], [8].  

 Al-Garadi et al. in his research suggests, “ML and DL frameworks that can 

efficiently reduce computational complexity should be developed. Developing real-time 

detection and protection systems are important for providing effective security 
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mechanisms, particularly for large- scale IoT systems” [8, p. 32] . The research 

indicates the growing need for machine learning or deep learning frameworks that 

would reduce the computational complexity so it can be deployed in IoT devices to 

provide a localized detection framework [8].  

A deep learning algorithm has been demonstrated to prevent malicious attacks 

as well as sophisticated zero-day attacks with high accuracy. However, using deep 

learning for anomaly detection requires computational resources, and recent studies 

have been implementing ways to use a deep learning intrusion detection model for the 

purpose to implement on a live data stream that is computationally efficient [10], [11], 

[12]. To address the computational complexity drawback, variations of the hybrid self-

organizing map have proven to show high detection rates and requires low 

computational resources [3]. 

The self-organizing map is an artificial neural network that converts high 

dimensional input into a 2-D representation. Self-organizing map parameters can be 

tuned by reducing the number of neurons for speed up the training time but does have 

to affect the detection rate [3]. In [13] deployed the self-organizing maps in 

heterogeneous IoT devices by tuning the nodes to reduce computational power and the 

research concluded, “the detection rate and accuracy are improved because of the well- 

adaptation to local traffic at the SOM filters” [13, p. 7]. There are plenty of studies 

regarding SOM detection rate on botnet detection, but there have been few when it 

comes to SOM with an additional layer(s). In [3] suggested that utilizing an additional 

layer in self-organizing maps detection performance can be improved significantly.  
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Objective of the Study  

The motivation for this paper is to build a lightweight and robust deep learning 

prototype to detect IoT botnet and network intrusion. The importance of this study is that 

it would provide a thorough accuracy analysis for researchers looking to develop a 

lightweight deep learning model for IoT devices deployed at the edge of the network.  

To this purpose, we will focus on four main objectives. Firstly, we want to train our 

hybrid self-organizing map and compare its predictive power with a supervised artificial 

neural network. Secondly, we will measure what type of distributed denial of service 

attacks yield higher accuracy results using our hybrid self-organizing maps compared to 

the artificial neural network. Thirdly, we will compare the computational usage our semi-

supervised self-organizing map requires by measuring the time to train measure. Lastly, 

we will study the tradeoff between scalability and detection accuracy results of our 

hybrid self-organizing prototype by reducing the number the nodes in our self-organizing 

map and presenting the comparison.  

The results of the performance of our SOM based k-nearest neighbor will 

contribute to the body of knowledge so researchers can determine our hybrid SOM 

prototype’s effectiveness for Mirai attack detection and network intrusion attacks. This 

research will survey the performance of SOM based k-nearest neighbors and ANN by 

training them on the Detection of IoT botnet Attacks dataset and KDD-NSL dataset. We 

aim to create a deep learning framework for intrusion detection that would yield higher 

detection rates. These two proposed deep learning models will be measured based on 

precision, accuracy, confusion matrix, f1 score, false-positive rate, and anomaly metric. 
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The research will explore the relationship between the metrics to propose which deep 

learning models perform on Mirai botnet malware on IoT devices and network intrusion 

connections. 

The results of the study will be further examined by looking at the types of DDoS 

attacks that were more susceptible to detection by our semi-supervised model. The 

Detection of IoT botnet Attacks dataset contains ack flooding, scan flooding, syn 

flooding, and UDP flooding, whereas the NSL-KDD dataset contains denial of service 

traffic, user to root traffic (U2R), remote to local (R2L) and probing traffic [14], [15]. The 

computational usage of our hybrid SOM will be compared with the supervised ANN 

model. The results will present the time it took to train our prototypes in seconds as a 

measure of CPU resource usage. These results can be leveraged by future researchers 

to look at the lightweight capability of hybrid SOM for localized IoT deployment. 

This research will leverage the accuracy metric results to answer questions about 

the practicality of the proposed hybrid self-organizing map prototype being deployed 

within IoT devices. The paper will look at the tradeoff between scaling down the SOM 

parameters with the detection rates of anomalous traffic. The results of the tradeoff will 

be measured by tuning down the nodes in our SOM and then measure the drop of our 

accuracy metrics based on accuracy, precision, recall false-positive rates, and feature 

score. We will also measure the time it takes for our model to train and test on our 

datasets and compare the model after being tuned when nodes of SOM are reduced. 

The research will look at the training time it took for our hybrid SOM model to be trained 

and compare it with a traditional supervised ANN model. 
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Study Questions  

1. Is a hybrid self-organizing map better at detecting Botnet IoT attacks and network 

intrusion attacks than a supervised artificial neural network? 

2. Which class of botnet IoT attack gets detected with higher accuracy using a 

hybrid self-organizing map? 

3. Given the additional layer of the k-nearest neighbor algorithm to a self-organizing 

map, does the proposed semi-supervised prototype has more computation 

overhead than a supervised artificial neural network?  

4. Given the additional layer of the k-nearest neighbor algorithm to a self-organizing 

map, if we adjust the number of neurons parameters for scalability, how much 

does the computation performance compromised the detection performance? 

 To summarize this chapter, so far, the study has provided a brief introduction to 

the challenges when implementing machine learning for botnet and intrusion detection 

and have briefly reviewed the framework we will be following to train and test the results 

of the study. In the following chapter, we will go in detail the literature review of the 

application of machine learning in the intrusion detection domain, which will serve to 

give a holistic understanding of research done thus far. In the following chapters, the 

study will also cover the methodology, dataset, and technologies the author employed 

to get the result of the studies. The author will address the challenges and limitations of 

the methodology for future works to consider.  
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Chapter II: Background and Review of Literature 

 In this chapter, the study will show research done on the application of self-

organizing map in the domain of malware and intrusion detection and share the 

conclusions and limitations shared by their authors. The papers we discuss in this 

chapter contains demonstrations of intrusion detection systems based on machine 

learning algorithms and their successful deployment. Some of the papers in the 

literature review are focused on large IoT exploits during distributed denial-of-service 

attacks and the strategy to mitigate them. The papers also include a general outlier 

detection framework that was not applied to the intrusion detection domain but serves 

as a robust framework for anomaly detection. 

Literature Related to the Problem 

Langin et al. [16] created a two-layer self-organizing map for the detection of 

malignant network traffic. The first layer clusters the traffic, and the second layer 

classifies the traffic. The self-organizing map is trained on denied firewall log entries. 

The researchers focus on botnet malware where the hacker is successfully able to 

infect computers or IoT devices, and subsequently able to get unauthorized access 

through command and control center. The command and control center get access 

through multiple protocols such as Peer-to-Peer technology and Internet Relay Chat. 

The P2P protocol comes with a high level of anonymity since tracing back the source of 

the attack is incredibly difficult as the traffic is encrypted and comes from a distributed 

system. The authors talk about traditional intrusion detection approaches and how they 

are not adequate to mitigate the threat of botnets. The paper critiques misuse detection 
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and anomaly detection approaches. The research deems misuse detection inadequate 

for P2P botnet since it assumes advanced knowledge of the botnet and does not 

anticipate a zero-day attack, however effective when used to detect botnets on Internet 

Relay Chat protocol. The researchers also critique using anomaly detection for botnet 

detection since the central assumption is the traffic network in consideration is already 

benign traffic, which in itself has no guarantee. The methodology in the research has 

two main steps, clustering steps and classifying steps. The clustering step is where the 

self-organizing maps are trained based on the denied log entries generated by the host 

firewall. The logs are queried through MySQL in a matrix table with multiple dimensions, 

including source IP and port, destination IP and port, time gap, protocol, unique 

identifier, and date. The queries are stored in a way where each line is a vector, so 

SOM can be trained to find clusters over the vectors. In the research, Once the bot 

clusters have been determined using SOM, the study classified the future daily logs to 

observe local IP addresses with external denied entries. The vector of IP address that 

showed up in denied firewall entry logs is reviewed. The researchers look for the best 

matching unit in the vectors to see a correlation with bot then is specified as a suspect. 

Langin et al. tested the methodology on Southern Illinois University campus, and it 

states in the paper, "SOM produced 18 suspects in 37 alerts in 96 days” [16, p. 8] 

Langin et al. [16] in the paper adds that the limitation of the model lies in its 

replication since the SOM must be trained on each networks’ own firewall denied entries 

and the resources consumed. The study has emphasized the effectiveness of detecting 
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malignant botnet traffic on networks that are already infected by botnets and cannot be 

detected by misuse detection or anomaly detection.  

Dao et al. [13] proposed a DDoS prevention framework by deploying smart filters 

at the edge of a network supervised by a central controller.  The proposed framework is 

termed the MECSheild framework that leverages the power of edge computing to 

localize traffic analysis at the edge of the network. The smart filters work in coordination 

together and are trained on local traffic using the self-organizing map. The trained SOM 

matches the malicious traffic with the SOM map to determine DDoS attacks. The smart 

filters are trained on three datasets, including the CAIDA-attack-traffic dataset, NSL-

KDD dataset, and DARPA 2009 dataset. The MECShield framework is compared with a 

distributed self-organizing map and a Centralized Self-organizing map. The centralized 

self-organizing map is where the SOM filter is located at the controller site for analysis 

and receives all the traffic from heterogeneous IoT devices for analysis. The distributed 

self-organizing map entails the self-organizing map trained by all agents that are 

merged at the controller site in one central SOM. Eventually, the merged SOM is 

delivered back to the agents for traffic administration. The results were concluded as 

follows, "In both criteria, the MECshield performed better than the other schemes. This 

is because SOM maps in the MECshield agents are separately trained by different local 

IoT traffic." [13, p. 7]. The CPU usage of the devices indicated that MECshield has the 

lowest CPU usage that is 36%, whereas the centralized-SOM CPU usage is 45% [13]. 

Ko, Chambers, and Barrett [3] in their research proposed the best site to deploy 

an intrusion defense system would at the internet service provider site in case of DDoS 
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threats since ISP would be able to drop or block any malicious traffic being targeted at 

the victim. The paper uses a self-organizing map to train their model over a large 

number of unlabeled data traffic for data mining and feature extraction. The study 

trained a two-layered self-organizing map that would reduce the blocking of regular 

traffic that might cause service interruptions. The study aimed to increase the 

separability of data by taking advantage of additional information available at the ISP 

site. Based on the feature importance feature, the first layer of SOM was based on 

global octets per packet mean, global octets per packet standard deviation, local traffic 

count and so on. The second layer of the self-organizing map took into account features 

such as global unique protocol, source port, and destination port with local transfer 

count and so forth. The research concluded, "Deploying the mitigation system within the 

ISP domain offers a more effective solution, and our proposed hierarchical dual SOM 

has demonstrated to outperform the K‐Mean model by 3.04% and the single SOM by 

14.55% on the F1 score" [3, p. 582].  

Literature Related to the Methodology  

 Tian, Azarian, Pecht [17] in their research, developed a new way to implement a 

self-organizing map to detect anomaly in data containing noise and SOM clusters that 

are non-convex. Traditionally, the self-organizing map has been used as anomaly 

detection purposes by taking the average of quantization error or finding the minimum 

quantization error. The authors describe the quantization error as "the distance between 

the input data observation and the BMU of the SOM." [17, p. 3]. According to the paper, 

finding the average of quantization error poses a problem since it assumes the best 
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matching unit in self-organizing maps to be convex and not sparse, which cannot be 

used if the best matching units are sparse and not dense.  The other traditional method 

is finding the minimum quantization error, but it is sensitive to noise in the data, which 

could harm the SOM model. The solution to these two limitations - noise in the data and 

non-convex SOM clusters - has been proposed where the SOM is trained on healthy 

data containing little noise. The authors suggest when we fit the SOM trained on healthy 

data to test data, the nodes that are too sparse or fall under a minimum number of BMU 

threshold, the node is removed to avoid BMU contaminated with noise. A semi-

supervised model (i.e., K-nearest neighbor) is used to classify the data based on the 

Euclidean distance between the centroids and the observation data points. Ultimately, 

once the healthy reference has been identified, the anomaly decision is made based on 

the measure taken by using 99.7 percentile or a standard deviation of 2.7 from the 

healthy reference.  

For this thesis, the method proposed by Tian et al. [17] in their research will be 

implemented as a hybrid semi-supervised model to detect botnets in our dataset. The 

current study will use the detection of IoT botnet attacks dataset as the training set. The 

data set includes a benign traffic data which can be used to train as a healthy reference. 

Once we have trained our SOM based K-nearest neighbor model, we will make our 

outlier decision based on 99.7 percentile and standard deviation of 3 as a measure for 

possible botnet traffic.  

 The papers discussed in this chapter adequately discusses the limitations of 

these models, one of the main concerns are the implementations of the deep learning 
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models at the edge of a network for smart IoT malware detection as opposed to 

detection at a central server. The papers also discuss the inherent threat that IoTs 

brings to the malware landscape and how relying on the IoT manufacturers for intrusion 

prevention is not reliable. To this end, one of the aims of this study is to develop a deep 

learning prototype that computational practical to be deployed at the edge of the 

network. 
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Chapter III: Methodology 

The methodology can be outlined in the preprocessing stage, training stage, and 

testing stage. In the preprocessing stage, we will prepare the data so our classifiers are 

trained and tested while preventing overfitting and multicollinearity. The preprocessing 

phase implements the sklearn library's MinMaxScaler and normalizer to scale the input 

values. The algorithm calculates the mean and standard deviation of the independent 

variables and gets them centered around 0, keeping the standard deviation to 1. The 

MinMaxScaler is an effective algorithm to scale all the independent values to achieve 

normal distribution. Once we have achieved feature scaling, we will label encode our 

categorical features by using pandas's get_dummies function. The get_dummies 

function is an effective way to label encode the nominal categorical independent 

variables in numerical form. The label encoding function creates a new dataframe that 

contains zeros and ones so it can be quantified and implemented in our deep learning 

model. To avoid overfitting in our model, we will implement Sklearn's extra-trees 

classier. This is an ensemble learning method that creates subsets of the dataset, fits 

randomized decision trees, and uses averaging to decrease variance and improve 

predictions of our models. The output helps us remove independent features that 

contribute to overfitting and keep the independent variables that improve the prediction 

power of our models.  

Once we have preprocessed our datasets to reduce dimensionality and scale the 

data, the two deep learning prototypes will be trained on the NSL-KDD dataset and 

Detection of IoT botnet Attacks dataset. The main purpose of using the NSL-KDD 
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dataset in this study is so it can be used as a benchmark to make our results 

comparable for future studies. The supervised and semi-supervised models will be 

trained on two predetermined labeled datasets. The labeled dataset has dependent 

variable classifying values to either normal traffic and malicious traffic. The semi-

supervised model will be evaluated based on an anomaly metric that will conclude the 

percentage of malicious data that was correctly determined to be an outlier. The 

anomaly metric determined by calculating the distance between the data observations 

and the K-nearest neighbors centroids of the observations, similar to the work done by 

[17] and [18]. The anomaly threshold is determined from the benign traffic by summing 

the mean with a standard deviation of three. The metrics this study rely on to validate 

the performance of supervised deep learning model confusion matrix, accuracy score, 

recall score, and precision score. K-fold cross-validation will be used to test for variance 

and bias to examine overfitting. 

Data Analysis 

The training set in this paper refers to the data set that would be used to train our 

models. The training set includes the NSL-KDD dataset and the Detection of IoT botnet 

Attacks dataset, which is a simulated network trace of the Mirai attack available on the 

UCI repository for reproducibility. 

NSL-KDD dataset 

NSL-KDD is deemed as a replacement of the KDD-99Cup, where the intrusion 

detection training dataset is involved. NSL-KDD is a subset of its predecessor and has 

near-even distribution of normal and attack traffic. The NSL-KDD training dataset in this 
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study include 41 features, and unlike its predecessor, does not contain redundancies in 

its records. The major limitation of the dataset is it does not identify the hosts/systems 

under attack. As illustrated in Table II, the total amount of observations in the KDD 

Train+ dataset contains 125973 records, out of which 53.45% is normal traffic, and 

46.55% observations are network attacks. As shown in Table III, total observation for 

KDD Test+ dataset is 22544, where 43.07% are normal, and 57.03% are attack traffic 

[19].  

Table II 

Subclasses of intrusion attacks and their frequencies in the NSL-KDD Train+ dataset 

Sub-classes Train+ Percentage 
normal 53.458% 
neptune 32.717% 
satan 2.884% 
ipsweep 2.857% 
portsweep 2.327% 
smurf 2.101% 
nmap 1.185% 
back 0.759% 
teardrop 0.708% 
warezclient 0.707% 
pod 0.160% 
guess_passwd 0.042% 
buffer_overflow 0.024% 
warezmaster 0.016% 
land 0.014% 
imap 0.009% 
rootkit 0.008% 
loadmodule 0.007% 
ftp_write 0.006% 
multihop 0.006% 
phf 0.003% 
perl 0.002% 
spy 0.002% 
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Table III 

Subclasses of intrusion attacks in the NSL-KDD Test+ dataset 

Subclasses NSL-KDD Test+ Percentage 
normal 43.076% 
neptune 20.657% 
guess_passwd 5.460% 
mscan 4.418% 
warezmaster 4.187% 
apache2 3.269% 
satan 3.260% 
processtable 3.039% 
smurf 2.950% 
back 1.592% 
snmpguess 1.468% 
saint 1.415% 
mailbomb 1.300% 
snmpgetattack 0.790% 
portsweep 0.696% 
ipsweep 0.625% 
httptunnel 0.590% 
nmap 0.324% 
pod 0.182% 
buffer_overflow 0.089% 
multihop 0.080% 
named 0.075% 
ps 0.067% 
sendmail 0.062% 
rootkit 0.058% 
xterm 0.058% 
teardrop 0.053% 
xlock 0.040% 
land 0.031% 
xsnoop 0.018% 
ftp_write 0.013% 
loadmodule 0.009% 
perl 0.009% 
worm 0.009% 
phf 0.009% 
udpstorm 0.009% 
sqlattack 0.009% 
imap 0.004% 
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Detection of IoT botnet Attacks Dataset 

Meidan et al. [20] during their research infected nine IoT devices (i.e., doorbell, 

thermostat, baby monitor, security camera, and webcam) with Mirai and BASHLITE 

botnets. The researchers made the trace traffic of the dataset available on the 

University of California Irvine online repository [20]. The paper expounds on the dataset 

collection method. The data collection method is explained by the authors, “We capture 

the raw network traffic data (in pcap format) using port mirroring on the switch through 

which the organizational traffic typically flows.” [20, p. 3]. The data collection step is 

followed by feature extraction where snapshots of the hosts and protocols are taken. 

The snapshot resulted in 115 traffic statistics, which are aggregated by the source IP. 

The second way the data is aggregated is by determining the source of MAC address 

and IP address to find a distinction between normal traffic and spoofed IP address. 

Thirdly, the traffic statistics are aggregated by the source and destination of TCP or 

UDP ports. Lastly, the data statistics are aggregated by source and destination IPs. To 

understand the traffic trace dataset from this paper the attacks executed are by 

expounded by the authors. The paper provides a list of attacks that were executed to 

infect the 9 IoT devices as illustrated in Table IV. 
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Table IV 

Dataset Properties and Training Summary [20]   

Device 
ID 

Device Make and 
Model 

Device 
Type 

Number 
of Benign 
Instances 

Training 
Time (sec) 

Object 
size 
(kB) 

1 Danmini Doorbell 49,1548 555 172 

2 Ennio Doorbell 39,100 215 172 

3 Ecobee Thermostat 13,133 54 172 

4 Philips B120N/10 Baby 
Monitor 

175,240 292 172 

5 Provision PT-737E Security 
Camera 

62,154 275 172 

6 Provision PT-838 Security 
Camera 

98,514 795 172 

7 SimpleHome XCS7-
1002-WHT 

Security 
Camera 

46,585 220 172 

8 SimpleHome XCS7-
1003-WHT 

Security 
Camera 

19,528 190 172 

9 Samsung SNH 1011 
N 

Webcam 52,150 150 172 

 

 While testing BASHLITE botnet, scan attempts were executed to find the 

vulnerability. Spam data attacks were carried out in the form of junk. UDP flooding and 

TCP flooding for simulating denial of service attacks. Lastly, a combination of spam and 

connection attempts was made towards specific IP addresses and ports. Similarly, while 

testing Mirai botnet, devices were scanned for vulnerability. Ack, Syn, UDP, UDPplain 
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flooding attacks were initiated to test Mirai botnets, which are included in the traffic trace 

dataset [20]. 

Performance indicator: Confusion Matrix 

 The confusion matrix, similar to figure 1, is a widely used evaluation method for 

measuring the performance of machine learning models. The confusion matrix conveys 

the number of true positives, true negatives, false positives, and false negatives in the 

results of our model [6]. False Positive (also called type 1 error) is when our model 

predicts value to be anomalous but is normal. A false negative is when our model 

predicts a value to be normal but is anomalous. True positive is when our model 

predicts a value to be anomalous, and the prediction is correct. True negative is when 

our model predicts a model to be normal, and the prediction is correct [6]. The 

dependent variable in our study has been label encoded to binary classification where 0 

is labeled as normal traffic, and 1 is labeled as anomalous traffic. 

 

Figure 1. Confusion Matrix. 
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Performance indicator: Accuracy 

 Accuracy measures the overall percentage of values that where our predictions were 

correct [7]. The accuracy score is determined once we fit our model on the training set 

and make predictions on the predetermined test set. Mathematically put: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝐴𝐴𝐴𝐴𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 + 𝑇𝑇𝐴𝐴𝐴𝐴𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇

𝑇𝑇𝐴𝐴𝐴𝐴𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 + 𝑇𝑇𝐴𝐴𝐴𝐴𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 + 𝐹𝐹𝐴𝐴𝐹𝐹𝑃𝑃𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 + 𝐹𝐹𝐴𝐴𝐹𝐹𝑃𝑃𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇
 

During multiclass classification, the accuracy will be determined by computing the 

subset accuracy of each class. 

Precision: Measures the result relevancy. In the research's context, this will tell 

us the number of correct predictions about the malicious traffic the model correctly was 

able to classify or detect. The model's chosen outcome is, in fact, the true outcome 

based on the label provided by the datasets during the test phase [7].   

Mathematically put: 𝑃𝑃𝐴𝐴𝑇𝑇𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇+𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇

 . 

Out of the total positive results that are predicted, what would be the percentage is the 

real positive results.  

Recall: In the research context, the model's prediction was incorrect, and the 

traffic is, in fact, malicious [7]. Mathematically would be represented as: 

 𝑅𝑅𝑇𝑇𝐴𝐴𝐴𝐴𝐹𝐹𝐹𝐹 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇+𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇

 .  
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Performance indicator: Feature Score (also called F1-Score) 

F1 score would be a measure of classification model's usefulness, which is obtained 

through taking the harmonic mean between precision and recall [7]. The score is 

between 0 and 1. The higher the f1 score entails the high predictive power of the 

classification model.  

Mathematically represented as: 𝐹𝐹1 = 2 × 𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝑅𝑅𝑇𝑇𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹
𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑇𝑇𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹

 . 

Performance indicator: K-Fold Cross Validation  

In order to avoid overfitting in our model, we implement cross validation. We will 

use the K-Folds cross validation technique to split our data in k number of subsets, we 

train our model on the k number of subsets and retain the last subset for validation 

purpose [21]. This validation technique is done k number of times, and eventually, the 

results are averages in an estimated. In other words, it is a resampling procedure that 

splits up the dataset in K number of groups and validates groups of train/test splits 

within a dataset. We can gather the bias and variance present in the results by taking 

the average and standard deviation of all train-test combinations of k-folds. After we 

compute the standard deviation of the accuracies generated by k-fold, we can 

determine if the standard deviation is high enough to signal the presence of overfitting in 

our model prediction. 

Performance indicator: CPU usage 

Python's time module will be used to measure the total time it takes to build our 

training model. The time function shows the total number of seconds it takes for an 

epoch to be carried out. Calculating the epoch is crucial since in the machine learning 
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context, an epoch is when our entire dataset is forward and backward propagated 

through our neural network. Another important way to measure the computation cost of 

our model is to measure the time it takes the predict dependent variables on the test 

data. 

First Layer of Semi-supervised Model:  
The Self-organizing Map 

The self-organizing map is an unsupervised artificial neural network algorithm 

implemented for clustering and visualizing data with a high number of dimensions into a 

topology with far fewer dimensions (generally two dimensions). The algorithm 

architecture does not contain a hidden layer nor backpropagation like traditional neural 

networks. In self-organizing maps, the training set dimensions are the input nodes; in 

other words, each dimension becomes separate input nodes [22]. An important 

characteristic of SOM architecture is that each output node contains coordinates in 

relation to the input node, figure 2 shows a schematic representation. Direct mapping is 

produced when the input nodes that have the closest Euclidean distance to the output 

node [23].  

The mathematical formula for the distance is: 

𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑇𝑇:  ��(𝑥𝑥𝑃𝑃− 𝑤𝑤1𝑖𝑖)2 

𝑤𝑤𝑃𝑃 represents the weights of each output node. 𝑥𝑥𝑃𝑃 represents the input nodes 

containing input values from our dataset. After the difference of input and output node is 

squared and summed, the algorithm takes the square root of the result to measure the 

distance. The output node having a small distance is considered the best matching unit. 
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In other words, the output node that has the closest distance to the input node is 

considered the best matching unit [24]. During the training process, the node updates its 

weight vectors to move closer to the input node. The algorithm also contains neighbor 

functions that affect the nodes near the best matching unit to move closer as well; this is 

how the nodes like each other are clustered together on the two-dimensional map [23].  

 

Figure 2. Simplified Self-organizing Map Architecture. 

The self-organizing map is easier and intuitive to understand relative to other 

deep learning algorithms since it focuses on a visual representation of nodes and 

relationships to their neighbor nodes. The self-organizing map is a robust algorithm that 

has applications in modern machine learning challenges, including dimension reduction, 

pattern recognition, image processing, so on and so forth [22].  
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Second Layer of Semi-supervised Model:  
K-nearest neighbor 

 K-nearest neighbor algorithm is a classification machine learning algorithm that 

classifies a data point based on the distances of its nearest data points. The number of 

data points nearest is considered when making classification distance. Based on the 

number of neighboring data points, the new data point is classified [25]. 

 

Figure 3 Simplified representation of K-Nearest Neighbor Model. 

 

In figure 3, the green data point represents a new data point as plotted on a two-

dimensional chart. Based on the nearest neighbors (closest data points) of the input 

data point (green), the k-nearest neighbor algorithm classifies it to be red. The 

classification is based on the distance between datapoint and the count of the data 

points. The first step to implementing the model, we select the number of K neighbors 

we take into consideration when classifying. The second step is considering the nearest 

neighbors based on the Euclidean distance. The third step is considering the number of 

data points in each category. In the final step, we assign the new data point to the class 

that has the most neighbors based on the Euclidean distance [25]. 
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Supervised Model: Artificial Neural Network 

A supervised learning algorithm consists of an input layer, a hidden layer, and 

output layer. The neural network learns through synapses, which are assigned weights 

that are adjusted based on backpropagation and activation function [26], and [27]. 

Based on the weights, the neural network decides what signals are passed through to 

achieve higher accuracy in classification problems.

 

Figure 4. Visual representation of perceptron. 

The structure of perceptron, as shown in figure 4, shows that the input variables 

𝑥𝑥𝑃𝑃 will be multiplied with weights 𝑤𝑤𝑃𝑃. The sum of these multiplications is passed through 

a non-linear activation function ∅.  

𝐴𝐴� = ∅ ��𝑥𝑥𝑃𝑃𝑤𝑤𝑃𝑃

𝑚𝑚

𝑃𝑃=1

� 

The activation function we will use in this study is the sigmoid function. The 

sigmoid function is a non-linear activation function ∅ that takes an input (∑ 𝑥𝑥𝑃𝑃𝑤𝑤𝑃𝑃
𝑚𝑚
𝑃𝑃=1 ) and 

converts it into scalar output between 0 and 1 [28].  
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Sigmoid is mathematically represented as:  

∅(𝑥𝑥) =  
1

1 + 𝑇𝑇−𝑥𝑥
 

Backpropagation is a process where the artificial neural network learns from its 

predicted output 𝐴𝐴� by comparing it with the actual output 𝐴𝐴. The weights are updated 

with the use of cost function 𝐶𝐶 [29]. Mathematically, cost function can be denoted as: 

𝐶𝐶 =   1 2(𝐴𝐴� − 𝐴𝐴)�
2
 

 The forward and backward propagation process is updated iteratively over the 

training values to keep adjusted weights based on the cost function 𝐶𝐶 and predicted 

output 𝐴𝐴� get a better prediction from the artificial neural network. 

Design of the Study 

The framework this study will subscribe to is purely quantitative, where the focus 

is a robust way to validate the botnet detection performance of our supervised and 

semi-supervised deep learning models. The framework this study will subscribe to is 

purely quantitative, where the focus is a robust way to validate the botnet detection 

performance of our supervised and semi-supervised deep learning models. In figure 5, 

the design entails importing the Mirai Botnet attack dataset and NSL-KDD datasets into 

our python environment. The environment that we for this research is Spyder 4.0.0. 

Once our datasets have been imported, the data will be preprocessed to normalize our 

data to avoid computational overhead and maintain normal distribution in our datasets. 

The extra trees classifier will reduce dimensionality in our data to remove noise to avoid 

bias and variance in our data. Once our data has been preprocessed, we will split our 

data into training and test subset. The training subset is used to train our models where 
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the test subset is used to validate our models' predictive accuracy. The results of semi-

pervised model will be evaluated based on anomaly metric, f1-score, precision score, 

recall score and accuracy score. 

                 

Figure 5. The methodology design. 

 

Tools and Techniques  

Python statistical libraries were employed in this study to build, test, and evaluate 

the deep learning models. Numpy, pandas, scikit-learn, sklearn python libraries were 

imported into the Spyder Python IDE to conduct this study [30], [31], and [32]. Sklearn 
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library was employed to validate our results by measuring confusion matrix, recall score, 

accuracy score, f1 score, and precision score. The standard scaler feature from the 

Sklearn library was used to separate mean and scale observations to unit variance.  

Keras library was used to initiate our deep learning classifier and used to add the 

input layer, hidden layer, and outer layer for the artificial neural network [33]. The neural 

network was fitted to the dataset by using Keras library. It was also used for K-fold 

cross-validation to measure the variance and bias in our models. The grid-search, with 

the help of Keras, was used to establish best practices by optimizing for best 

parameters in the supervised models in this study. The self-organizing map were 

implemented with MiniSom [34] and the self-organizing map based K-nearest neighbor 

algorithm was implemented by SOM anomaly detector [35].  

Hardware and Software Environment 

 The laptop used for this study is an Ideapad 330S.  Processor: Intel® Core i5-

8250U CPU @ 1.60GHZ 1.80 Ghz Installed RAM: 8.00 GB. Python environment used 

for this study is Spyder 4.0.0 with Python 3.7.5 version installed. 
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Chapter IV: Results 

Data Preprocessing 

ANN on NSL-KDD. The KDDTrain+ dataset was imported to Spyder 4.0 IDE, 

where it was preprocessed using NumPy, pandas, and sklearn libraries. The data 

frame, once imported, were preprocessed by label encoding the outcome class to 0, 1, 

2, 3, and 4 where 0 represented normal traffic, 1 represented probe, 2 represented root 

to local attacks, 3 represented denial of service attacks, and 4 represented User to Root 

attacks. This preprocessing step was used for multiclassification using an artificial 

neural network. The dataset contained categorical features such as protocol type, 

service, and flags, which were preprocessed by converting categorical variables into 

dummy variables. The conversion is necessary, so the ANN model can process the 

data to get a successful final ANN model. Train_test_split function from the sklearn 

library was employed to split the dataset into train test subsets; the parameter for test 

size was set to 25% for validation. The dataset values were normalized using the 

normalize function, which scales each value to unit norm. 

ANN on IoT botnet Attacks Dataset. In the preprocessing stage, each class 

labels in the dataset were assigned outcome variable as 0, 1, 2, 3, 4. Benign data was 

assigned 0, malign ACK traffic was assigned 1, malign SCAN traffic was assigned 2, 

malign SYN traffic was assigned 3, and malign UDP traffic was assigned 4. In the 

preprocessing stage, each traffic dataset was assigned with an outcome variable as 0, 

1, 2, 3, 4 for classification purposes. Benign data was assigned 0, malign ACK traffic 

was assigned 1, malign SCAN traffic was assigned 2, malign SYN traffic was assigned 



37 
 

 
 

3, and malign UDP traffic was assigned 4. The dataset for each traffic type was 

organized using vstack and hstack function from the Numpy library. Extra tress classifier 

was used to reduce dimensionality in our features to control overfitting. The dataset was 

preprocessed through the train test split, where the test size parameter was set to 25%. 

Standard scaler function was imported from the Sklearn library to speed up the training 

speed of the model and standardized all the input data for our model. The backend, 

sequential, dense, and dropout packages were imported from the TensorFlow Keras 

library to build out the artificial neural network. The sequential package from Keras was 

used to initialize our ANN model; then, the classifier and the dense package were 

added the input layer and the first hidden layer. The parameter for our input and the 

hidden layer was set to uniform for the kernel initializer parameter, and the rectified 

linear unit option was used for the ANN activation function parameter. The dropout layer 

was added to regulate the input of our deep neural network, where the drop out rate is 

set to 0.2 to control overfitting. The second hidden layer parameters had the units set to 

21, kernel initializer is the uniform function, and the activation function is the rectified 

linear unit. In the output layer, the units' parameter is 5, so our model can classify our 

multiclass problem. Additionally, in the output layer SoftMax activation function is 

implemented since it assigns decimal probabilities to the multiclass outcomes. Adam 

argument was selected to compile the ANN model. 

Building the Hybrid SOM model on  
IoT botnet Attacks Dataset 

In the preprocessing step, outcome variables were declared and labeled benign 

traffic as 0, malign ACK traffic as 1, malign SCAN traffic as 2, Malign SYN traffic as 3, 
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and malign UDP traffic as 4. The values in the dataset were normalized using normalize 

function imported from the Sklearn library as it yielded better results compared to 

MinMaxScaler and Standard Scaler. Extra tress classifier was used to reduced feature 

size in our dataset to improve the predictive power of our final model and to limit 

overfitting. For the optimal predictive performance of our model, parameter tuning was 

performed using Bayesian optimization from the Hyperopt library. Our Hybrid SOM 

model was initialized by setting the learning rate to 5, learning decay parameter to 

0.003, initial radius parameter to 10, radius decay parameter to 0.019, minimum number 

per best-matching unit parameter to 5, number of neighbors parameter set to 2. The 

parameters for the hybrid SOM model are based on the results obtained from Bayesian 

optimization-based hyperparameter tuning. The anomaly detector is fitted on the benign 

training data, and the number of iterations was set to 5000. 
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Chapter V: Discussion and Conclusion 

Artificial Neural Network Performance 
on NSL-KDD dataset  
 
In the multiclass model, the output layer units dimension space is set to 5 to get 

non-binary output, and the loss function parameter is set to sparse categorical cross-

entropy since our classes are mutually exclusive.  

 

Figure 6. The training of ANN model on NSL KDD Test+ dataset over 3 Epochs.  

 

Figure 6 shows the model has been successfully trained on the NSL KDD train+ 

dataset. The trained model makes a multiclass prediction on the NSL-KDD test+ 

dataset. The multiclass prediction is demonstrated in figure 7, which is a confusion 

matrix generated through the Sklearn library. 

 

Figure 7. The Multiclass Confusion Matrix for NSL-KDD test+. 
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Table V 

Artificial Neural Network performance on NSL-KDD 

Class True 

Positive 

True Negatives False 

Positives 

False 

Negatives 

Normal 9444 8130 4703 267 

Probe 1536 19875 248 885 

R2L 256 19592 67 2629 

DOS 6086 14888 196 1374 

U2R 8 22477 0 59 

 

Based on the metrics gathered from Table V, the model’s predictive power for 

determining true normal traffic observations are underperforming, which shows when 

observing a precision score in Table VI.  

Table VI 

Artificial Neural Network Subclass Performance on NSL-KDD 

Class Accuracy 
(%) 

Precision 
Score (%) 

F1 Score (%) Recall (%) 

Normal 77.95% 66.8% 79.2% 97.3% 
Probe 94.97% 86.1% 73.1% 63.4% 
R2L 88.04% 79.3% 16.0% 8.9% 

DOS 93.03% 96.9% 88.6% 81.6% 
U2R 99.73% 100% 21.3% 11.9% 

Weighted Average  80.5% 73.4% 76.9% 

Multiclass Subset 
Accuracy score 

76.87%    
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In the results shown in Table VI, the model has demonstrated greater accuracy in 

DOS attacks and User2Root attacks. The model has also shown a high number of false 

negatives for root to local attacks.  

Table VII 

Stratified K-fold Cross Validation over 10 iterations 

Iterations of CV Accuracies (%) on KDDTest+ 

1 90.11% 

2 89.84% 

3 89.09% 

4 88.91% 

5 89.08% 

6 90.28% 

7 90.37% 

8 88.46% 

9 90.15% 

10 88.95% 

Accuracies Mean 90.11% 

Accuracies Variance 0.658% 

 

In Table VII, the stratified K-fold cross validation shows high accuracy over 10 

iterations with an average mean of 90.11% and a low variance of 0.658%. 
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Artificial Neural Network Performance  
on IoT botnet Attacks Dataset 

 

 

Figure 8. Training of ANN model on IoT Botnet Attacks Dataset over 3 Epochs. 

The ANN model was trained over the IoT botnet Attacks Dataset by train-test 

split, where the 25% of the dataset was used as test size. The model was trained over 

three iterations and took 136.87 seconds. 

 

 

Figure 9. The Multiclass Confusion Matrix IoT Botnet Dataset.  

 

 

 



43 
 

 
 

Table VIII 

Artificial Neural Network performance on Mirai Botnet Dataset 

Class Accuracy 
(%) 

Precision 
Score 
(%) 

F1 Score 
(%) 

Recall (%) 

Benign 99.75% 95.9% 97.2% 98.6% 

ACK 91.44% 97.5% 78.6% 65.8% 

Scan 90.19% 57.9% 0.2% 0.1% 

SYN 93.61% 100% 86.7% 76.5% 

UDP 75.33% 58.7% 73.6% 98.7% 

Weighted Average  80.7% 72.2% 75.2% 
Multiclass Subset 
Accuracy score  

75.17%    

 

In Table VIII and Table IX, we observe the predictive power of the model to 

determine benign, Scan, and SYN traffic. However, the model has high number of false 

positives in ACK and SCAN traffic compared to its class counterparts.  

 

 

 

 

 

 

 

 

 

Table IX 

Artificial Neural Network performance on Mirai Botnet Dataset 

Class True 
Positive 

True Negatives False 
Positives 

False 
Negatives 

Normal 4763 107452 206 67 

ACK 17632 85230 455 9171 

SCAN 11 101449 8 11020 

SYN 23412 81892 8 7176 

UDP 38741 46000 27252 495 
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Table X 

Stratified K-fold Cross Validation over 10 iterations 

Iterations of CV Accuracies (%) 

1 0.729843 

2 0.747711 

3 0.768424 

4 0.741903 

5 0.723552 

6 0.755734 

7 0.752119 

8 0.749393 

9 0.757779 

10 0.728383 

Accuracies Mean 74.54% 

Accuracies Variance 1.370% 

In Table X, the stratified cross validation indicates a 74.54% mean accuracy 

score and low variance score of 1.370 over 10 iterations of the ANN model on the Mirai 

Botnet dataset demonstrating low bias in our trained model. 

Hybrid SOM Performance on NSL-KDD 

When fitting the hybrid SOM model to our benign dataset that was separated 

during the preprocessing stage, the parameters were adjusted based on 

hyperparameter tuning that uses Bayesian optimization, which was implemented using 
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hyperopt library. Figure 10 shows the final hyperparameter tuning for our anomaly 

detection model. 

 

Figure 10. Parameters for Hybrid SOM initialized and fitted on NSL-KDD Test+. 

The shape parameter represents the shape of the SOM grid that is made up of x 

number of rows, and y represents the number of columns allotted to our SOM nodes. 

The sigma means the spread of the neighborhood function, and this parameter directly 

affects how the neighboring neurons of the winning nodes will learn from each iteration. 

The learning rate decides the amount of change that is applied to the self-organizing 

map after each epoch; the learning rate also exponentially decay after each iteration. 

The initial radius parameter entails the nodes included within the radius of the BMU 

initially, and this parameter also diminishes each iteration through exponential decay. 

The number of neighbors parameter adjusts our K-NN model, in our hybrid framework, 

to take into account the number of cues near a given data point when classifying. The 

anomaly detector is trained by fitting it on the benign dataset, and the number of 

iterations is set to 5000. During our multiclass classification of the NSL-KDD dataset, 

the subclass accuracy performance is illustrated in Table XI.  
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Table XI 

Accuracies metrics after fitting the previous fitted network on evaluation data 

Subclasses Accuracies (%) 

on KDDTrain+  

Accuracies(%) 

on KDDTest+ 

Probe 92.08% 39% 

R2L 18.39% 92.812% 

DOS 98.377% 2.911% 

U2R 17.307% 98.507% 

 

The subclass accuracy performance on Table X demonstrates the high accuracy 

performance of Hybrid SOM on user to root traffic and root to login traffic when the 

predictions are mapped on KDDtest+ dataset. 

Hybrid SOM Performance on  
IoT botnet Attacks Dataset 

In figure 11, the parameters for hybrid self-organizing maps were selected based 

on the Bayesian hyperparameter tuning strategy for optimal performance.  

 

Figure 11. Parameters for Hybrid SOM initialized and fitted on the IoT Botnet Attacks 

dataset. 

The limit value is used to determine whether an observation is deemed an 

anomaly is ascertained by adding the mean and standard deviation of 3. Each 
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observation is determined to be an outlier if the values in the anomaly metrics are 

higher than the previously determined limit value. The subclass anomaly score is 

determined by taking the percentage of the total amount of outlier determined by the 

model over the total observations in the evaluation data.  

Table XII 

Accuracies metrics after fitting the previous fitted network on evaluation data 

Subclasses Accuracies (%) on Mirai Botnet Dataset 

ACK 32.64% 

Scan 99.61% 

SYN 23.57% 

UDP 28.32% 

 

As suggested by results illustrated in Table XII, the Hybrid self-organizing map 

has performed significantly better when detecting SCAN attack traffic as opposed to its 

counterparts such as ACK attacks, SYN attacks, and UDP attacks.  
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Table XIII 

ANN model and Hybrid SOM model performance on NSL-KDD dataset  

Subclass Iterations to 

train Hybrid 

SOM 

Epoch Train Time 

for ANN (s) 

Train 

Time for 

Hybrid 

SOM (s) 

Accuracies 

(%) on 

ANN model 

Accuracies 

(%) on 

Hybrid 

SOM 

Probe 10,000 3 67.811 

seconds 

39.239 

seconds 

94.97% 100% 

R2L 10,000 3 67.811 

seconds 

39.239 

seconds 

88.04% 6.204% 

DOS 10,000 3 67.811 

seconds 

39.239 

seconds 

93.03% 86.756% 

U2R 10,000 3 67.811 

seconds 

39.239 

seconds 

99.73% 100% 

 

The Hybrid SOM model has shown higher predictive power in determining Probe 

attack traffic and user to root attack. In contrast, the Hybrid SOM model has 

underperformed in detecting root to login attack traffic.  However, the traditional artificial 

neural network requires high CPU resources while training the model, which can prove 

to be detrimental in the context of setting it up in IoT devices. Table XIII illustrates that 

lightweight Hybrid SOM gets fully trained over 10,000 iterations in 39.239 seconds and 

can outperform the traditional ANN model in detecting probe traffic and user to root 
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attack traffic. The train time suggests that the Hybrid SOM model is the preferable 

choice over the conventional neural network for lightweight anomaly detection purposes 

for network attacks in IoT devices. 

Table XIV 

ANN model and Hybrid SOM model performance on IoT botnet Dataset 

Subclass Total 
iterations to 
train Hybrid 
SOM 

Total 
ANN 
Epochs 

Train 
Time for 
ANN (s) 

Train 
Time for 
Hybrid 
SOM (s) 

Accuracies 
(%) on 
ANN model 

Accuracies 
(%) on 
Hybrid 
SOM 

ACK 5000 3 54.804 

seconds 

27.312 

seconds 

30.27% 32.64% 

Scan 5000 3 54.804 

seconds 
27.312 

seconds 

99.63% 99.61% 

SYN 5000 3 54.804 

seconds 
27.312 

seconds 

25.04% 23.57% 

UDP 5000 3 54.804 

seconds 
27.312 

seconds 

30.30% 28.32% 

 

As per the results illustrated in Table XIV, for Botnet IoT attacks, both the ANN 

model and lightweight Hybrid SOM predictive accuracy were very close to each other. In 

our experiment, the Hybrid self-organizing map outperformed the ANN model when 

predicting ACK traffic attacks. In contrast, SOM hybrid predictions for SCAN attacks, 

SYN attacks, and UDP attacks were almost at par with the ANN model, which takes 

nearly twice as long time to train. The SOM model took 37.312 seconds to fully train 

over 5000 iterations while the ANN model took 54.804 seconds. 
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Table XV 

Hybrid SOM on NSL-KDD after Scaling Down Nodes over 10000 iterations        

Subclass Total 
Nodes 
shape 
Paramet
er 

Total 
Nodes 
shape 
Paramet
er 

Train 
time for 
Hybrid 
SOM  

Train 
time for 
SOM 
scaled 
down 

Accuraci
es (%) 
on 
Hybrid 
SOM 

Accuracies 
(%) on 
after 
Scaled 
Down 
Hybrid 
SOM 

Probe (36, 36) (20, 20) 39.239 
seconds 

8.963 
seconds 

100% 81.908% 

R2L (36, 36) (20, 20) 39.239 
seconds 

8.963 
seconds 

6.204% 1.941% 

DOS (36, 36) (20, 20) 39.239 
seconds 

8.963 
seconds 

86.756% 87.305% 

U2R (36, 36) (20, 20) 39.239 
seconds 

8.963 
seconds 

100% 100% 

 

Table XV indicates that after scaling down the self-organizing map's nodes for 

resource optimization, the subclass accuracy was comprised of probe attack traffic, 

remote to login attack traffic. The scaled-down Hybrid SOM did outperform the Bayesian 

optimized hybrid SOM when predicting denial of service attacks. The training time was 

significantly reduced from 39.239 seconds to 8.963 seconds after changing the total 

self-organizing maps node grid shape from (36, 36) to (20, 20) rows and columns. 
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Table XVI 

Hybrid SOM on IoT Dataset after Scaling Down Nodes over 10000 iterations 

Subclass Total 
Nodes 
shape 
Parame
ter 

Total 
Nodes 
shape 
Parameter 

Train 
time for 
Hybrid 
SOM  

Train 
time for 
SOM 
scaled 
down 

Accuracies 
(%) on 
Hybrid 
SOM 

Accuracies 
(%) on 
after 
Scaled 
Down 
Hybrid 
SOM  

ACK (47, 47) (24, 24) 27.312 
seconds 

4.900 
seconds 

32.64% 25.27% 

Scan (47, 47) (24, 24) 27.312 
seconds 

4.900 
seconds 

99.61% 99.52% 

SYN (47, 47) (24, 24) 27.312 
seconds 

4.900 
seconds 

23.57% 23.55% 

UDP (47, 47) (24, 24) 27.312 
seconds 

4.900 
seconds 

28.32% 25.60% 

 

The comparison, as illustrated in Table XVI, suggests that scaling down the 

number of SOM nodes by almost half does not have a meaningful impact on the 

subclass accuracy measures and reduces the training time significantly. The scaled-

down self-organizing map has a training time of 4.900 seconds, making it ideal for deep-

learning based detection of IoT attacks in a lightweight resource environment such as 

IoT based devices. 
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