11,961 research outputs found

    Design and Analysis of Low Complexity Network Coding Schemes

    Get PDF
    In classical network information theory, information packets are treated as commodities, and the nodes of the network are only allowed to duplicate and forward the packets. The new paradigm of network coding, which was introduced by Ahlswede et al., states that if the nodes are permitted to combine the information packets and forward a function of them, the throughput of the network can dramatically increase. In this dissertation we focused on the design and analysis of low complexity network coding schemes for different topologies of wired and wireless networks. In the first part we studied the routing capacity of wired networks. We provided a description of the routing capacity region in terms of a finite set of linear inequalities. We next used this result to study the routing capacity region of undirected ring networks for two multimessage scenarios. Finally, we used new network coding bounds to prove the optimality of routing schemes in these two scenarios. In the second part, we studied node-constrained line and star networks. We derived the multiple multicast capacity region of node-constrained line networks based on a low complexity binary linear coding scheme. For star networks, we examined the multiple unicast problem and offered a linear coding scheme. Then we made a connection between the network coding in a node-constrained star network and the problem of index coding with side information. In the third part, we studied the linear deterministic model of relay networks (LDRN). We focused on a unicast session and derived a simple capacity-achieving transmission scheme. We obtained our scheme by a connection to the submodular flow problem through the application of tools from matroid theory and submodular optimization theory. We also offered polynomial-time algorithms for calculating the capacity of the network and the optimal coding scheme. In the final part, we considered the multicasting problem in an LDRN and proposed a new way to construct a coding scheme. Our construction is based on the notion of flow for a unicast session in the third part of this dissertation. We presented randomized and deterministic polynomial-time versions of our algorithm

    Proposition and validation of an original MAC layer with simultaneous medium accesses for low latency wireless control/command applications

    Get PDF
    Control/command processes require a transmission system with some characteristics like high reliability, low latency and strong guarantees on messages delivery. Concerning wire networks, field buses technologies like FIP offer this kind of service (periodic tasks, real time constraints...). Unfortunately, few wireless technologies can propose a communication system which respects such constraints. Indeed, wireless transmissions must deal with medium characteristics which make impossible the direct translation of mechanisms used with wire networks. The purpose of this paper is to present an original Medium Access Control (MAC) layer for a real time Low Power-Wireless Personal Area Network (LP-WPAN). The proposed MAC-layer has been validated by several complementary methods; in this paper, we focus on the specific Simultaneous Guaranteed Time Slot (SGTS) part

    Leveraging Physical Layer Capabilites: Distributed Scheduling in Interference Networks with Local Views

    Full text link
    In most wireless networks, nodes have only limited local information about the state of the network, which includes connectivity and channel state information. With limited local information about the network, each node's knowledge is mismatched; therefore, they must make distributed decisions. In this paper, we pose the following question - if every node has network state information only about a small neighborhood, how and when should nodes choose to transmit? While link scheduling answers the above question for point-to-point physical layers which are designed for an interference-avoidance paradigm, we look for answers in cases when interference can be embraced by advanced PHY layer design, as suggested by results in network information theory. To make progress on this challenging problem, we propose a constructive distributed algorithm that achieves rates higher than link scheduling based on interference avoidance, especially if each node knows more than one hop of network state information. We compare our new aggressive algorithm to a conservative algorithm we have presented in [1]. Both algorithms schedule sub-networks such that each sub-network can employ advanced interference-embracing coding schemes to achieve higher rates. Our innovation is in the identification, selection and scheduling of sub-networks, especially when sub-networks are larger than a single link.Comment: 14 pages, Submitted to IEEE/ACM Transactions on Networking, October 201

    MorphIC: A 65-nm 738k-Synapse/mm2^2 Quad-Core Binary-Weight Digital Neuromorphic Processor with Stochastic Spike-Driven Online Learning

    Full text link
    Recent trends in the field of neural network accelerators investigate weight quantization as a means to increase the resource- and power-efficiency of hardware devices. As full on-chip weight storage is necessary to avoid the high energy cost of off-chip memory accesses, memory reduction requirements for weight storage pushed toward the use of binary weights, which were demonstrated to have a limited accuracy reduction on many applications when quantization-aware training techniques are used. In parallel, spiking neural network (SNN) architectures are explored to further reduce power when processing sparse event-based data streams, while on-chip spike-based online learning appears as a key feature for applications constrained in power and resources during the training phase. However, designing power- and area-efficient spiking neural networks still requires the development of specific techniques in order to leverage on-chip online learning on binary weights without compromising the synapse density. In this work, we demonstrate MorphIC, a quad-core binary-weight digital neuromorphic processor embedding a stochastic version of the spike-driven synaptic plasticity (S-SDSP) learning rule and a hierarchical routing fabric for large-scale chip interconnection. The MorphIC SNN processor embeds a total of 2k leaky integrate-and-fire (LIF) neurons and more than two million plastic synapses for an active silicon area of 2.86mm2^2 in 65nm CMOS, achieving a high density of 738k synapses/mm2^2. MorphIC demonstrates an order-of-magnitude improvement in the area-accuracy tradeoff on the MNIST classification task compared to previously-proposed SNNs, while having no penalty in the energy-accuracy tradeoff.Comment: This document is the paper as accepted for publication in the IEEE Transactions on Biomedical Circuits and Systems journal (2019), the fully-edited paper is available at https://ieeexplore.ieee.org/document/876400

    A Distributed Frank-Wolfe Algorithm for Communication-Efficient Sparse Learning

    Full text link
    Learning sparse combinations is a frequent theme in machine learning. In this paper, we study its associated optimization problem in the distributed setting where the elements to be combined are not centrally located but spread over a network. We address the key challenges of balancing communication costs and optimization errors. To this end, we propose a distributed Frank-Wolfe (dFW) algorithm. We obtain theoretical guarantees on the optimization error ϵ\epsilon and communication cost that do not depend on the total number of combining elements. We further show that the communication cost of dFW is optimal by deriving a lower-bound on the communication cost required to construct an ϵ\epsilon-approximate solution. We validate our theoretical analysis with empirical studies on synthetic and real-world data, which demonstrate that dFW outperforms both baselines and competing methods. We also study the performance of dFW when the conditions of our analysis are relaxed, and show that dFW is fairly robust.Comment: Extended version of the SIAM Data Mining 2015 pape

    A Low-Cost Robust Distributed Linearly Constrained Beamformer for Wireless Acoustic Sensor Networks with Arbitrary Topology

    Full text link
    We propose a new robust distributed linearly constrained beamformer which utilizes a set of linear equality constraints to reduce the cross power spectral density matrix to a block-diagonal form. The proposed beamformer has a convenient objective function for use in arbitrary distributed network topologies while having identical performance to a centralized implementation. Moreover, the new optimization problem is robust to relative acoustic transfer function (RATF) estimation errors and to target activity detection (TAD) errors. Two variants of the proposed beamformer are presented and evaluated in the context of multi-microphone speech enhancement in a wireless acoustic sensor network, and are compared with other state-of-the-art distributed beamformers in terms of communication costs and robustness to RATF estimation errors and TAD errors

    Whether and Where to Code in the Wireless Relay Channel

    Full text link
    The throughput benefits of random linear network codes have been studied extensively for wirelined and wireless erasure networks. It is often assumed that all nodes within a network perform coding operations. In energy-constrained systems, however, coding subgraphs should be chosen to control the number of coding nodes while maintaining throughput. In this paper, we explore the strategic use of network coding in the wireless packet erasure relay channel according to both throughput and energy metrics. In the relay channel, a single source communicates to a single sink through the aid of a half-duplex relay. The fluid flow model is used to describe the case where both the source and the relay are coding, and Markov chain models are proposed to describe packet evolution if only the source or only the relay is coding. In addition to transmission energy, we take into account coding and reception energies. We show that coding at the relay alone while operating in a rateless fashion is neither throughput nor energy efficient. Given a set of system parameters, our analysis determines the optimal amount of time the relay should participate in the transmission, and where coding should be performed.Comment: 11 pages, 12 figures, to be published in the IEEE JSAC Special Issue on Theories and Methods for Advanced Wireless Relay
    corecore