44,896 research outputs found

    The impact of physical conditions on network connectivity in wireless sensor network

    Get PDF
    In Wireless Sensor Networks, end-to-end routing paths need to be established when nodes want to communicate with the desired destination. For nodes assumed to be static, many routing protocols such as Directed Diffusion have been proposed to meet this requirement efficiently. The performance of such routing protocols is relative to the given network connectivity. This paper addresses mobile sensor nodes taking into account the diversity of scattered node density and investigates how physical conditions impact on network connectivity which in turn influences routing performance. Three analysis metrics: path availability, path duration, and interavailable path time are proposed to quantify the impact of different physical conditions on network connectivity. Simulation results show that the network connectivity varies significantly as a function of different physical conditions

    Revealing Network Connectivity From Dynamics

    Full text link
    We present a method to infer network connectivity from collective dynamics in networks of synchronizing phase oscillators. We study the long-term stationary response to temporally constant driving. For a given driving condition, measuring the phase differences and the collective frequency reveals information about how the oscillators are interconnected. Sufficiently many repetitions for different driving conditions yield the entire network connectivity from measuring the dynamics only. For sparsely connected networks we obtain good predictions of the actual connectivity even for formally under-determined problems.Comment: 10 pages, 4 figure

    Low-Stress Bicycling and Network Connectivity

    Get PDF
    For a bicycling network to attract the widest possible segment of the population, its most fundamental attribute should be low-stress connectivity, that is, providing routes between people’s origins and destinations that do not require cyclists to use links that exceed their tolerance for traffic stress, and that do not involve an undue level of detour. The objective of this study is to develop measures of low-stress connectivity that can be used to evaluate and guide bicycle network planning. We propose a set of criteria by which road segments can be classified into four levels of traffic stress (LTS). LTS 1 is suitable for children; LTS 2, based on Dutch bikeway design criteria, represents the traffic stress that most adults will tolerate; LTS 3 and 4 represent greater levels of stress. As a case study, every street in San Jose, California, was classified by LTS. Maps in which only bicycle-friendly links are displayed reveal a city divided into islands within which low-stress bicycling is possible, but separated from one another by barriers that can be crossed only by using high-stress links. Two points in the network are said to be connected at a given level of traffic stress if the subnetwork of links that do not exceed the specified level of stress connects them with a path whose length does not exceed a detour criterion (25% longer than the most direct path). For the network as a whole, we demonstrate two measures of connectivity that can be applied for a given level of traffic stress. One is “percent trips connected,” defined as the fraction of trips in the regional trip table that can be made without exceeding a specified level of stress and without excessive detour. This study used the home-to-work trip table, though in principle any trip table, including all trips, could be used. The second is “percent nodes connected,” a cruder measure that does not require a regional trip table, but measures the fraction of nodes in the street network (mostly street intersections) that are connected to each other. Because traffic analysis zones (TAZs) are too coarse a geographic unit for evaluating connectivity by bicycle, we also demonstrate a method of disaggregating the trip table from the TAZ level to census blocks. For any given TAZ, origins in the home-to-work trip table are allocated in proportion to population, while destinations are allocated based on land-use data. In the base case, the fraction of work trips up to six miles long that are connected at LTS 2 is 4.7%, providing a plausible explanation for the city’s low bicycling share. We show that this figure would almost triple if a proposed slate of improvements, totaling 32 miles in length but with strategically placed segments that provide low-stress connectivity across barriers, were implemented

    Hydrological controls on river network connectivity

    Get PDF
    This study proposes a probabilistic approach for the quantitative assessment of reach- and network-scale hydrological connectivity as dictated by river flow space–time variability. Spatial dynamics of daily streamflows are estimated based on climatic and morphological features of the contributing catchment, integrating a physically based approach that accounts for the stochasticity of rainfall with a water balance framework and a geomorphic recession flow analysis. Ecologically meaningful minimum stage thresholds are used to evaluate the connectivity of individual stream reaches, and other relevant network-scale connectivity metrics. The framework allows a quantitative description of the main hydrological causes and the ecological consequences of water depth dynamics experienced by river networks. The analysis shows that the spatial variability of local-scale hydrological connectivity is strongly affected by the spatial and temporal distribution of climatic variables. Depending on the underlying climatic settings and the critical stage threshold, loss of connectivity can be observed in the headwaters or along the main channel, thereby originating a fragmented river network. The proposed approach provides important clues for understanding the effect of climate on the ecological function of river corridors

    Firewall Management

    Get PDF
    Network connectivity can be both a blessing and a curse. On the one hand, network connectivity can enable users to share files, exchange e-mail, and pool physical resources. Yet network connectivity can also be a risky endeavor, if the connectivity grants access to would-be intruders. The Internet is a perfect case in point. Designed for a trusted environment, many contemporary exploits are based upon vulnerabilities inherent to the protocol itself. In light of this trend, many organizations are implementing firewalls to protect their internal network from the untrusted Internet.firewall, network connection, risks, vulnerabilities

    On the Quality of Wireless Network Connectivity

    Full text link
    Despite intensive research in the area of network connectivity, there is an important category of problems that remain unsolved: how to measure the quality of connectivity of a wireless multi-hop network which has a realistic number of nodes, not necessarily large enough to warrant the use of asymptotic analysis, and has unreliable connections, reflecting the inherent unreliable characteristics of wireless communications? The quality of connectivity measures how easily and reliably a packet sent by a node can reach another node. It complements the use of \emph{capacity} to measure the quality of a network in saturated traffic scenarios and provides a native measure of the quality of (end-to-end) network connections. In this paper, we explore the use of probabilistic connectivity matrix as a possible tool to measure the quality of network connectivity. Some interesting properties of the probabilistic connectivity matrix and their connections to the quality of connectivity are demonstrated. We argue that the largest eigenvalue of the probabilistic connectivity matrix can serve as a good measure of the quality of network connectivity.Comment: submitted to IEEE INFOCOM 201

    A Positive Theory of Network Connectivity

    Get PDF
    This paper develops a positive theory of network connectivity, seeking to explain the micro-foundations of alternative network topologies as the result of self-interested actors. By building roads, landowners hope to increase their parcelsÕ accessibility and economic value. A simulation model is performed on a grid-like land use layer with a downtown in the center, whose structure resembles the early form of many Midwest- ern and Western (US) cities. The topological attributes for the networks are evaluated. This research posits that road networks experience an evolutionary process where a tree-like structure first emerges around the centered parcel before the network pushes outward to the periphery. In addition, road network topology undergoes clear phase changes as the economic values of parcels vary. The results demonstrate that even without a centralized authority, road networks have the property of self-organization and evolution, and, that in the absence of intervention, the tree-like or web-like nature of networks is a result of the underlying economics.road network, land parcel, network evolution, network growth, phase change, centrality measures, degree centrality, closeness centrality, betweenness centrality, network structure, treeness, circuitness, topology

    Image informatics strategies for deciphering neuronal network connectivity

    Get PDF
    Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies
    • 

    corecore