5,643 research outputs found

    On Facebook, most ties are weak

    Full text link
    Pervasive socio-technical networks bring new conceptual and technological challenges to developers and users alike. A central research theme is evaluation of the intensity of relations linking users and how they facilitate communication and the spread of information. These aspects of human relationships have been studied extensively in the social sciences under the framework of the "strength of weak ties" theory proposed by Mark Granovetter.13 Some research has considered whether that theory can be extended to online social networks like Facebook, suggesting interaction data can be used to predict the strength of ties. The approaches being used require handling user-generated data that is often not publicly available due to privacy concerns. Here, we propose an alternative definition of weak and strong ties that requires knowledge of only the topology of the social network (such as who is a friend of whom on Facebook), relying on the fact that online social networks, or OSNs, tend to fragment into communities. We thus suggest classifying as weak ties those edges linking individuals belonging to different communities and strong ties as those connecting users in the same community. We tested this definition on a large network representing part of the Facebook social graph and studied how weak and strong ties affect the information-diffusion process. Our findings suggest individuals in OSNs self-organize to create well-connected communities, while weak ties yield cohesion and optimize the coverage of information spread.Comment: Accepted version of the manuscript before ACM editorial work. Check http://cacm.acm.org/magazines/2014/11/179820-on-facebook-most-ties-are-weak/ for the final versio

    Analysis of a large-scale weighted network of one-to-one human communication

    Get PDF
    We construct a connected network of 3.9 million nodes from mobile phone call records, which can be regarded as a proxy for the underlying human communication network at the societal level. We assign two weights on each edge to reflect the strength of social interaction, which are the aggregate call duration and the cumulative number of calls placed between the individuals over a period of 18 weeks. We present a detailed analysis of this weighted network by examining its degree, strength, and weight distributions, as well as its topological assortativity and weighted assortativity, clustering and weighted clustering, together with correlations between these quantities. We give an account of motif intensity and coherence distributions and compare them to a randomized reference system. We also use the concept of link overlap to measure the number of common neighbors any two adjacent nodes have, which serves as a useful local measure for identifying the interconnectedness of communities. We report a positive correlation between the overlap and weight of a link, thus providing strong quantitative evidence for the weak ties hypothesis, a central concept in social network analysis. The percolation properties of the network are found to depend on the type and order of removed links, and they can help understand how the local structure of the network manifests itself at the global level. We hope that our results will contribute to modeling weighted large-scale social networks, and believe that the systematic approach followed here can be adopted to study other weighted networks.Comment: 25 pages, 17 figures, 2 table

    Bridgeness: A Local Index on Edge Significance in Maintaining Global Connectivity

    Full text link
    Edges in a network can be divided into two kinds according to their different roles: some enhance the locality like the ones inside a cluster while others contribute to the global connectivity like the ones connecting two clusters. A recent study by Onnela et al uncovered the weak ties effects in mobile communication. In this article, we provide complementary results on document networks, that is, the edges connecting less similar nodes in content are more significant in maintaining the global connectivity. We propose an index named bridgeness to quantify the edge significance in maintaining connectivity, which only depends on local information of network topology. We compare the bridgeness with content similarity and some other structural indices according to an edge percolation process. Experimental results on document networks show that the bridgeness outperforms content similarity in characterizing the edge significance. Furthermore, extensive numerical results on disparate networks indicate that the bridgeness is also better than some well-known indices on edge significance, including the Jaccard coefficient, degree product and betweenness centrality.Comment: 10 pages, 4 figures, 1 tabl

    Supporting Online Social Networks

    No full text

    Triangles to Capture Social Cohesion

    Get PDF
    Although community detection has drawn tremendous amount of attention across the sciences in the past decades, no formal consensus has been reached on the very nature of what qualifies a community as such. In this article we take an orthogonal approach by introducing a novel point of view to the problem of overlapping communities. Instead of quantifying the quality of a set of communities, we choose to focus on the intrinsic community-ness of one given set of nodes. To do so, we propose a general metric on graphs, the cohesion, based on counting triangles and inspired by well established sociological considerations. The model has been validated through a large-scale online experiment called Fellows in which users were able to compute their social groups on Face- book and rate the quality of the obtained groups. By observing those ratings in relation to the cohesion we assess that the cohesion is a strong indicator of users subjective perception of the community-ness of a set of people

    Finding influential spreaders from human activity beyond network location

    Full text link
    Most centralities proposed for identifying influential spreaders on social networks to either spread a message or to stop an epidemic require the full topological information of the network on which spreading occurs. In practice, however, collecting all connections between agents in social networks can be hardly achieved. As a result, such metrics could be difficult to apply to real social networks. Consequently, a new approach for identifying influential people without the explicit network information is demanded in order to provide an efficient immunization or spreading strategy, in a practical sense. In this study, we seek a possible way for finding influential spreaders by using the social mechanisms of how social connections are formed in real networks. We find that a reliable immunization scheme can be achieved by asking people how they interact with each other. From these surveys we find that the probabilistic tendency to connect to a hub has the strongest predictive power for influential spreaders among tested social mechanisms. Our observation also suggests that people who connect different communities is more likely to be an influential spreader when a network has a strong modular structure. Our finding implies that not only the effect of network location but also the behavior of individuals is important to design optimal immunization or spreading schemes

    Community Detection in Dynamic Networks via Adaptive Label Propagation

    Full text link
    An adaptive label propagation algorithm (ALPA) is proposed to detect and monitor communities in dynamic networks. Unlike the traditional methods by re-computing the whole community decomposition after each modification of the network, ALPA takes into account the information of historical communities and updates its solution according to the network modifications via a local label propagation process, which generally affects only a small portion of the network. This makes it respond to network changes at low computational cost. The effectiveness of ALPA has been tested on both synthetic and real-world networks, which shows that it can successfully identify and track dynamic communities. Moreover, ALPA could detect communities with high quality and accuracy compared to other methods. Therefore, being low-complexity and parameter-free, ALPA is a scalable and promising solution for some real-world applications of community detection in dynamic networks.Comment: 16 pages, 11 figure
    corecore