1,371 research outputs found

    Scalable Audience Reach Estimation in Real-time Online Advertising

    Full text link
    Online advertising has been introduced as one of the most efficient methods of advertising throughout the recent years. Yet, advertisers are concerned about the efficiency of their online advertising campaigns and consequently, would like to restrict their ad impressions to certain websites and/or certain groups of audience. These restrictions, known as targeting criteria, limit the reachability for better performance. This trade-off between reachability and performance illustrates a need for a forecasting system that can quickly predict/estimate (with good accuracy) this trade-off. Designing such a system is challenging due to (a) the huge amount of data to process, and, (b) the need for fast and accurate estimates. In this paper, we propose a distributed fault tolerant system that can generate such estimates fast with good accuracy. The main idea is to keep a small representative sample in memory across multiple machines and formulate the forecasting problem as queries against the sample. The key challenge is to find the best strata across the past data, perform multivariate stratified sampling while ensuring fuzzy fall-back to cover the small minorities. Our results show a significant improvement over the uniform and simple stratified sampling strategies which are currently widely used in the industry

    Modeling and improving Spatial Data Infrastructure (SDI)

    Get PDF
    Spatial Data Infrastructure (SDI) development is widely known to be a challenging process owing to its complex and dynamic nature. Although great effort has been made to conceptually explain the complexity and dynamics of SDIs, few studies thus far have actually modeled these complexities. In fact, better modeling of SDI complexities will lead to more reliable plans for its development. A state-of-the-art simulation model of SDI development, hereafter referred to as SMSDI, was created by using the system dynamics (SD) technique. The SMSDI enables policy-makers to test various investment scenarios in different aspects of SDI and helps them to determine the optimum policy for further development of an SDI. This thesis begins with adaption of the SMSDI to a new case study in Tanzania by using the community of participant concept, and further development of the model is performed by using fuzzy logic. It is argued that the techniques and models proposed in this part of the study enable SDI planning to be conducted in a more reliable manner, which facilitates receiving the support of stakeholders for the development of SDI.Developing a collaborative platform such as SDI would highlight the differences among stakeholders including the heterogeneous data they produce and share. This makes the reuse of spatial data difficult mainly because the shared data need to be integrated with other datasets and used in applications that differ from those originally produced for. The integration of authoritative data and Volunteered Geographic Information (VGI), which has a lower level structure and production standards, is a new, challenging area. The second part of this study focuses on proposing techniques to improve the matching and integration of spatial datasets. It is shown that the proposed solutions, which are based on pattern recognition and ontology, can considerably improve the integration of spatial data in SDIs and enable the reuse or multipurpose usage of available data resources

    A Comprehensive Bibliometric Analysis on Social Network Anonymization: Current Approaches and Future Directions

    Full text link
    In recent decades, social network anonymization has become a crucial research field due to its pivotal role in preserving users' privacy. However, the high diversity of approaches introduced in relevant studies poses a challenge to gaining a profound understanding of the field. In response to this, the current study presents an exhaustive and well-structured bibliometric analysis of the social network anonymization field. To begin our research, related studies from the period of 2007-2022 were collected from the Scopus Database then pre-processed. Following this, the VOSviewer was used to visualize the network of authors' keywords. Subsequently, extensive statistical and network analyses were performed to identify the most prominent keywords and trending topics. Additionally, the application of co-word analysis through SciMAT and the Alluvial diagram allowed us to explore the themes of social network anonymization and scrutinize their evolution over time. These analyses culminated in an innovative taxonomy of the existing approaches and anticipation of potential trends in this domain. To the best of our knowledge, this is the first bibliometric analysis in the social network anonymization field, which offers a deeper understanding of the current state and an insightful roadmap for future research in this domain.Comment: 73 pages, 28 figure

    Advances and Novel Approaches in Discrete Optimization

    Get PDF
    Discrete optimization is an important area of Applied Mathematics with a broad spectrum of applications in many fields. This book results from a Special Issue in the journal Mathematics entitled ‘Advances and Novel Approaches in Discrete Optimization’. It contains 17 articles covering a broad spectrum of subjects which have been selected from 43 submitted papers after a thorough refereeing process. Among other topics, it includes seven articles dealing with scheduling problems, e.g., online scheduling, batching, dual and inverse scheduling problems, or uncertain scheduling problems. Other subjects are graphs and applications, evacuation planning, the max-cut problem, capacitated lot-sizing, and packing algorithms

    Decision Maps for Distributed Scenario-Based Multi-Criteria Decision Support

    Get PDF
    This thesis presents the Decision Map approach to support decision-makers facing complex uncertain problems that defy standardised solutions. First, scenarios are generated in a distributed manner: the reasoning processes can be adapted to the problem at hand whilst respecting constraints in time and availability of experts. Second, by integrating scenarios and MCDA, this approach facilitates robust decision-making respecting multiple criteria in a transparent well-structured manner

    Configraphics:

    Get PDF
    This dissertation reports a PhD research on mathematical-computational models, methods, and techniques for analysis, synthesis, and evaluation of spatial configurations in architecture and urban design. Spatial configuration is a technical term that refers to the particular way in which a set of spaces are connected to one another as a network. Spatial configuration affects safety, security, and efficiency of functioning of complex buildings by facilitating certain patterns of movement and/or impeding other patterns. In cities and suburban built environments, spatial configuration affects accessibilities and influences travel behavioural patterns, e.g. choosing walking and cycling for short trips instead of travelling by cars. As such, spatial configuration effectively influences the social, economic, and environmental functioning of cities and complex buildings, by conducting human movement patterns. In this research, graph theory is used to mathematically model spatial configurations in order to provide intuitive ways of studying and designing spatial arrangements for architects and urban designers. The methods and tools presented in this dissertation are applicable in: arranging spatial layouts based on configuration graphs, e.g. by using bubble diagrams to ensure certain spatial requirements and qualities in complex buildings; and analysing the potential effects of decisions on the likely spatial performance of buildings and on mobility patterns in built environments for systematic comparison of designs or plans, e.g. as to their aptitude for pedestrians and cyclists. The dissertation reports two parallel tracks of work on architectural and urban configurations. The core concept of the architectural configuration track is the ‘bubble diagram’ and the core concept of the urban configuration track is the ‘easiest paths’ for walking and cycling. Walking and cycling have been chosen as the foci of this theme as they involve active physical, cognitive, and social encounter of people with built environments, all of which are influenced by spatial configuration. The methodologies presented in this dissertation have been implemented in design toolkits and made publicly available as freeware applications
    • …
    corecore