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ABSTRACT 

 

Design and Analysis of Low Complexity Network Coding Schemes. (August 2011) 

Seyed Mohammadsadegh Tabatabaei Yazdi, B.S., Sharif University of Technology; 

M.S., University of Michigan Ann Arbor 

Chair of Advisory Committee: Dr. Serap A. Savari 

 

In classical network information theory, information packets are treated as 

commodities, and the nodes of the network are only allowed to duplicate and forward the 

packets. The new paradigm of network coding, which was introduced by Ahlswede et 

al., states that if the nodes are permitted to combine the information packets and forward 

a function of them, the throughput of the network can dramatically increase. In this 

dissertation we focused on the design and analysis of low complexity network coding 

schemes for different topologies of wired and wireless networks. 

In the first part we studied the routing capacity of wired networks. We provided a 

description of the routing capacity region in terms of a finite set of linear inequalities. 

We next used this result to study the routing capacity region of undirected ring networks 

for two multimessage scenarios. Finally, we used new network coding bounds to prove 

the optimality of routing schemes in these two scenarios. 

In the second part, we studied node–constrained line and star networks. We 

derived the multiple multicast capacity region of node–constrained line networks based 

on a low complexity binary linear coding scheme. For star networks, we examined the 
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multiple unicast problem and offered a linear coding scheme. Then we made a 

connection between the network coding in a node–constrained star network and the 

problem of index coding with side information. 

In the third part, we studied the linear deterministic model of relay networks 

(LDRN). We focused on a unicast session and derived a simple capacity-achieving 

transmission scheme. We obtained our scheme by a connection to the submodular flow 

problem through the application of tools from matroid theory and submodular 

optimization theory. We also offered polynomial-time algorithms for calculating the 

capacity of the network and the optimal coding scheme. 

In the final part, we considered the multicasting problem in an LDRN and 

proposed a new way to construct a coding scheme. Our construction is based on the 

notion of flow for a unicast session in the third part of this dissertation. We presented 

randomized and deterministic polynomial-time versions of our algorithm. 
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CHAPTER I

INTRODUCTION

A. Motivation

Communication networks are inseparable from modern life. Given the cellular networks

which support the communication among cell phones, the fiber optic networks which en-

able the transmission of data over the internet, and sensor and satellite networks, our ev-

eryday lives are deeply affected by the operation of communication networks. Network in-

formation theory studies the fundamental limits of transmission over communication over

communication networks and aims at the design of transmission scenarios in which the

avaialble resourses, including hardware resources, energy resources, and time resources

are optimally used.

A key question in network information theory is to find the capacity of a network,

which is the maximum concurrent rate of transmission between different users over the

network, under fixed constraints over the available resources. Although this topic has been

studied for more than four decades there remain many important open problems; for exam-

ple, the capacity of a simple network consisting of a source node, a destination node, and a

relay node is unknown. One of the major advances towards the capacity characterization of

wired networks was made by the pioneering work of Ahlswede et al. [2], who introduced

the notion of network coding in 2000. In classical network theory wired networks with

noiseless connections among different nodes was studied by treating information packets

as “commodities.” As a consequence, nodes of the network were only permitted to route;

The journal model is IEEE Transactions on Information Theory.
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i.e., to duplicate the received information packets and forward them to adjacent nodes. The

paradigm of network coding allows nodes to combine information packets to form new

packets and forward them to adjacent nodes.

Ahlswede et al. [2] have shown that network coding is necessary to achieve the capac-

ity of a multicast network where a source wishes to send the same information to several

destinations. Subsequent works have also discovered several instances of networking sce-

narios for which network coding outperforms routing schemes. While it is a promising

idea, our knowledge about the network coding capacity of general networks and optimal

network coding schemes is still very limited, and except for a few simple structures the

capacity is unknown. On the other hand, due to the constraints on the power resources and

the maximum tolerable delay, only low complexity network coding schemes can in practice

be implemented by the nodes. Therefore it is of great importance to study the perfomance

of low-complexity network coding schemes and to study the conditions under which these

schemes can be optimal and capacity achieving. This will be the focus of the present dis-

sertation. For several basic topologies of wired and wireless networks we will analyze the

performance of low-complexity network coding schemes and will provide guarantees on

their optimality.

In this dissertation we will present communication networks with graphs of directed

or undirected edges. A session refers to the communication from a source vertex to a

set of destination vertices. A unicast session has a single destination, a multicast session

has at least two destinations, and a broadcast session is the special case of a multicast

session where all of the vertices in the network except the source are destinations. We will

respectively refer to the network coding capacity region or routing capacity region of a

network as the set of achievable rates among the concurrent sessions using network coding

or routing protocols.
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B. Background, Contributions, and Related Work

1. Undirected ring networks

We begin this dissertation by studying the routing capacity region of undirected ring net-

works from a network coding point of view. An undirected ring network is a mathematical

model consisting of an undirected graph with the topology of a cycle; the vertices of the

graph communicate via edges, and the sum of the flow along the two directions of an

edge is bounded by its capacity. In the past two to three decades, the increasing need for

high-bandwidth, reliable, and potentially long-distance communication systems caused by

various high-demand and real-time applications and services resulted in the extensive de-

ployment of communication networks based on SONET/SDH rings (see, e.g., [11], [22],

[79], [90]). Because of their commercial importance, ring networks have been widely stud-

ied. The routing capacity region of multiple unicast sessions in undirected ring networks

was first derived by Okamura and Seymour [64] as the special case of a more general result

for planar graphs and later by Vachani et al. in [90] with a different method. However the

routing capacity of the general multiple multicast sessions remains unknown.

Finding the routing capacity region of a network is equivalent to solving the problem

of fractionally packing Steiner trees in the network graph; a Steiner tree is a tree which

connects the source of a session to all destinations of that session. The routing capacity

region is an inner bound to the network coding capacity region for the same communication

problem. Li et al. [55] considered undirected networks in which communication links are

bidirectional, and the total flow in both directions is limited by the capacity of the link.

They showed that for a single multicast session the “Steiner strength” of an undirected

network provides an upper bound to the network coding capacity which is at most twice

the routing capacity for the same problem. This bound does not extend to graphs with

multiple multicast sessions, and there is often a gap between the routing capacity region
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and the best information theoretic outer bounds on the network coding capacity region such

as those offered by progressive d-separating edge set (PdE) bounds [48], [49].

In this dissertation we introduce a new method for characterizing the routing capac-

ity region of arbitrary networks. Our method is based on two steps. First we generalize

the “Japanese” theorem of [35], [65] that is a description of the routing capacity of net-

works with multiple unicast sessions in terms of an infinite set of inequalities to the case

of the multiple multicast sessions. Next we use a novel technique to reduce the infinite

set of inequalities into a finite and minimal set. We apply our method on two scenarios of

communication over undirected ring networks:

• the source and destination vertices of each communication session form a string of

adjacent vertices, and

• each session is either a broadcast or a unicast session.

In these cases, via a geometric argument, our method results in a simple description of

the routing capacity region. Next we prove the optimality of routing by providing tight

upper bounds on the network coding capacity of the undirected ring networks. These upper

bounds match our finite description of the routing capacity region in both cases.

While our focus is on the derivation of capacity regions, earlier work has considered

other aspects of deploying network coding in ring networks. For example the authors [28]

investigated the benefits of network coding for saving energy in a number of broadcast

wireless network topologies including rings. They showed that low complexity network

coding schemes double the energy efficiency of ring networks. A different aspect of ring

networks is considered in [74], which studies packet-switched wavelength division multi-

plexing (WDM) on unidirectional and bidirectional ring networks. In this model the total

capacity of the ring is divided into different wavelengths, and each node has access to a

specific wavelength for receiving or sending packets. The authors of [74] consider a des-
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Fig. 1. Basic models of line and star networks.

tination stripping protocol, where packets are removed from the ring by their destinations

upon the completion of transmission. The authors investigate various statistics of the rout-

ing capacity region for a probabilistic multiple multicast problem in which the probability

that a particular session is among the set of sessions to be supported is proportional to its

number of destinations.

2. Node constrained line and star networks

Lines and stars (see Figure 1) are simple topologies that appear as sub–networks in many

different communication networks, e.g., wireless ad–hoc networks, sensor networks, peer–

to–peer networks, and networks of optical fibers and tree and mesh networks. In this dis-

sertation we are interested in node–constrained line and star networks. Given a network,

the classic approach [26, 30] to produce the corresponding node–constrained network is

to split each node j in the original network into two nodes Ij and Oj in the new network.

Each incoming edge to j in the original network corresponds to an incoming edge to Ij in

the new network, and each outgoing edge from j in the original network corresponds to

an outgoing edge from Oj in the new network. There is an edge directed from Ij to Oj

with capacity Cj to model the constraint on the capacity of node j. We assume that all

messages generated at j in the original network are generated at Ij for the revised network

and that all messages that are originally decoded at j are now decoded at Oj . Note that all
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messages which are processed at node j pass through the edge between Ij and Oj in the

revised network without affecting other parts of the network model (see Figure 2). If we

apply this transformation to the networks of Figure 1, we obtain the node–constrained line

and star networks of Figure 3. It is simple to verify that for a multiple multicast problem

in the line and star networks of Figure 1 a routing scheme in which messages can only

be duplicated and forwarded at the nodes is sufficient to achieve the maximum informa-

tion theoretic throughput. However this is not true for the models of Figure 3 and network

coding techniques [2] are required to achieve the maximum throughput.

As we will see later, there are several reasons for studying node-constrained line and
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star networks. Node-constrained networks are an interesting class of networks in their own

right. They represent the limited memory resources, limited processor speed and limited

bus bandwith in communication units. Node constrained networks can also model the

broadcasting nature of wireless medium. We will see later two applications of the node-

constrained models in wireless line networks and in the problem of index coding with side

information [10].

In this dissertation we study the network coding problem for node-constrained line net-

works with multiple multicast sessions. We use cut bounds and entropy arguments [49, 15]

based on edge cuts to find an outer bound on the network coding capacity region. We sub-

sequently propose a linear coding scheme that achieves the outer bound. Then we consider

node-constrained star networks and use entropy arguments to provide outer bounds on the

multiple unicast capacity region. We also offer a coding scheme that is optimal for a broad

class of problems and is based on the problem of packing edge disjoint cycles in directed

graphs. Finally, we make connection between the network coding problem in star networks

and the index coding problem with side information.

Line and star networks have received considerable attention in the networking litera-

ture. The authors of [73] study the capacity of edge-constrained bidirected ring networks

with multiple unicast sessions. Since finite-length line networks are special cases of ring

networks, [73] also treats the multiple unicast session problem for edge-constrained bidi-

rected (or undirected) line networks. The authors of [9] investigate the network coding

capacity of unidirected line networks with edge constraints for several cases of indepen-

dent and dependent message sources. The multimessage multicast capacity of such line

networks is derived as a special case of more general results. The authors of [63, 62] con-

sider a cascade of Discrete Memoryless Channels (DMCs) with identical capacities and

the network coding benefits when intermediate nodes can process only fixed length infor-

mation blocks. They provide the relationship between the code block length and the size
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of the network for a constant end-to-end rate. The paper [66] shows that network coding

schemes with a finite field size achieve network coding capacity for cascaded erasure chan-

nels with a single source and a single destination. For star networks, a number of routing

and packet forwarding algorithms have been proposed, and these have been optimized in

terms of query time [41], echo delay, error probability, scalability, failure tolerance and

reliability (see, e.g., [14, 61]). Wireless line networks with broadcast have been treated in

[45, 50].

3. Linear deterministic relay networks

The linear deterministic model of relay networks (LDRN) was put forward by Avestimehr,

Diggavi, and Tse in [7] as an attempt to gain insight into the flow of information over wire-

less networks. Relay channels [15, §15.7] are a class of networks in which there is a source,

a unique destination and at least one intermediary transmitter-receiver node which may be

employed to assist in the communication between the source and the destination. They

are not well-understood in general, and even the capacity of a Gaussian relay channel re-

mains an outstanding open problem in network information theory. LDRNs have recently

attracted considerable attention because they capture certain physical aspects of wireless

communication, such as broadcasting and interference, and they are discrete and determin-

istic like traditional wireline network models. Avestimehr, Diggavi, and Tse use this model

and a random coding transmission scheme for it to respectively approximate the capacity

of specific wireless relay channels with Gaussian noise and to devise coding scheme for

them [8]. Recent work [25, 59] respectively connects the linear deterministic model and

the algorithm of [7] to the capacity of other types of communication channels and to the

design of near-optimal coding schemes for them.

An LDRN is a wireless networking model which can be visualized as a layered di-

rected network N = (V,E) with set of “nodes” V =
⋃M
i=1 Vi, where Vi denotes the set of
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Fig. 4. An LDRN with four layers. Here t1 = v4(1) and t2 = v4(2).

nodes in layer i, and set of “edges” E. Let Vi = {vi(1), · · · , vi(mi)}, where mi denotes

the number of nodes in layer i. The first layer consists of a single node s = v1(1) called

the source node. There are g destination nodes denoted by tl , vKl
(dl), l ∈ {1, · · · , g},

distributed in layers K1, K2, · · · , Kg. If g = 1 the communication session is unicast and if

g > 1 it is multicast. There is an “edge” from every node in Vi to every node in Vi+1 which

corresponds to the transfer matrix between the two nodes. Figure 4 is an example of an

LDRN with four layers and two destination nodes.

During one use of the communication channel between layers i and i+ 1, vi(j) trans-

mits a predetermined length vector xi[j] to the nodes in layer i + 1 and vi+1(k) receives a

predetermined length vector yi+1[k] given by

yi+1[k] =

mi∑
j=1

Gi[k, j]xi[j],

where Gi[k, j] is a predetermined transfer matrix of the edge (vi(j), vi+1(k)) ∈ E. Note

that we can set Gi[k, j] to be the all-zero matrix if there is no connection from vi(j) to
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vi+1(k). All vectors and matrices are over a fixed finite field F. One can define

xi =


xi[1]

...

xi[mi]

 ,yi+1 =


yi+1[1]

...

yi+1[mi+1]


and the block matrix Gi = [Gi[k, j]] , 1 ≤ k ≤ mi+1, 1 ≤ j ≤ mi. Then the received

vectors at layer i + 1 are related to the transmitted vectors at layer i by the following

relationship

yi+1 = Gixi.

The capacity of an LDRN for a single unicast or multicast session from source s to the

destinations t1, · · · , tg is derived in [7]. Define a cut between the source node s and a

destination node tj as a partition of nodes V into two sets A and B, with s ∈ A and

tj ∈ B. The capacity of the cut is defined as the rank of the transfer matrix from the

transmitted vectors of the nodes in A to the received vectors of the nodes in B. [7] shows

that the minimum capacity of the cuts between s and tj is the capacity of a unicast session

between s and tj. Furthermore the multicast capacity of the network between source s and

destinations t1, · · · , tg is the minimum of the min–cut capacities between the source and

each destination. The capacity–achieving scheme in [7] is a random linear coding scheme

that is asymptotically optimal when the network is used for multiple rounds.

In this dissertation we construct low-complexity and capacity-achieving coding schemes

for a single unicast session and a single multicast session over an LDRN. In Chapter IV

we consider a unicast session. Our coding scheme for a unicast session can achieve the

capacity in one use of the network. The coding operation for the relay nodes is forwarding

a subset of the received symbols from the previous layer to the nodes in the next layer. In

that sense our coding scheme is the counterpart of routing scheme for wired networks. We

use a multitude of tools from matroid theory and submodular optimization to analyze our
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scheme and to obtain polynomial-time algorithms for constructing it.

In Chapter V we consider the transmission of a multicast session over an LDRN.

Our coding scheme for the multicast session is obtained by combining coding schemes for

unicast sessions from the source to each individual destination. In particular our scheme

can be regarded as a generalization of the network coding scheme for the transmission

of a multicast session over wired networks by Jaggi et al. [37]. The analysis tools here

are mainly linear algebraic and probabilistic methods. We demonstrate that such a coding

scheme can be constructed in polynomial time and dlog(g + 1)e uses of the network suffice

to achieve the capacity.

Earlier work [5, 71] obtained capacity results for a different type of deterministic relay

network in which the nodes broadcast data but the signals are received without interference.

The paper [4] considers the same problem we address here, but restricts the linear model

to the binary field. The approach of [4] is based on a path augmentation argument similar

to the Ford-Fulkerson algorithm (see, e.g., [27]). This work was later extended to arbitrary

finite fields [19]. In an independent work, Goemans et al. [33] study the flow in linear

deterministic relay networks as the special case of a more general model of flow in networks

based upon linking systems [75]. They use matroid partitioning and matroid intersection

algorithms to obtain a capacity-achieving flow in the network.

For the case of a single multicast session, there have been multiple recent attempts

to devise deterministic and efficient algorithms for constructing capacity–achieving coding

schemes. In [18], Ebrahimi and Fragouli developed an algebraic framework for vector net-

work coding and used this framework to devise a multicast transmission scheme over an

LDRN. Our scheme has a lower complexity of construction and needs fewer uses of the

network to achieve capacity. Erez et al. [23] offer a different construction by progressing

through the network according to a topological order and maintaining the linear indepen-

dence of certain subsets of coding vectors along the processing. However, the proposed
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algorithm does not appear to have a polynomial running time. Kim and Médard [43] gen-

eralized the algebraic framework of Koetter and Médard [44] for classical network coding

to LDRNs and devised an algebraic algorithm for constructing multicast codes. Again, the

proposed algorithm does not appear to have a polynomial running time. Khojastepour and

Keshavarz-Haddad [42] proposed an algorithm using rotational codes to asymptotically

achieve the multicast capacity of LDRN networks. Rotational codes have some built–in

advantages as they are easy to implement at the relay nodes. However, the existence of

deterministic polynomial–time algorithms for the construction of efficient rotational codes

for multicast transmission over an LDRN remains unknown.

C. Dissertation Outline

This dissertation is organized as follows. In Chapter II we discuss the routing capacity of

general wired networks and the network coding capacity of undirected ring networks. In

Chpater III we present our results on the network coding capacity of node–constrained line

and star networks. In Chpater IV we study a construction of a coding scheme for a unicast

session in linear deterministic relay networks and in Chapter V we study a construction of

a coding scheme for a multicast session over linear deterministic relay networks.
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CHAPTER II

ON THE MULTIMESSAGE CAPACITY REGION FOR UNDIRECTED RING

NETWORKS

A. Introduction

In this chapter we develop a new technique which leads to the tight characterization of

the routing capacity region of an arbitrary network. The routing capacity region of net-

works with multiple sessions can be formulated as a system of linear inequalities in the

(total) rates and the partial rates; each partial rate is the portion of the flow of a session

that is routed along a specific Steiner tree. This initial formulation is not the solution to

our problem because we do not want the partial rates as part of our description. Fourier-

Motzkin elimination [76] is a procedure to project the set of solutions of a general set of

linear inequalities to a subset of the variables; this can in principle be applied to the initial

formulation of our problem to obtain the routing capacity region, but this approach would

be complex. Our strategy is different. The “Japanese” theorem of [35], [65] describes the

routing capacity region of networks with multiple unicast sessions and no multicast ses-

sions as an infinite set of inequalities. Each inequality corresponds to a different vector of

“distances” assigned to each edge in the network. Each edge distance can be chosen as an

arbitrary non-negative integer, and this is why there are initially infinitely many inequali-

ties to consider. We extend the Japanese theorem to networks supporting multiple multicast

sessions, and this again results in an infinite description of the capacity region. We next

consider the boundary points of the polyhedral solution and develop a novel algorithmic

technique to find the finite set of necessary and sufficient inequalities among the infinite set

of Japanese theorem inequalities. More specifically, our “inequality elimination” technique

checks the redundancy of any inequality in defining the routing capacity region.
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For the ring networks the work of Okamura and Seymour [64] and Vachani et al.

[90] imply that the bounds corresponding to the Japanese theorem inequalities with exactly

two non-zero edge distances, both of which are equal to one are the necessary and sufficient

conditions for a collection of multiple unicast sessions to be feasible by routing. In different

words, the feasibility condition for multiple unicast sessions is for the total rate across every

cut in the network to be bounded from above by the capacity of the cuts. On the other hand

it is known [34, 47, 73] that the cut set bounds are outer bounds on the network coding

capacity of networks. As a result, the network coding capacity region of undirected ring

networks in the case of multiple unicast sessions is completely characterized by the cut

set bounds and is equal to the routing capacity rgion. Here we are interested in multiple

multicast capacity regions in undirected ring networks and we focus on the two special

cases where

• the source and destination vertices of each communication session form a string of

adjacent vertices, and

• each session is either a broadcast or a unicast session.

In these cases we derive the routing capacity region and use a new argument to show that

routing is rate-optimal; i.e., the network coding capacity region is no larger than the routing

capacity region. We use our inequality elimination technique to prove that for the two

special cases of the multiple multicast problem that we study here, we can restrict our

attention to edge distances in the set {0, 1}. The next step of our analysis is to show that

the network coding capacity region of each of these communication problems is identical

to its routing capacity region. Our outer bounds on the network coding capacity region are

based on a new analysis which extracts common information from edge cuts in order to

increase some of the coefficients of the rates that appear in the inequalities.

The remainder of this chapter is organized as follows: In Section B we generalize the
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Japanese theorem to multiple multicast networks. We next develop our elimination tech-

nique to reduce the infinite description of the routing capacity region into a finite one. In

Section C, we consider two classes of communication problems on undirected ring net-

works and prove that in these cases we need only consider edge distances in {0, 1}. In

Section D, we establish that the routing bounds also apply when network coding is permit-

ted and conclude that routing is rate-optimal.

B. Routing Capacity Region in Networks

1. The Japanese theorem

Consider an undirected or directed networkG(V,E) in which the edge set isE = {e1, · · · ,

e|E|}, the vertex set is V = {v1, · · · , v|V |}where for every setA, |A| denotes the cardinality

of the set. Let S denote the set of multicast sessions. Let Ce represent the capacity of edge

e ∈ E, i.e., the maximum flow that can pass through edge e. In this chapter we assume

that all capacities are rational. A multicast session s ∈ S with rate Rs is defined by a

source vertex νs ∈ V and a set of destination vertices Ds ⊂ V each of which receives the

messages in session s. The set of trees that span νs ∪Ds in G is denoted by Ts. A feasible

routing solution assigns to each spanning tree T ∈
⋃
s Ts a partial rate rT ≥ 0 that satisfies

the following two conditions:

1.
∑

T∈Ts
rT = Rs for every s ∈ S

2.
∑

s∈S
∑

T∈Ts:e∈T rT ≤ Ce for every e ∈ E.

We call the rate vector R = (R1, · · · , R|S|) routing-feasible if there is a feasible routing

solution for it. The “Japanese” theorem of [35], [65] characterizes the set of all routing-

feasible rate vectors for an arbitrary network with multiple unicast sessions with an infinite

set of linear constraints. We start by the extending the Japanese theorem to the multiple
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multicast case. Let a = (a1, · · · , a|E|) denote a “distance” vector that assigns edge e a

non-negative integral distance ae. Then for any path or tree T we define its length La(T ) to

be the sum of the distances of the edges in T . Let `a(s) = minT∈Ts La(T ). The Japanese

theorem of [35], [65] is as follows:

Theorem B.1 (The Japanese theorem) If S is a set of unicast sessions, the polytope P ⊂

R|S| of all routing-feasible rate vectors R = (R1, · · · , R|S|) is:

P = {R ∈ R|S| : 0 ≤ Ri,
∑
s∈S

`a(s)Rs ≤
∑
e∈E

aeCe

for all non-negative integral distance vectors a} (2.1)

The following result generalizes Theorem B.1 to include multisession multicast routing.

Theorem B.2 (The extended Japanese theorem) If S is a set of multicast sessions, the

polytope P ⊂ R|S| of all routing-feasible rate vectors R = (R1, · · · , R|S|) is also deter-

mined by (2.1).

Theorems B.1 and B.2 are both consequences of Farkas’ Lemma (see, e.g., [100, §1.4]).

We prove Theorem B.2 in Appendix A.

Because Fourier-Motzkin elimination results in a finite description of the routing ca-

pacity region, it follows that the infinite set of inequalities in Theorem B.2 contains in-

finitely many redundant constraints. We next introduce a method to eliminate the redundant

constraints.

2. The reduced set of inequalities

An inequality in (2.1) is said to be redundant if it is implied by other inequalities in (2.1).

A minimal set of inequalities that defines P is then a subset of inequalities in (2.1) with no

redundant inequality. For distance vector a, we say that rate vector R is on the hyperplane

corresponding to a if
∑

s∈S `a(s)Rs =
∑

e∈E aeCe. We have the following result:
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Lemma B.3 A minimal set of inequalities that defines P is unique up to the multiplication

of inequalities by positive scalars. Furthermore, if a and b are two distance vectors such

that every routing-feasible rate vector R on the hyperplane corresponding to a is also

on the hyperplane corresponding to b, then the inequality corresponding to a in (2.1) is

redundant.

Proof See Appendix B.

�

Lemma B.4 The routing-feasible rate vector R ∈ P is on the hyperplane corresponding

to a if and only if

1. For each session s ∈ S and every T ∈ Ts, rT = 0 if La(T ) > `a(s); i.e., session s

is routed only along the shortest paths and trees determined by the distance vector

a = (a1, · · · , a|E|), and

2.
∑

s∈S
∑

T∈Ts:e∈T rT = Ce for every e ∈ E with ae > 0; i.e., every edge with a

non-zero distance is fully utilized.

Proof To establish necessity, assume that the rate vector R = (R1, · · · , R|S|) is routable

and is on the hyperplane
∑

s∈S `a(s)Rs =
∑

e∈E aeCe. For any edge e in the network,

the sum of all flows passing through it is at most Ce. By multiplying both sides of this

inequality by ae and summing the resulting inequalities over all edges e ∈ E we find that

∑
s∈S

∑
T∈Ts

La(T )rT ≤
∑
e∈E

aeCe. (2.2)

A lower bound for the left-hand side of the preceding inequality is obtained when all ses-

sions are routed along their shortest spanning trees:

∑
s∈S

`a(s)Rs ≤
∑
s∈S

∑
T∈Ts

La(T )rT ≤
∑
e∈E

aeCe.
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As we assume that the rate vector is on the hyperplane given by

∑
s∈S

`a(s)Rs =
∑
e∈E

aeCe,

it follows that Condition 1) holds. To arrive at a contradiction, suppose next that Condition

2) is invalid. Hence the rate-tuple R = (R1, · · · , R|S|) is also routing-feasible in network

G with link capacities C ′e for e ∈ E in which C ′e ≤ Ce for all e with strict inequality for at

least one value of e with ae > 0. The extended Japanese theorem (2.1) implies that

∑
s∈S

`a(s)Rs ≤
∑
e∈E

aeC
′
e <

∑
e∈E

aeCe, (2.3)

which contradicts
∑

s∈S `a(s)Rs =
∑

e∈E aeCe. Thus Condition 2) holds.

To establish sufficiency, consider a routing-feasible rate vector which satisfies Condi-

tions 1) and 2). The argument for constraint (2.2) applies for any routing-feasible point, and

Condition 2) implies that (2.2) can be replaced by the equality
∑

s∈S
∑

T∈Ts
La(T )rT =∑

e∈E aeCe. By Condition 1) we know that

∑
s∈S

`a(s)Rs =
∑
s∈S

∑
T∈Ts

La(T )rT =
∑
e∈E

aeCe. (2.4)

Hence the rate vector R is on the hyperplane corresponding to a, completing the proof.

�

As we will next see, the true significance of the vector of edge distances in the ex-

tended Japanese theorem lies in the collection of shortest routing paths and trees for that

distance vector used by the various unicast and multicast sessions; this can be viewed as a

variation of Wardrop’s principle [92].

Proposition B.5 Consider two distance vectors, a = (a1, · · · , a|E|) and b = (b1, · · · , b|E|).

If

1. for every edge e ∈ E, ae = 0 implies be = 0, and
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2. for every session s ∈ S and tree T ∈ Ts, La(T ) = `a(s) implies Lb(T ) = `b(s),

then the inequality corresponding to distance vector a is redundant in defining polytope P

given the inequality corresponding to distance vector b.

Before we prove this result, we will discuss an example of it. Consider an undirected ring

network with V = {1, 2, 3} which supports all possible unicast and multicast sessions.

We represent session s as νs → Ds. Then our set of sessions is given by S = {1 →

2, 2 → 1, 2 → 3, 3 → 2, 3 → 1, 1 → 3, 1 → {2, 3}, 2 → {1, 3}, 3 → {1, 2}}. Let

e1 = {1, 2}, e2 = {2, 3}, e3 = {3, 1}. Suppose C1 = C2 = C3 = 1 and a = (2, 1, 3). It is

straightforward to confirm that

• `a(1→ 2) = `a(2→ 1) = 2 and the shortest path is e1,

• `a(2→ 3) = `a(3→ 2) = 1 and the shortest path is e2,

• `a(3→ 1) = `a(1→ 3) = 3 and both paths are shortest, and

• `a(1 → {2, 3}) = `a(2 → {1, 3}) = `a(3 → {1, 2}) = 3 and the shortest tree is

{e1, e2}.

Therefore, the halfspace resulting from distance vector a is

2(R1→2 +R2→1) + (R2→3 +R3→2) + 3(R3→1 +R1→3)

+3(R1→{2,3} +R2→{1,3} +R3→{1,2}) ≤ 2C1 + C2 + 3C3 = 6. (2.5)

Next take b = (1, 0, 1). Observe that the shortest paths and shortest trees for each session

under distance vector a continue to be shortest paths and shortest trees for the sessions

under b, although b has a second shortest path for unicast sessions 1 → 2 and 2 → 1 and

a second shortest tree for the multicast sessions. The halfspace resulting from b is

(R1→2+R2→1)+(R3→1+R1→3)+(R1→{2,3}+R2→{1,3}+R3→{1,2}) ≤ C1+C3 = 2. (2.6)
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The proposition stipulates that (2.5) is redundant for specifying the routing capacity re-

gion given (2.6). The proof establishes that every routing-feasible rate-tuple like R1→2 =

R2→3 = R3→1 = 1, Rs = 0, s 6∈ {1 → 2, 2 → 3, 3 → 1} which satisfies (2.5) with

equality necessarily satisfies (2.6) with equality. The rate-tupleR1→{2,3} = 2, Rs = 0, s 6∈

{1→ {2, 3}} exemplifies a routing infeasible rate-tuple which satisfies (2.5) with equality;

notice that four units of capacity are needed to route two units of multicast traffic, while

the network has only three units of capacity.

Proof Consider a routing-feasible rate vectorR on the hyperplane defined by a. By Lemma

B.4, Condition 1), every session is routed only along the shortest paths and trees for a, and

hence by assumption only along the shortest paths and trees for b. Furthermore note that

any edge e with be > 0 must have ae > 0 by assumption, and hence this edge must be fully

utilized by Lemma B.4, Condition 2). By Lemma B.4 it follows that the routable point also

is on the hyperplane defined for distance vector b. Therefore by Lemma B.3, the bound

corresponding to a is redundant given the inequality corresponding to b.

�

We offer an alternate algebraic proof for Proposition B.5 in Appendix C. Proposition B.5

provides a powerful algorithmic technique for deriving the minimal set of inequalities for

describing polytope P , and we next apply it to two communication problems on undirected

ring networks.

C. The Routing Rate Region in Ring Networks

In this section we focus on the ring network G(V,E), with set of vertices V = {1, · · · , n},

and set of edges E = {1, · · · , n}, as illustrated in Figure 5. As an additional notation for

rings, let La(p, q) denote the distance in the clockwise direction between vertices p and q

assuming distance vector a. As a first step in understanding the general multiple multicast
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Fig. 5. An undirected ring network with n vertices.

problem on undirected ring networks, we focus here on the analysis of two special cases. In

the first case we consider a ring network in which each session s ∈ S is a line session; i.e.,

the source νs and all destinations Ds, form a sequence (in any order) of adjacent vertices in

the network. In the second case we study the ring network problem with multiple unicast

and broadcast sessions. These special cases already require new techniques, and we are

unaware of similar analyses in the literature. Our approach in each case is to show that

for an arbitrary non-trivial distance vector a = (a1, · · · , an) we can construct a non-trivial

distance vector b = (b1, · · · , bn) with the following properties:

• Property 1: bi = 0 or 1 for all i,

• Property 2: bi = 0 whenever ai = 0,

• Property 3: for every session s, if T ∈ Ts and `a(s) = La(T ), then `b(s) = Lb(T ).

Hence Proposition B.5 implies that distance vector a can be eliminated by b. It then follows

that we can restrict our attention to distance vectors in the set {0, 1}n.

Remark 1 For ring networks it is sometimes more convenient to restate Property 3 in terms

of the complementary trees of each session. Let Ts denote the set of routing trees of session

s. Then the complementary tree T of a tree T ∈ Ts is the tree that remains after removing

the edges and internal vertices of T fromG. Let T̄s denote the set of all complementary trees
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corresponding to session s. For distance vector a let ca denote the sum of all edge distances

in the network. Given a and tree T , it follows that La(T ) = ca − La(T̄ ). Therefore,

`a(s) = minT∈Ts La(T ) = ca − maxT̂∈T̄s
La(T̂ ). We conclude that tree T ∈ Ts satisfies

`a(s) = La(T ) if and only if La(T̄ ) = maxT̂∈T̄s
La(T̂ ). Therefore Property 3 is equivalent

to:

• Property 3’: for every session s, if T ∈ T̄s and La(T ) = maxT̂∈T̄s
La(T̂ ), then

Lb(T ) = maxT̂∈T̄s
Lb(T̂ ).

Finally consider session s with νs = o and Ds = {d1, · · · , dK}, where d1 < · · · < di <

o < di+1 < · · · < dK . Let us denote the path from vertex j to vertex k in the clockwise

direction on the ring G by G(j, k). Then it is easy to verify that

T̄s = {G(d1, d2), · · · , G(di, o), G(o, di+1), · · · , G(dK−1, dK), G(dK , d1)}.

We next provide an algorithm for constructing b ∈ {0, 1}n for a given a.

1. Algorithm for constructing a binary distance vector b for distance vector a for the

case of line sessions

Consider a set of line sessions S. LetA = max{a1, · · · , an} > 0 and takem1 < · · · < mN

to be the set of indices of all edges of maximum distance in a, so that am1 = am2 = · · · =

amN
= A. Without loss of generality, we can assume that m1 = 1 and so a1 = A > 0. We

abuse notation somewhat and write La(v1, v2) =
∑v2−1

i=v1
ai as the length of the clockwise

path from vertex v1 to vertex v2. The following algorithm shows that every distance vector

can be reduced to a binary distance vector.

1. Set bj = 0 for all j ∈ {1, · · · , n} with aj = 0.

2. Set i = 1.
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3. Complete the following steps:

(a) Set bi = 1.

(b) Search for an index j such that La(i+ 1, j) < A, but La(i+ 1, j + 1) ≥ A,

and j ≤ n. If such a j exists, it must be unique. In this case let i = j and return

to Step 3. If no such j exists, go on to Step 4).

4. Set each remaining edge distance in b to 0.

We illustrate the algorithm above with an example:

Example 2 Consider distance vector a = (3, 1, 3, 0, 1, 2). Then A = 3 and we set b4 = 0.

We initialize i = 1 and set b1 = 1. Since La(2, 3) < A and La(2, 4) ≥ A, we next set

i = 3 and b3 = 1. Because La(4, 6) < A and La(4, 1) ≥ A we set i = 6, b6 = 1. As we

can not further increase i we next set b2 = b5 = 0. The output of the algorithm will be

b = (1, 0, 1, 0, 0, 1).

2. Proof of the algorithm performance

It is clear that the algorithm satisfies Properties 1 and 2; we next show that it also satisfies

Property 3. Fix a line session s ∈ S. For convenience, we relabel the vertices of the ring

so that the source and all destinations for the session s are all on a line starting at vertex 1

and ending at vertex |Ds|+ 1. (Note that we may now have m1 6= 1.)

Consider the set of complementary trees for session s:

T̄s = {G(1, 2), G(2, 3), · · · , G(|Ds|, |Ds|+ 1), G(|Ds|+ 1, 1)}.

Observe that

max
T∈T̄s

La(T ) = max{a1, a2, · · · , a|Ds|, La(|Ds|+ 1, 1)}.
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To show that Property 3’ holds we must verify that if T ∈ T̄s and La(T ) = maxT̂∈T̄s
La(T̂ ),

then Lb(T ) = maxT̂∈T̄s
Lb(T̂ ). We begin with some lemmas.

Lemma C.1 The vector b produced by the algorithm satisfies bm1 = bm2 = · · · = bmN
=

1.

Proof By Step 3) of the algorithm we have bm1 = 1. To arrive at a contradiction, for some

i > m1 suppose bi = 1, j is the next smallest integer for which bj = 1, and there is

some k > 1 with i < mk < j and bmk
= 0. Then Step 3) of the algorithm implies that

La(i+1, j) < A. However, sincemk < j, it follows that La(i+1, j) ≥ La(i+1,mk+1) ≥

amk
= A, which is a contradiction. Therefore bmk

= 1.

�

Lemma C.2 If La(i, j) < A, then there is at most one edge k ∈ {i, · · · , j − 1} for which

bk = 1.

Proof Suppose instead that there are k, l ∈ {i, · · · , j − 1} with k < l, bk = bl = 1, and

bk+1 = · · · = bl−1 = 0. Then Step 3b) implies that La(k+1, l) < A and La(k+1, l+1) ≥

A. However, it then follows that La(i, j) ≥ La(k + 1, l + 1) ≥ A, which contradicts the

assumption that La(i, j) < A.

�

Lemma C.3 If La(i, j) = A, then there is exactly one edge k ∈ {i, · · · , j − 1} for which

bk = 1.

Proof Suppose first that there is no edge k ∈ {i, · · · , j − 1} with bk = 1. Let r < i be the

largest integer for which br = 1. Then La(r + 1, j) < A. However, since A = La(i, j) ≤

La(r+ 1, j) this can not happen. Next suppose that there are k and l ∈ {i, · · · , j− 1} with
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bk = bl = 1 and bk+1 = · · · = bl−1 = 0. By Step 1), bk = 1 implies ak > 0. By Step 3b),

since bk+1 = · · · = bl−1 = 0 and bl = 1, it follows that La(k + 1, l + 1) ≥ A. Observe that

A = La(i, j) ≥ ak + La(k + 1, l + 1) > A, which is a contradiction.

�

Lemma C.4 If La(i, j) > A, then there exists k ∈ {i, · · · , j − 1} such that bk = 1.

Proof Suppose that there is no such k with bk = 1, and let r be the largest integer less

than i with br = 1. Then La(r + 1, j) < A. This contradicts the fact that A < La(i, j) ≤

La(r + 1, j).

�

Since maxT∈T̄s
La(T ) ≥ max{a1, · · · , an}, there are two possibilities for maxT∈T̄s

La(T ).

1. maxT∈T̄s
La(T ) = A

2. maxT∈T̄s
La(T ) > A

We consider the following three cases; the first two correspond to maxT∈T̄s
La(T ) = A,

and the third corresponds to maxT∈T̄s
La(T ) > A. In each case we find the maximum

length complementary trees with respect to a and show that they are also maximum length

with respect to b.

• First suppose that maxT∈T̄s
La(T ) = A and La(|Ds|+ 1, 1) < A. Then by Lemma

C.1 we have bm1 = bm2 = · · · = bmN
= 1, and by Lemma C.2 at most one among the

edges in {|Ds| + 1, |Ds| + 2, · · · , n} will have a unit edge distance in b. Therefore

maxT∈T̄s
Lb(T ) = 1. Also, if for T ∈ T̄s, La(T ) = maxT̂∈T̄s

La(T̂ ) = A, then

T = G(mi,mi+1) for somemi ∈ {1, · · · , |Ds|}. Since bmi
= maxT∈T̄s

Lb(T ) = 1,

it follows that Property 3’ is satisfied.
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• Next suppose that maxT∈T̄s
La(T ) = A and La(|Ds|+ 1, 1) = A. Then by Lemma

C.1 we have bm1 = bm2 = · · · = bmN
= 1, and by Lemma C.3, exactly one among

the edges in {|Ds| + 1, |Ds| + 2, · · · , n} should have a unit edge distance in b.

Hence Lb(|Ds|+ 1, 1) = 1 and maxT∈T̄s
Lb(T ) = 1. Also, if for T ∈ T̄s, La(T ) =

maxT̂∈T̄s
La(T̂ ) = A, then either T = G(mi,mi + 1) for some mi ∈ {1, · · · , |Ds|}

or T = G(|Ds| + 1, n), and since bmi
= Lb(|Ds|+ 1, 1) = maxT∈T̄s

Lb(T ) = 1, it

follows that Property 3’ is satisfied.

• Finally, suppose La(|Ds| + 1, 1) > A. Then by Lemma C.4, at least one among the

edges in {|Ds|+1, |Ds|+2, · · · , n} should have a unit edge distance in b, and hence

maxT∈T̄s
Lb(T ) = Lb(|Ds|+ 1, 1). Also, if for T ∈ T̄s, La(T ) = maxT̂∈T̄s

La(T̂ ),

then T = G(|Ds| + 1, n). Since maxT∈T̄s
Lb(T ) = Lb(|Ds|+ 1, 1), we have that

Property 3’ is satisfied.

We have now shown that for any line session, our algorithm generates a binary distance

vector b that satisfies Properties 1, 2, and 3. Thus, each distance vector with a distance

greater than one can be reduced to a binary distance vector. Therefore by Proposition B.5

the routing capacity region can be determined by all binary distance vectors.

3. Algorithm for constructing a binary distance vector b for distance vector a for the

case of unicast and broadcast sessions

We next consider the routing capacity region of a ring with a set of sessions S such that

|Ds| = 1 or |Ds| = n − 1 for all s ∈ S. We again prove that binary distance vectors

suffice for describing polytope P by constructing a binary vector b which eliminates a

given distance vector a.

We first assume all edge distances in a are positive and subsequently extend the algo-

rithm to general distance vectors with some zero elements. The heart of the algorithm is
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the following

Basic Generation Procedure:

1. If all ai are equal, then set bi = 1 for i ∈ {1, · · · , n}. Otherwise, proceed to the next

step.

2. Draw a circle C, with points on its perimeter corresponding to each vertex of the ring

so that the length of the arc between two adjacent points on the circle is proportional

to the corresponding edge distance in a.

3. From each point on the perimeter of C draw a diameter originating from that point.

4. If the arc corresponding to an edge on C intersects at least one diameter, then set the

corresponding edge distance in b to one; otherwise set it to zero.

Fig. 6. An instance of applying the Basic Generation Procedure to a ring network in which
a = (1, 2, 4, 2, 2, 3).

Example 3 Consider a ring network with 6 vertices and a distance vector a = (1, 2, 4, 2, 2, 3).

We wish to find the corresponding binary distance vector b = (b1, · · · , b6) according to the

Basic Generation Procedure. We first draw the circle C and all diameters for a according

to Steps 2) and 3) (see Figure 6). Since edges 2, 3, 4, and 5 are intersected by at least one

diameter we set b2 = b3 = b4 = b5 = 1 and b1 = b6 = 0. The resulting binary distance

vector is b = (0, 1, 1, 1, 1, 0).
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The Basic Generation Procedure sometimes needs a correction to result in a b with

the desired Properties; this depends on the path lengths of the different unicast sessions.

We will see the appropriate method of constructing b for different cases and a proof of

validity for each case:

First we categorize positive distance vectors a based on the path lengths of the different

pairs of vertices into three types :

• Type 1: There is no pair of vertices with equal clockwise and counterclockwise

routing path lengths by distance vector a.

• Type 2: There is exactly one pair of vertices with equal clockwise and counterclock-

wise routing path lengths by distance vector a.

• Type 3: There are multiple pairs of vertices with equal clockwise and counterclock-

wise routing path lengths by distance vector a.

Theorem C.5 If positive distance vector a is of Type 1, then the Basic Generation Proce-

dure generates a distance vector b that satisfies Properties 1, 2, and 3.

Proof See Appendix D.

�

Theorem C.6 If positive distance vector a is of Type 2, then either

1. the Basic Generation Procedure

or

2. the Basic Generation Procedure followed by the change of a particular edge distance

from 0 to 1 in b

results in a legitimate vector b that satisfies Properties 1,2, and 3.
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Proof See Appendix E.

�

Theorem C.7 If positive distance vector a is of Type 3, then a can be decomposed into

several subvectors of Type 2 such that a combination of the binary distance subvectors

corresponding to the subvectors of a results in a distance vector b that satisfies Properties

1,2, and 3.

Proof See Appendix F.

�

To complete the algorithm, consider distance vectors a with at least one element being

equal to zero. By Proposition B.5 for all i we set bi = 0 if ai = 0. Form a shorter distance

vector, a′ = (a′1, a
′
2, · · · , a′n′), which is a without its zero elements. Observe that the length

of a path between two vertices by a in a specific direction is equal to the length of the

path between a corresponding pair of vertices for a′ in the same direction. Thus given

a suitable binary distance vector b′ for a′, we can find b by appropriately inserting zero

edge distances into b′. Clearly b preserves the shortest paths and broadcast trees for a,

completing the algorithm.

4. Concluding remarks on the Extended Japanese theorem

The algorithms that we provided in this section reduce a given distance vector into a binary

distance vector in linear time in the size of the ring. The advantage of the reduction is that

it provides a simple and finite characterization of the routing capacity region as opposed

to the infinite set of inequalities. The following example illustrates the routing capacity

region of a 3 vertex ring network.
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Example 4 Consider a ring network supporting the unicast and broadcast sessions S =

{1→ 2, 1 → 3, 2 → {1, 3}}. The routing capacity region of this problem can be derived

by considering all binary distance vectors of length 3 and their corresponding inequalities

as follows:

• the distance vector (1, 1, 0) results in the inequality R1→2 +R2→{1,3} ≤ C1 + C2,

• the distance vector (1, 0, 1) results in the inequality R1→2 + R1→3 + R2→{1,3} ≤

C1 + C3,

• the distance vector (0, 1, 1) results in the inequality R1→3 +R2→{1,3} ≤ C2 + C3,

• the distance vector (1, 1, 1) results in the inequality R1→2 + R1→3 + 2R2→{1,3} ≤

C1 + C2 + C3.

Observe that binary distance vectors with all zeroes or a single one result in trivial inequal-

ities since the shortest trees have length zero.

To conclude this section we point out that the bounds corresponding to binary distance

vectors are not in general sufficient to characterize the routing capacity region of undirected

rings with multiple multicast sessions. For example, we have the following lemma:

Lemma C.8 For an undirected ring G with n ≥ 5 vertices supporting all multicast ses-

sions, the distance vector a = (x, 1, · · · , 1) for 2 ≤ x ≤ bn−2
2
c can not be reduced to any

b = (b1, · · · , bn) with max {b1, · · · , bn} < x.

Proof To arrive at a contradiction, assume that we have found a b with max {b1, · · · , bn} <

x that satisfies the conditions of Proposition B.5. Let s be an arbitrary multicast session

with νs = o and Ds = {d1, d2, · · · , dK}, where d1 < · · · < di < o < di+1 < · · · < dK .

Note that the set of complementary trees for session s is

T̄s = {G(d1, d2), · · · , G(di, o), G(o, di+1), G(di+1, di+2), · · · , G(dK−1, dK), G(dK , d1)}.
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Thus to satisfy the conditions of Proposition B.5, the longest trees in T̄s with respect to a

should remain longest under b.

Consider the multicast session from 1 to {2, x + 2, x + 3, · · · , n}. Here among the

complementary trees G(1, 2), G(2, x+ 2), · · · , G(n, 1) there are two longest trees G(1, 2)

and G(2, x + 2) under a, and hence they should remain longest under b. Thus b1 =∑x+1
i=2 bi . Likewise consider the multicast sessions from 1 to {2, 3, x + 3, · · · , n}, from 1

to {2, 3, 4, x+ 4, · · · , n}, · · · , from 1 to {2, 3, · · · , n− x, n}, and from 1 to {2, 3, · · · , n−

x+ 1} to obtain the constraints:

b1 = b2 + b3 + · · ·+ bx+1

b1 = b3 + b4 + · · ·+ bx+2

...

b1 = bn−x+1 + bn−x+2 + · · ·+ bn. (2.7)

Therefore,

b2 = bx+2, b3 = bx+3, · · · , bn−x = bn. (2.8)

Next consider the multicast sessions from 1 to {3, x + 4, · · · , n}, from 1 to {3, 4, x +

5, · · · , n}, · · · , from 1 to {3, 4, · · · , n − x − 1, n}, and from 1 to {3, 4, · · · , n − x}. The

constraints maintaining the longest complementary trees with respect to a results in the

following set of equalities:

b1 + b2 = b3 + b4 + · · ·+ bx+3

b1 + b2 = b4 + b5 + · · ·+ bx+4

...

b1 + b2 = bn−x + bn−x+1 + · · ·+ bn (2.9)
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Hence,

b3 = bx+4, b4 = bx+5, · · · , bn−x−1 = bn. (2.10)

Since n− x ≥ x+ 2, (2.8) and (2.10) imply:

b2 = b3 · · · = bn=̇ b (2.11)

and

b1 = xb. (2.12)

Since distance vector b 6= 0, it follows that b 6= 0. Hence b1 = xb should be an integer

bounded below by x, which is a contradiction.

�

Although we were able above to characterize the exact routing capacity region for

two special cases, it appears difficult to apply our tools to arbitrary collections of multiple

multicast sessions and/or arbitrary networks. However, these ideas offer some insights

that help to further characterize the minimal set of distance vectors that define routing

capacity region for general multiple multicast networks. Indeed, in a recent work [39]

we provide upper and lower bounds to show that the maximum edge distance needed for

multiple multicast sessions in an undirected network grows exponentially with the size of

the largest cycle of the network. The lower bound was obtained by demonstrating that

a particular distance vector can not be reduced to another distance vector with a smaller

maximal element. For the upper bound, observe that distance vectors are characterized

by their shortest trees for the various sessions. Therefore for a given (and feasible) set

of shortest trees, one can solve an integer programming problem to determine a distance

vector with the same set of minimal trees. By investigating the size and complexity of the

integer program and applying theorems of integer linear programming (see [76, Ch.10]),

we establish that the integer program always has distance vector solutions with elements
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that are exponentially large in the size of the largest cycle of the network.

D. Network Coding Bounds

The set of routing bounds corresponding to binary distance vectors provide an inner bound

to the network coding capacity region. To show that these bounds are tight for our two

problems, we next present an information theoretic argument to establish the same bounds

as outer bounds to the network coding capacity region. We say that a session is of Type 1

if it is a line session and is of Type 2 if it is a unicast or broadcast session. For i ∈ {1, 2}

we say the set S of sessions is of Type i when every s ∈ S is of Type i. We first prove the

following useful lemma:

Lemma D.1 For a ring with n vertices supporting a set of sessions of Type 1 or of Type

2, every routing bound corresponding to a binary distance vector with m ones, m ≤ n, is

equivalent to a routing bound for a ring with m vertices, where the distance vector for this

latter network is the all-ones vector.

Proof For the ring with n vertices and a binary distance vector, create a possibly smaller

ring by successively replacing the vertices u and v with one vertex if u and v have zero

distance between them. The routing bound corresponding to the original binary distance

vector is clearly the same as the routing bound for the new ring with an all-ones distance

vector.

�

The proof that this routing bound is a network coding bound is developed next. It is easy to

verify that the sessions of Type 1 or 2 will still be of the same type for the smaller network.

Therefore we hereafter only consider distance vectors of the form bn = (1, · · · , 1) for a

ring G with n ≥ 2 vertices.
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First consider a ring with n = 2; here there are only two sessions, s1 from 1 to 2 and

s2 from 2 to 1. The routing bound for this case, i.e., for b2 is Rs1 + Rs2 ≤ C1 + C2, and

this can easily be derived as a network coding bound using cut set bounds on edges 1 and

2.

Next consider a ring with n = 3 and distance vector b3. Here all multicast sessions

are always both of Type 1 and of Type 2. The routing bound for this case is as follows:

∑
{s:|Ds|=1}

Rs +
∑

{s:|Ds|=2}

2Rs ≤ C1 + C2 + C3. (2.13)

To show that (2.13) holds for network coding, we use the bidirected cut set bounds from

[47] . Decompose each of the undirected capacities C1, C2, and C3 into two unidirectional

capacities: C1 = C12 +C21, C2 = C23 +C32, and C3 = C13 +C31, so that Cpq denotes the

portion of the edge capacity which is directed from vertex p to vertex q. Then (2.13) can be

obtained by summing the three bidirected cut set bounds derived from the pairs of directed

edges
(
(1, 2), (1, 3)

)
,
(
(2, 1), (2, 3)

)
, and

(
(3, 1), (3, 2)

)
.

For distance vector bn, n ≥ 4, it turns out that the bidirected cut set bounds can not

provide us with tight enough bounds for the two types of sessions. In this case we obtain

our results for network coding via another set of bounds which are derived by using the

data processing inequality and the chain rule for mutual information.

Theorem D.2 Consider the ring with four vertices illustrated in Figure 7. Then for net-

work coding:

∑
νs∈{1,3}

Rs +
∑

νs=2, 4∈Ds

Rs +
∑

νs=4, 2∈Ds

Rs +
∑

{2,4}⊆Ds

Rs ≤ C12 +C32 +C14 +C34. (2.14)

Proof See Appendix G.

�
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Fig. 7. A ring with four vertices.

Fig. 8. A general ring with four sets of vertices.

For larger ring networks, a similar relationship can be established when vertices 1, 2, 3,

and 4 are respectively replaced by four sets of neighboring vertices Q1, Q2, Q3, and Q4.

Proposition D.3 For the ring in Figure 8 we have the inequality

∑
s∈U1

Rs +
∑
s∈U2

Rs +
∑
s∈U3

Rs +
∑
s∈U4

Rs ≤ C12 + C32 + C14 + C34 (2.15)

where:

• U1 =
{
s : νs ∈ Q1, Ds∩(Q2∪Q3∪Q4) 6= ∅

}
∪
{
νs ∈ Q3, Ds∩(Q1∪Q2∪Q4) 6= ∅

}
• U2 =

{
s : νs ∈ Q2, Ds ∩Q4 6= ∅

}
• U3 =

{
s : νs ∈ Q4, Ds ∩Q2 6= ∅

}
• U4 =

{
s : νs ∈ (Q1 ∪Q3), Ds ∩Q2 6= ∅, Ds ∩Q4 6= ∅

}
and Cij denotes the portion of the edge capacity directed from Qi to Qj .
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Proof Consider a network in which the number of vertices and the capacities C12, C21,

C14, C41, C32, C23, C34, and C43 are the same as in our original network in Figure 7, but all

other edge capacities are infinite. Assume the same traffic demands in the new network as

in the original ring. A network coding solution that achieves the demands of the original

ring is also a solution for this new ring. On the other hand, all capacities are infinite within

any four groups of vertices Q1, Q2, Q3, or Q4, so each group can be treated as a single

supervertex. Hence, our previous bound (2.14) for the ring of four vertices continues to

hold for this modified ring.

�

We next use inequality (2.15) to show that any network code must satisfy the routing bound

corresponding to bn in an undirected ring with n ≥ 4 vertices. Consider inequality (2.15),

and let E(i, j) denote the inequality derived by setting Q2 and Q4 to be two vertices i and

j. For the values of i or j not between 1 and n, we consider their value modulo n in E(i, j).

We separately study the two cases of interest.

1. Proof of the network coding bound for line sessions for n ≥ 4

Consider a line session s. By using (2.15) we wish to find the coefficient of Rs in E(i, j).

First suppose that |Ds ∩{i, j}| = 0. By (2.15), s does not belong to U2, U3, or U4. Further-

more since all source and destination vertices of s are adjacent, s is not in U1. Therefore

the coefficient of Rs in this case is zero. Next suppose that |Ds ∩ {i, j}| = 1. In this case,

s belongs to one of the sets U1, U2, or U3, but not two of them together. Therefore the

coefficient of Rs in this case is one. Finally suppose that |Ds ∩ {i, j}| = 2. In this case

s belongs to both U1 and U4, and therefore the coefficient of Rs is two. As a summary of
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these cases E(i, j) can be written as follows:

∑
s is of Type 1

|Ds ∩ {i, j}|Rs ≤ C(i−1)(i) + C(i+1)(i) + C(j−1)(j) + C(j+1)(j). (2.16)

Next we derive the network coding bound for this case and show that it is the same as

the routing bound. Suppose that n = 2m is an even integer. Then consider the sum∑m
i=1 E(i,m+ i), which can be expanded as follows:

m∑
i=1

∑
s is of Type 1

|Ds ∩ {i, i+m}|Rs =

∑
s is of Type 1

( m∑
i=1

|Ds ∩ {i, i+m}|
)
Rs ≤

m∑
i=1

(
C(i−1)(i) + C(i+1)(i) + C(i+m−1)(i+m) + C(i+m+1)(i+m)

)
. (2.17)

Every directed capacity appears exactly once on the right hand side of (2.17), and thus it is

equal to
∑n

i=1 Ci. Furthermore
∑m

i=1 |Ds ∩ {i, i+m}| = |Ds|. Therefore (2.17) results in

the following inequality: ∑
s is of Type 1

|Ds|Rs ≤
n∑
i=1

Ci. (2.18)

Since for a line session s the source and destination vertices form a string of adjacent

vertices, it follows that `bn(s) is the number of destination vertices of s on the ring. Hence

we obtain a network coding bound which is the same as the routing inequality for this case.

Next, suppose that n = 2m+1 is an odd number and consider the sum 0.5
(∑n

i=1 E(i,m+



38

i)
)
. Using (2.16), this sum can be expanded as follows.

0.5
( n∑
i=1

∑
s is of Type 1

|Ds ∩ {i, i+m}|Rs

)
= (2.19)

0.5
( ∑
s is of Type 1

( n∑
i=1

|Ds ∩ {i, i+m}|
)
Rs

)
≤ (2.20)

0.5
( n∑
i=1

(
C(i−1)(i) + C(i+1)(i) + C(i+m−1)(i+m) + C(i+m+1)(i+m)

))
. (2.21)

Every directed capacity C(i+1)(i) appears in two terms of the summation of (2.21) which are

the terms corresponding to E(i, i+m) and E(i−m, i). Therefore (2.21) is
∑n

i=1Ci. Next

consider that in
(∑n

i=1 |Ds∩{i, i+m}|
)

in the expression (2.20), every destination ds ∈ Ds

is counted twice, namely in the terms corresponding to E(ds, ds + m) and E(ds −m, ds).

Therefore (2.20) is 0.5
(∑

s is of Type 1

(
2|Ds|

)
Rs

)
=
∑

s is of Type 1 `bn(s)Rs, and hence the

final result follows.

2. Proof of the network coding bound for unicast and broadcast sessions for n ≥ 4

Consider again the cases n = 2m and n = 2m + 1 separately. Let Es(i, j) denote the

coefficient of Rs on the left hand side of E(i, j) when s is of Type 2. First notice that by

definition, for a unicast session s with source vertex νs and destination vertex ds, if νs and

ds are on two sides of the ring which are separated by vertices i and j, or if ds is i or j, then

Es(i, j) is one; otherwise it is zero. Furthermore, since a broadcast session s is a special

case of a line session it follows that Es(i, j) is |Ds ∩ {i, j}|.

For n = 2m we consider the sum
∑m

i=1 E(i,m + i). Our previous arguments for line

sessions implies that the right hand side of this summation is
∑n

i=1Ci. The following is



39

the left hand side of the summation:

m∑
i=1

∑
s is broadcast

|Ds ∩ {i, i+m}|Rs +
m∑
i=1

∑
s is unicast

Es(i, i+m)Rs =

∑
s is broadcast

`bn(s)Rs +
∑

s is unicast

( m∑
i=1

Es(i, i+m)
)
Rs. (2.22)

The coefficient of a broadcast session in (2.22) follows from the argument for line sessions.

For a unicast session s consider
∑m

i=1Es(i, i + m) and without loss of generality assume

that νs = 1 and ds ≤ m. Then the nonzero terms of the summation are Es(2,m + 2) =

· · · = Es(ds,m+ ds) = 1. Since `bn(s) = ds − 1, the coefficient of Rs will be `bn(s) and

therefore the network coding inequality of the form

∑
s is of Type 2

`bn(s)Rs ≤
n∑
i=1

Ci (2.23)

is obtained in this setting, which is the same as the corresponding routing bound.

For n = 2m+ 1, we can obtain the same inequality by instead considering

0.5
( n∑
i=1

E(i,m+ i)
)
.

We consider the counterpart of (2.19)-(2.21) for this case. By the argument for line ses-

sions, the right hand side of this summation is
∑n

i=1 Ci. Next we expand the left hand side

of this summation:

0.5
( n∑
i=1

∑
s is broadcast

|Ds ∩ {i, i+m}|Rs

)
+ 0.5

( n∑
i=1

∑
s is unicast

Es(i, i+m)Rs

)
=

∑
s is broadcast

`bn(s)Rs + 0.5
( ∑
s is unicast

( n∑
i=1

Es(i, i+m)
)
Rs

)
. (2.24)

For a unicast session s with νs = 1 and ds ≤ m + 1 consider
∑n

i=1Es(i, i + m). The

nonzero terms of this summation are Es(2,m + 2) = · · · = Es(ds,m + ds) = 1 and

Es(2,m+3) = · · · = Es(ds, ds+m+1) = 1. Since `bn(s) = ds−1,
∑n

i=1 Es(i, i+m) =
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2`bn(s) and therefore the network coding inequality of the form

∑
s is of Type 2

`bn(s)Rs ≤
n∑
i=1

Ci (2.25)

follows for this setting and is the same as the corresponding routing inequality.
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CHAPTER III

NETWORK CODING IN NODE–CONSTRAINED LINE AND STAR NETWORKS

A. Introduction

In this chapter we study the network coding capacity of node-constrained line and star

networks as depicted in Figure 3. There are several reasons for studying node-constrained

line and star networks.

1. Node-constrained networks are an interesting class of networks in their own right.

2. Limited processing capacity: In some applications, network throughput is constrained

by the limited processing capacity of the nodes, e.g., the limited bus bandwidth be-

tween different processing or memory units and/or the limited speed of processors

and/or limited communication ports. We refer to such limitations generically as node

constraints. Node constraints arise in sensor or satellite networks where the energy

resources are limited and low complexity and/or low power processors are needed.

They may also arise in optical networks where the edges have very high capacity

and the rates are restricted by the speed of the node processors. For example a sin-

gle optical fiber can carry information at many terabits per second over hundreds or

thousands of kilometers [3, 24, 98], while typical processing units process data with

rates of up to perhaps hundreds of gigabits per second.

We may model the limitations of processing data at some node j by adding a node

capacity Cj as in Figure 2. In this model, all traffic that originates at node j, all

traffic that is destined for node j, and all traffic that is relayed by node j are lim-

ited by the capacity Cj. Of course, this model is a simplification of real proces-

sors for which these three traffic classes might face different routes and different

capacity constraints. To capture these effects, there are alternative models for node–
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Fig. 9. Nodes 1 and 3 exchange their information through node C.
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Fig. 10. Wired model of wireless network in Figure 9.

constrained networks where only a part of the traffic is limited by the node constraint

[26, 30]. Our network coding techniques can be extended to these models with lit-

tle change. For instance, a variation of our model in which only the relayed traffic

and the traffic that is originated at node j pass through the edge with capacity Cj is

discussed in the Appendix H. We remark that the above processing model does not

limit the complexity of the network coding scheme and may therefore not properly

represent the nodes’ true computational limitations. However, as we will observe

later, all our coding schemes are low complexity schemes over the binary field. Fur-

thermore, our codes are one–shot schemes that operate only on one generation of

messages at each time instant and therefore have the same memory requirement as

routing schemes. We thus expect that some choice of capacity Cj is a reasonable

measure of the available node resources.

3. Network coding in wireless line networks: Network coding can be beneficial in wire-

less networks [40, 45, 50]. A standard example is the wireless network in Figure
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9 where nodes 1 and 3 wish to exchange the bits a and b through the relay node 2.

Because of the broadcast nature of the wireless medium, nodes can receive the data

transmitted from neighboring senders. If the nodes deploy routing strategies, four

transmissions are needed; with network coding only three transmissions are needed

by using the code shown in Figure 9. One way to apply the results from the network

coding literature to wireless networks is to transform a wireless network into a wired

network. Wu et al. [97] consider such a transformation: each node j in the wireless

network corresponds to a node Ij and a virtual node Oj in the wired model. The

virtual node plays the role of a bottleneck that carries the traffic sent by node j. If

Nj denotes the set of outgoing neighbors (or descendants) of node j in the wireless

network, then in the wired network there is a link of capacity Cj that connects Ij

to Oj and there are links each of capacity Cj connecting Oj to all nodes Ik corre-

sponding to nodes k in Nj . The capacity Cj is chosen based on “physical layer”

considerations. The wired network corresponding to network of Figure 9 is depicted

in Figure 10. If we apply the procedure to a line of M wireless nodes, we end up

with the node–constrained line network of Figure 3, where Cj,k = Cj for all j and k.

The benefits of using network coding for the model of Figure 3 have been studied in

[95].

While the network coding scheme in [95] is similar to our scheme, our work is differ-

ent in several ways. First, [95] considers the broadcast scenario where the informa-

tion that originates at each sender will be decoded by all receivers. Our scheme, on

the other hand, supports multiple multicast. Second, the model of [95] assumes unit

capacity edges while we assume that the capacities of edges can be arbitrary positive

integers. Finally, we point out that in applying our network coding scheme to the

wired model of wireless networks we have to take some care. One issue is that the
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virtual node Oj in the wired model is not a real node and thus it can not perform any

network coding operation and may only forward data to the nodes in Nj. The other

issue is that in the model of [95] node Ij is both the sender and receiver of messages

but in our model node Ij is the sender of messages and node Oj is the receiver of

messages. We revisit these issues in the Appendix H.

4. Index coding with side information: Consider a wireless broadcast network where

a sender node s has access to a vector of bits [b1, · · · , bn] . At each time instant, s

can broadcast a bit as a function of [b1, · · · , bn] to n users d1, d2, · · · , dn. Each user

i ∈ {1, · · · , n} is interested in bit bi and knows a fixed subset of bits in [b1, · · · , bn] .

The index coding problem with side information asks for the minimum number of

transmissions such that after all transmissions are completed, each node di can de-

code the bit bi from the transmitted information and the bits that it knows. The

authors of [10] introduced the index coding problem with side information and made

connections with some earlier communication problems such as the “coding on de-

mand by an informed source” problem. They further proposed a subset of linear

coding schemes that includes the optimal linear scheme in terms of the number of

transmissions. The paper [56] disproved a conjecture in [10] on the optimality of lin-

ear index coding by constructing an instance of the index coding problem in which

any linear scheme over any field is suboptimal. Finally, the paper [21] established

that a general multiple unicast network coding problem in an acyclic network can be

reduced to an instance of the index coding problem.

In this chapter we establish connections between node–constrained star networks

and index coding with side information. Our proposed scheme is optimal for certain

classes of problems. However, we also show that the network coding problem in a

node–constrained star network with only a node constraint at the central node and all
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other constraints removed is a special case of the index coding with side information

problem. Using this connection, we give an example for which the linear coding

scheme proposed for the general index coding problem improves upon our coding

schemes for node–constrained star networks.

This chapter is organized as follows. In Section B we discuss the general network coding

problem in line networks with multiple multicast sessions. We use cut bounds and entropy

arguments [49, 15] based on edge cuts to find an outer bound on the network coding ca-

pacity regions. We subsequently propose a linear coding scheme that achieves the outer

bound. In Section C we consider star networks and provide upper bounds on their multi-

ple unicast capacity region. We describe a coding and decoding scheme for each network

node that is obtained by finding the maximum number of edge disjoint cycles in a graph

called the demand graph corresponding to the communication problem. We demonstrate

that our coding scheme is optimal for a broad class of demand graphs. We next consider the

relationships between the network coding problem in star networks and the index coding

problem with a side information [10]. In the Appendix H we discuss another variation of

the node–constrained model for line networks and characterize the capacity region and a

capacity–achieving network coding scheme.

B. Network Coding in Line Networks

We represent a line network with the corresponding directed graph G(V,E) as in Figure

3 where V = {I1, · · · , IM , O1, · · · , OM}. The outgoing symbol from every node, at any

particular time instant t, can be any function of the incoming symbols to that node at earlier

time instants 1, 2, · · · , t−1 and/or its own messages at the present and earlier time instants.

As we will see later in this section, our scheme depends on a small number of previous

messages at each node and therefore has a low encoding and decoding complexity.
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Consider a network coding session which runs from time t = 1 to t = T . We introduce

the following notation:

• X(t)
i represents the binary vector transmitted on edge (Ii, Oi) at time t.

• X(t)
i,j represents the binary vector transmitted on edge (Oi, Ij) at time t.

• S is the set of sessions in the network and for every s ∈ S, there is a corresponding

source node νs ∈ {I1, · · · , IM} and a set of destination nodes Ds, where Ds ⊂

{O1, . . . , OM} andOj /∈ Ds if νs = Ij . We generally represent session s by νs → Ds.

• W (t)
s is the message of session s at time t.

• Rs is an integer that represents the rate of session s, i.e., H(W
(t)
s ) = Rs for all t.

• Ci is the capacity of the edge (Ii, Oi) and Ci,j is the capacity of the edge (Oi, Ij). In

other words, we require H(X
(t)
i ) ≤ Ci and H(X

(t)
i,j ) ≤ Ci,j for all t.

• Y t =
[
Y (1), · · · , Y (t)

]
.

• [Ws1 , · · · ,Wsk
] the vector formed by concatenation of the messages Ws1 , · · · ,Wsk

.

Our main result for line networks with node constraints is summarized in the following

theorem.

Theorem 5 A non–negative rate tuple (Rs : s ∈ S) is achievable in the node-constrained

line network of Figure 3 if and only if it satisfies the following bounds:

For every i ∈ {1, · · · ,M}

∑
νs=Ii

Rs +
∑
Oi∈Ds

Rs + max

{∑
s∈U1

Rs,
∑
s∈U2

Rs

}
≤ Ci (3.1)
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Fig. 11. Network G′ made from network G.

where U1 and U2 are defined as follows:

U1 = {s : νs = Ij, j < i}
⋂
{s : Oi /∈ Ds}

⋂
{s : Ds ∩ {Oi+1, · · · , OM} 6= ∅}

U2 = {s : νs = Ij, j > i}
⋂
{s : Oi /∈ Ds}

⋂
{s : Ds ∩ {O1, · · · , Oi−1} 6= ∅} ,

and for every i ∈ {1, · · · ,M}

∑
s:νs∈{Ij :j≥i},Ds∩{Oj :j<i}6=∅,

Rs ≤ Ci,i−1, (3.2)

∑
s:νs∈{Ij :j≤i},Ds∩{Oj :j>i}6=∅,

Rs ≤ Ci,i+1.

The proof of Theorem 5 has two parts. We first determine upper bounds on the set of

achievable rates and then show that the upper bounds are tight by proposing an achievable

scheme.

1. Capacity upper bounds for line networks

We begin by analyzing the constraint of the edges (Ii, Oi), i = 1, 2, · · · ,M . As the first

step, we form network G′ from the line network G by increasing the capacities of all edges

but (Ii, Oi), (Oi−1, Ii), (Oi+1, Ii), (Oi, Ii−1) and (Oi, Ii+1) in G to infinity and then collect-

ing all nodes on the left–hand side of the edge (Ii, Oi) as a single node Pi and all nodes

on the right–hand side of the edge (Ii, Oi) as a single node Qi. More formally, Pi ,
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{I1, I2, . . . , Ii−1, O1, O2, . . . , Oi−1} and Qi , {Ii+1, Ii+2, . . . , IM , Oi+1, Oi+2, . . . , OM} .

G′ is illustrated in Figure 11 and is the result of this process. G′ has a set of sessions S ′. Let

D′s′ be the set of all nodes in the graph G that form the elements of the set Ds′ . A session

s′ ∈ S ′ has a source νs′ ∈ {Pi, Qi, {Ii}} and a set of destinations Ds′ ⊆ {Pi, Qi, {Oi}}

and its corresponding message Ws′ is a concatenation of the messages corresponding to

sessions in the set

Ss′ = {s : νs ∈ νs′ ,Ds ∩ D′s′ 6= ∅} .

It is obvious that the upper bounds on the achievable rates in the network G′ are also upper

bounds on the achievable rates in the network G if we replace the rate of a session s′ in G′

by
∑

s∈Ss′
Rs in G. If there is a session s in G for which the set νs ∪ Ds is a subset of Pi

or Qi, then session s clearly will not be part of any session in G′. Next we find an upper

bound on the achievable rates of the network G′ in terms of the capacity Ci. Consider the

vector of the middle edge XT
i :

H
(
XT
i ,
{
W T
s′ : νs′ = Pi, Oi /∈ Ds′

})
a

≥ H
({
W T
s′ : νs′ = Pi

}
,
{
W T
s′ : Oi ∈ Ds′

}
, XT

i,i−1, X
T
i,i+1

)
b

≥ H
({
W T
s′ : Oi ∈ Ds′

}
,
{
W T
s′ : Pi ∈ Ds′

}
, XT

i,i+1

)
c
= H

({
W T
s′ : νs′ = Qi

}
,
{
W T
s′ : Oi ∈ Ds′

}
,
{
W T
s′ : Pi ∈ Ds′

}
, XT

i,i+1

)
d

≥ H
({
W T
s′ : Oi ∈ Ds′

}
,
{
W T
s′ : Pi ∈ Ds′

}
,
{
W T
s′ : Qi ∈ Ds′

})
e
= H

({
W T
s′ : s′ ∈ S ′

})
. (3.3)

In (3.3), a holds because we assume that messages are perfectly decoded at their des-

tinations and because the decoded messages and outgoing flows at Oi are functions of XT
i .

b holds because the decoded messages at Pi are functions of XT
i,i−1 and

{
W T
s′ : νs′ = Pi

}
(recall that we ignore all messages originating in Pi and destined for nodes in Pi only,

and similarly for Qi). c holds because the set of messages with the source at Qi is a
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subset of the set of messages with a destination at Oi or Pi. d holds because the de-

coded messages at Qi are functions of XT
i,i+1 and

{
W T
s′ : νs′ = Qi

}
. Finally, e holds since

the previous expression includes all messages in the network. By the entropy inequality

H
(
XT
i ,
{
W T
s′ : νs′ = Pi, Oi /∈ Ds′

})
≤ H

(
XT
i

)
+ H

({
W T
s′ : νs′ = Pi, Oi /∈ Ds′

})
and

(3.3), we have:

TCi ≥ H
(
XT
i

)
≥ H

({
W T
s′ : s′ ∈ S ′

})
−H

({
W T
s′ : νs′ = Pi, Oi /∈ Ds′

})
= T

∑
νs′=Ii

Rs′ +
∑
νs′=Qi

Rs′ +
∑

νs′=Pi,Oi∈Ds′

Rs′

 . (3.4)

By the symmetry of the network with respect to Pi and Qi we likewise have:

Ci ≥
∑
νs′=Ii

Rs′ +
∑
νs′=Pi

Rs′ +
∑

νs′=Qi,Oi∈Ds′

Rs′ . (3.5)

Since
∑

vs′=Qi
Rs′ =

∑
vs′=Qi,Oi∈Ds′

Rs′+
∑

vs′=Qi,Oi 6∈Ds′
Rs′ , if we replaceRs′ by

∑
s∈Ss′

Rs

in the bounds in (3.4), (3.5), we obtain the bound (3.1) in the original network G.

Next we will use cut set bounds to derive bounds on the capacity of edges the (Oi, Ii−1)

and (Oi, Ii+1). The cut set bound starts with a subset U ⊆ V of the nodes of network graph

G. Let CU→Uc denote the sum of the capacities of the edges in the cut that are directed

from node subset U to its complement. For any subset U of nodes, the corresponding cut

set bound is:

∑
s:νs∈U,Ds∩Uc 6=∅

Rs ≤ CU→Uc .

For our purpose we use the partition U1 = {Oj, Ij : j ≥ i} for the bound on the edge

(Oi, Ii−1) and we use the partitionU2 = {Oj, Ij : j ≤ i} for the bound on the edge (Oi, Ii+1).

Remark 6 The bounds (3.1) are progressive d-separating edge cut bounds by choosing the
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edge set E = {Ii, Oi} and the source set S in [49] as one of S1 = {s : νs = Ii}
⋃
{s : Oi ∈

Ds}
⋃
U1 and S2 = {s : νs = Ii}

⋃
{s : Oi ∈ Ds}

⋃
U2.

Remark 7 The bounds (3.1) and (3.2) are the ones we will need to establish the capacity

region. However, one might also guess that applying the cut set bound to the graph G′ will

recover (3.1). A quick check on Figure 11 shows that this is not the case. In other words,

the bound (3.1) is not a cut set bound for either G or G′ in general.

2. Network coding scheme for line networks

a. Network coding scheme

Next we provide a network coding scheme that achieves the bounds in Theorem 5. This

proves that those bounds describe the network coding capacity of line networks. We be-

gin by introducing the following notation for different collections of multicast or unicast

messages with respect to some fixed node i ∈ {1, · · · ,M}.

Let Li , {1, · · · , i− 1} and Ri , {i+ 1, · · · ,M} respectively denote the set of

nodes on the left hand side and right hand side of node i. Let A,B,C ∈ {i, Li, Ri} and

define

• W (t)
A→B,C ,

[
W

(t′)
s : νs ∈ A,Ds ∩B 6= ∅,Ds ∩ C 6= ∅, t′ = t− |νs − i|

]
,

• W (t)

A→B,C ,
[
W

(t′)
s : νs ∈ A,Ds ∩B = ∅,Ds ∩ C 6= ∅, t′ = t− |νs − i|

]
,

• W (t)

A→B,C ,
[
W

(t′)
s : νs ∈ A,Ds ∩B 6= ∅,Ds ∩ C = ∅, t′ = t− |νs − i|

]
.

It will become clear from our network coding scheme that the order in which the messages

of different sessions appear in each of the preceding vectors does not matter as long as it is

fixed throughout the scheme described below.

As an example W (t)

i→Li,R̄i
denotes the concatenation of messages generated at time t

at node i with at least one destination k with k < i and with no destination l with l > i.
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Also W (t)
Li→i,Ri

denotes the concatenation of messages with source j with j < i, generated

at time instant t− (i− j) with destination at i and at least one destination k with k > i.

One should also notice that in a network coding scheme the outgoing message from

every node at time instant t is some function of its incoming messages at times 1, 2, · · · , t−

1 and its own messages at times 1, 2, · · · , t if it is a sender node. Further, to simplify our

notation we assume that inside a single node i, the delay between its sender and receiver

(which are indicated by Ii and Oi for node i) is negligible but the delay of transmission for

any messages between the receiver of a node and the sender of its neighbor node is one unit

of time.

Remark 8 Although the analysis here assumes zero delay in the node processors, with few

changes in the time indices the results can be shown to remain valid for the case of positive

delays in the node processors.

To represent our network coding scheme we introduce two binary vector operators. Let

a = [a1, a2, · · · , ana ] and b = [b1, b2, · · · , bnb
] be binary vectors of lengths na and nb

respectively. We define:

a⊕ b =


[a1 ⊕ b1, a2 ⊕ b2, · · · , ana ⊕ bna ] if na ≤ nb,

[a1 ⊕ b1, a2 ⊕ b2, · · · , anb
⊕ bnb

, anb+1, · · · , ana ] if na > nb.

Here ai ⊕ bi is the bitwise XOR of the ith bits of a and b. Furthermore we define:

a⊗ b =


b⊕ a if na ≤ nb,

a⊕ b if na > nb.

Observe that the size of a⊕ b is na while the size of a⊗ b is max{na, nb}.

Suppose that all source nodes start transmitting at time t = 0 and messages at negative
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Fig. 12. A network code for a 4 node line network with sessions 1→ 3, 2→ 4, 3→ 2, and
4→ 1.

time instants are assumed to take the value zero. Our network coding scheme consists of

three parts, which respectively describe the vectors X(t)
i , X

(t)
i,i−1 and X(t)

i,i+1 for any node i:

X
(t)
i , [W

(t)

Ri→ī,Li
⊗W (t)

Li→ī,Ri
,W

(t)
Ri→i,Li

,W
(t)
Li→i,Ri

,W
(t)

Ri→i,L̄i
, (3.6)

W
(t)

Li→i,R̄i
,W

(t)
i→Li,Ri

,W
(t)

i→L̄i,Ri
,W

(t)

i→Li,R̄i
],

X
(t)
i,i−1 ,

[
W

(t)

Ri→ī,Li
⊕W (t)

Li→ī,Ri
,W

(t)
Ri→i,Li

,W
(t)

i→Li,R̄i
,W

(t)
i→Li,Ri

]
, (3.7)

X
(t)
i,i+1 ,

[
W

(t)

Li→ī,Ri
⊕W (t)

Ri→ī,Li
,W

(t)
Li→i,Ri

,W
(t)

i→L̄i,Ri
,W

(t)
i→Li,Ri

]
. (3.8)

For an example of our network code for multiple unicast sessions see Figure 12. In order

for (3.6), (3.7), and (3.8) to define a valid network coding scheme we need to demonstrate

that for any node on the network, the outgoing flows from that node are some functions of

the incoming flows to that node at earlier time instants and the messages generated at that

node at earlier or present time instants. For this purpose we define two auxiliary vectors of
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messages as follows

F
(t)
i ,

[
W

(t)

Ri→ī,Li
,W

(t)

Ri→i,L̄i
,W

(t)
Ri→i,Li

]
, (3.9)

G
(t)
i ,

[
W

(t)

Li→ī,Ri
,W

(t)

Li→i,R̄i
,W

(t)
Li→i,Ri

]
. (3.10)

We notice that the information available to node Ii at time instant t is X t−1
i−1,i, X

t−1
i+1,i,

W t
i→Li,Ri

, W t
i→L̄i,Ri

, W t
i→Li,R̄i

and the information available to node Oi at time instant t

is X t−1
i . Next we will prove the following result:

Theorem 9 At time instant t, vectors F (t)
i and G(t)

i as defined in (3.9) and (3.10) respec-

tively and X(t)
i as defined in (3.6) are functions of the information available to node Ii at

time instant t and X(t)
i,i−1 and X(t)

i,i+1 as defined in (3.7) and (3.8) respectively, are functions

of the information available to node Oi at time instant t.

Proof We use induction on time instant t to prove our claim. For t = 0 all vectors in

Theorem 9 are zero vectors and the claim holds trivially. Suppose that for all time instants

t ≤ n−1 and all nodes i ∈ {1, · · · ,M} Theorem 9 holds. Next we prove it for time instant

t = n. As the first step we show the following equivalence of vectors for any time instant t:

F
(t)
i =

[
W

(t)

Ri→ī,Li
,W

(t)

Ri→i,L̄i
,W

(t)
Ri→i,Li

]
is a permutation of[

W
(t−1)

Ri+1→i+1,Li+1
,W

(t−1)
Ri+1→i+1,Li+1

,W
(t−1)
i+1→Li+1,Ri+1

,W
(t−1)

i+1→Li+1,R̄i+1

]
, (3.11)

G
(t)
i =

[
W

(t)

Li→ī,Ri
,W

(t)

Li→i,R̄i
,W

(t)
Li→i,Ri

]
is a permutation of[

W
(t−1)

Li−1→i−1,Ri−1
,W

(t−1)
Li−1→i−1,Ri−1

,W
(t−1)
i−1→Li−1,Ri−1

,W
(t−1)

i−1→Ri−1,L̄i−1

]
. (3.12)

To see this, observe that the left hand side of (3.11) is the messages generated at all nodes

Ij with j > i at time instant t − (j − i) which have a destination at some node Ok with

k ≤ i. This set of messages is either generated at Ij with j > i + 1 at time instant

t − (j − i) or at Ii+1 at time instant t − 1. By definition the former group of messages is
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identical to
[
W

(t−1)

Ri+1→i+1,Li+1
,W

(t−1)
Ri+1→i+1,Li+1

]
, and the latter group of messages is identical

to
[
W

(t−1)
i+1→Li+1,Ri+1

,W
(t−1)

i+1→Li+1,R̄i+1

]
; these together form the right hand side of (3.11). An

analogous argument holds for (3.12).

By setting t = n in (3.11) and (3.12) we see that F (n)
i and G(n)

i are functions of the

information available to Ii at time instant n if and only if the right hand sides of (3.11)

and (3.12) are functions of the information available to Ii at time instant n. At time instant

n node Ii has access to the vectors X(n−1)
i−1,i and X

(n−1)
i+1,i . Our induction hypothesis and

equations (3.7) and (3.8) imply

X
(n−1)
i+1,i = (3.13)[
W

(n−1)

Ri+1→i+1,Li+1
⊕W (n−1)

Li+1→i+1,Ri+1
,W

(n−1)
Ri+1→i+1,Li+1

,W
(n−1)

i+1→Li+1,R̄i+1
,W

(n−1)
i+1→Li+1,Ri+1

]
,

X
(n−1)
i−1,i = (3.14)[
W

(n−1)

Li−1→i−1,Ri−1
⊕W (n−1)

Ri−1→i−1,Li−1
,W

(n−1)
Li−1→i−1,Ri−1

,W
(n−1)

i−1→L̄i−1,Ri−1
,W

(n−1)
i−1→Li−1,Ri−1

]
.

Hence Ii can extract messages

[
W

(n−1)
Ri+1→i+1,Li+1

,W
(n−1)
i+1→Li+1,Ri+1

,W
(n−1)

i+1→Li+1,R̄i+1

]
,[

W
(n−1)
Li−1→i−1,Ri−1

,W
(n−1)
i−1→Li−1,Ri−1

,W
(n−1)

i−1→L̄i−1,Ri−1

]
.

directly from the received messages X(n−1)
i−1,i and X

(n−1)
i+1,i . The two remaining messages

that Ii needs to decode are W (n−1)

Ri+1→i+1,Li+1
and W (n−1)

Li−1→i−1,Ri−1
, and we next describe the

process to do this. By our inductive hypothesis at t = n − 2 node Ii knows the message

vectors

F
(n−2)
i =

[
W

(n−2)

Ri→ī,Li
,W

(n−2)

Ri→i,L̄i
,W

(n−2)
Ri→i,Li

]
,

G
(n−2)
i =

[
W

(n−2)

Li→ī,Ri
,W

(n−2)

Li→i,R̄i
,W

(n−2)
Li→i,Ri

]
.
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Observe that node Ii knows message vector

[
W

(n−2)
i→Li,Ri

,W
(n−2)

i→L̄i,Ri
,W

(n−2)

i→Li,R̄i

]
at time instant n. Therefore Ii knows the vectors

[
W

(n−2)

Ri→ī,Li
,W

(n−2)
Ri→i,Li

,W
(n−2)
i→Li,Ri

,W
(n−2)

i→Li,R̄i

]
,[

W
(n−2)

Li→ī,Ri
,W

(n−2)
Li→i,Ri

,W
(n−2)
i→Li,Ri

,W
(n−2)

i→L̄i,Ri

]
at time instant n. Set t to n − 1 and i to i − 1 in (3.11), and set t to n − 1 and i to i + 1

in (3.12). Then (3.11) and (3.12) imply that the preceding vectors are permutations of the

following vectors and thus at time instant n they are available to node Ii:

F
(n−1)
i−1 =

[
W

(n−1)

Ri−1→i−1,Li−1
,W

(n−1)

Ri−1→i−1,L̄i−1
,W

(n−1)
Ri−1→i−1,Li−1

]
,

G
(n−1)
i+1 =

[
W

(n−1)

Li+1→i+1,Ri+1
,W

(n−1)

Li+1→i+1,R̄i+1
,W

(n−1)
Li+1→i+1,Ri+1

]
.

From F
(n−1)
i−1 and G(n−1)

i+1 , Ii obtains W (n−1)

Ri−1→i−1,Li−1
and W (n−1)

Li+1→i+1,Ri+1
. Since by (3.13)

and (3.14) Ii can extract

W
(n−1)

Ri+1→i+1,Li+1
⊕W (n−1)

Li+1→i+1,Ri+1

and

W
(n−1)

Li−1→i−1,Ri−1
⊕W (n−1)

Ri−1→i−1,Li−1

at time instant n from X
(n−1)
i+1,i and X(n−1)

i−1,i , respectively, it can decode W (n−1)

Ri+1→i+1,Li+1
and

W
(n−1)

Li−1→i−1,Ri−1
. Thus Ii can decode

[
W

(n−1)

Ri+1→i+1,Li+1
,W

(n−1)
Ri+1→i+1,Li+1

,W
(n−1)
i+1→Li+1,Ri+1

,W
(n−1)

i+1→Li+1,R̄i+1

]
,[

W
(n−1)

Li−1→i−1,Ri−1
,W

(n−1)
Li−1→i−1,Ri−1

,W
(n−1)
i−1→Li−1,Ri−1

,W
(n−1)

i−1→L̄i−1,Ri−1

]
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or equivalently

F
(n)
i =

[
W

(n)

Ri→ī,Li
,W

(n)

Ri→i,L̄i
,W

(n)
Ri→i,Li

]
,

G
(n)
i =

[
W

(n)

Li→ī,Ri
,W

(n)

Li→i,R̄i
,W

(n)
Li→i,Ri

]
,

at time instant n, as desired. From (3.6) it is simple to check that X(n)
i is a function of F (n)

i

andG(n)
i and the messages generated at Ii at time instant n. Therefore Ii may transmitX(n)

i

at time instant n.

We next wish to show thatX(n)
i,i+1 andX(n)

i,i−1 are functions of the incoming messages to

node Oi until time instant n. We assume that the delay between Ii and Oi for transferring

information is negligible, and hence the outgoing message ofOi can be any function ofXn
i .

This assumption is reasonable as a node in the original network models a single processor

with small internal delays. By (3.6), (3.7) and (3.8) we see that Ii only needs to construct

W
(n)

Ri→ī,Li
⊕ W

(n)

Li→ī,Ri
and W (n)

Li→ī,Ri
⊕ W

(n)

Ri→ī,Li
for Oi to be able to transmit X(n)

i,i−1 and

X
(n)
i,i+1. Observe that W (n)

Ri→ī,Li
⊕W (n)

Li→ī,Ri
and W (n)

Li→ī,Ri
⊕W (n)

Ri→ī,Li
can be obtained from

W
(n)

Ri→ī,Li
⊗W (n)

Li→ī,Ri
, which is a component of X(n)

i .

�

We next must show that the receiver node, Oi, is able to successfully decode all messages

destined for node i in the original network. Node Oi has access to vector Xn
i at time instant

t = n. Observe that

[
W

(n)
Ri→i,Li

,W
(n)
Li→i,Ri

,W
(n)

Ri→i,L̄i
,W

(n)

Li→i,R̄i

]
is the part of X(n)

i that includes all messages with destination Oi; if the message originates

at source Ij then it is generated at time instant n − |j − i|. Therefore every message

with destination Oi will be decoded at Oi with a constant delay depending on the distance

between its source and Oi in the network.
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b. Optimality of the network coding scheme

We demonstrate the optimality of our scheme by proving that any non–negative rate tuple

(Rs : s ∈ S) that satisfies the bounds in Theorem 5 is achievable in the network by

implementing our network coding scheme; i.e., any rate in the achievable region results in

certain X(t)
i , X

(t)
i,i−1 and X(t)

i,i+1 which have the properties H
(
X

(t)
i

)
≤ Ci, H

(
X

(t)
i,i−1

)
≤

Ci,i−1 and H
(
X

(t)
i,i+1

)
≤ Ci,i+1 and thus can be supported on this network.

As each of the vectorsX(t)
i , X

(t)
i,i−1 andX(t)

i,i+1, have components which are independent

and uniformly distributed binary random variables, their entropies are equal to their lengths.

We therefore use the notation H(·) for either the entropy or length of a random vector. By

(3.6) we have:

H
(
X

(t)
i

)
= H

(
W

(t)

Ri→ī,Li
⊗W (t)

Li→ī,Ri

)
+H

(
W

(t)
Ri→i,Li

)
+H

(
W

(t)
Li→i,Ri

)
+H

(
W

(t)

Ri→i,L̄i

)
+H

(
W

(t)

Li→i,R̄i

)
+H

(
W

(t)
i→Li,Ri

)
+H

(
W

(t)

i→L̄i,Ri

)
+H

(
W

(t)

i→Li,R̄i

)
. (3.15)

It follows from our earlier definitions that

∑
νs=Ii

Rs = H
(
W

(t)
i→Li,Ri

)
+H

(
W

(t)

i→L̄i,Ri

)
+H

(
W

(t)

i→Li,R̄i

)
,

∑
Oi∈Ds

Rs = H
(
W

(t)
Ri→i,Li

)
+H

(
W

(t)
Li→i,Ri

)
+H

(
W

(t)

Ri→i,L̄i

)
+H

(
W

(t)

Li→i,R̄i

)
,

∑
s∈U1

Rs = H
(
W

(t)

Li→ī,Ri

)
,

∑
s∈U2

Rs = H
(
W

(t)

Ri→ī,Li

)
.
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Since H(a⊗ b) = max{H(a), H(b)}, (3.15) gives

H
(
X

(t)
i

)
=
∑
νs=Ii

Rs +
∑
Oi∈Ds

Rs + max

{∑
s∈U1

Rs,
∑
s∈U2

Rs

}
≤ Ci,

where U1 and U2 are defined in Theorem 5.

By (3.7) we have

H
(
X

(t)
i,i−1

)
= H

(
W

(t)

Ri→ī,Li
⊕W (t)

Li→ī,Ri

)
+H

(
W

(t)
Ri→i,Li

)
(3.16)

+H
(
W

(t)

i→Li,R̄i

)
+H

(
W

(t)
i→Li,Ri

)
.

Since H
(
W

(t)

Ri→ī,Li
⊕W (t)

Li→ī,Ri

)
= H

(
W

(t)

Ri→ī,Li

)
we obtain

H
(
X

(t)
i,i−1

)
=

∑
s:νs∈{Ij :j≥i},Ds∩{Oj :j<i}6=∅,

Rs ≤ Ci,i−1.

With a similar argument we obtain

H
(
X

(t)
i,i+1

)
=

∑
s:νs∈{Ij :j≤i},Ds∩{Oj :j>i}6=∅,

Rs ≤ Ci,i+1.

Remark 10 While our network coding scheme is based on integer rates, rational values of

rates that satisfy our network coding bounds can also be supported by our network coding

scheme if we run it over multiple rounds. Let (Rs : s ∈ S) be a rational rate tuple in the

capacity region of a line network G, where every non–zero Rs can be written as ps

qs
with

ps and qs relatively prime non–negative integers. Let q be the least common multiple of

{qs : s ∈ S}. Notice that the integer rate tuple (qRs : s ∈ S) is in the capacity region of

the line networkG′ which is made fromG by increasing the capacity of each edge e fromCe

to qCe. The transmission scenario of networkG′ can be achived in networkG by using each

edge for q consecutive times. This implies that the rate (1
q
qRs : s ∈ S) = (Rs : s ∈ S) is

achievable in network G. This consideration is also valid for star networks as is discussed

in the next section.
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C. Network Coding in Star Networks

For unicast sessions over the node constrained star networks depicted by Figure 3, we

introduce the following notation.

• X(t)
i is the binary vector transmitted from Ii toOi at time instant t for i ∈ {0, · · · ,M}.

• X(t)
i,0 and X(t)

0,i respectively denote the binary vectors at time t from Oi to I0 and from

O0 to Ii.

• W (t)
i→j is the message from node i to node j at time t for i, j ∈ {0, · · · ,M}.

• Ci, Ci,0, and C0,i respectively denote the capacities of the edges (Ii, Oi), (Oi, I0), and

(O0, Ii).

• Ri→j is an integer that represents the rate of transmission from node i to node j.

• T is the final time instant of transmission.

• Y t =
[
Y (1), · · · , Y (t)

]
.

Therefore, by the definitions it follows thatH
(
X

(t)
i

)
≤ Ci, H

(
X

(t)
i,0

)
≤ Ci,0, H

(
X

(t)
0,i

)
≤

C0,i, and H
(
W

(t)
i→j

)
= Ri→j . We follow the convention that Y =

[
Y (1), · · · , Y (T )

]
and

W = {Wi→j : i, j ∈ {0, · · · ,M}}.

A permutation Π : {1, · · · ,M} → {1, · · · ,M} is any one–to–one function from the

set {1, · · · ,M} to itself. We have the following upper bounds on the achievable rates of a

star network:

Theorem 11 The set of achievable unicast rate tuples (Ri→j : i, j ∈ {1, · · · ,M}) in the

node-constrained star network of Figure 3 satisfies the following bounds:

For any permutation Π(·) of the set {1, · · · ,M}

∑
i,j∈{0,··· ,M}

Ri→j −
M∑
i=1

M∑
j=i+1

RΠ(i)→Π(j) ≤ C0, (3.17)
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and for every i ∈ {1, · · · ,M}

∑
j 6=i

(Ri→j +Rj→i) ≤ Ci, (3.18)

∑
j 6=i

Ri→j ≤ Ci,0, (3.19)

∑
j 6=i

Rj→i ≤ C0,i. (3.20)

In the next subsection we prove Theorem 11. In Subsection 2 we will discuss a network

coding scheme and we will describe classes of problems for which it is optimal in Subsec-

tion b.

1. Upper bounds on the achievable rates in star networks

First we prove the validity of (3.17). Define the following sets of messages:

WΠ(i) =
{
WΠ(i)→Π(i+1),WΠ(i)→Π(i+2), · · · ,WΠ(i)→Π(M)

}
,

W ′
Π(i) =

{
WΠ(i)→Π(i−1),WΠ(i)→Π(i−2), · · · ,WΠ(i)→Π(1)

}
.

We split set W into 4M disjoint sets of messages according to permutation Π as follows:

W =
M⋃
i=1

WΠ(i)

M⋃
i=1

W ′
Π(i)

M⋃
i=1

Wi→0

M⋃
i=1

W0→i.

Recall that X0 =
[
X

(1)
0 , · · · , X(T )

0

]
. Since X(t)

0 for any time instant t is a function of W ,

so is X0. In the following expansion of the entropy term H (X0,W ) we use the fact that

H (X0|W ) = 0, the independence of the different messages Wi→j , and the chain rule for
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entropy.

H (W ) = H (X0,W )

= H (X0) +H

(
M⋃
i=1

Wi→0

∣∣∣X0

)

+
M∑
i=1

H

(
WΠ(i)

∣∣∣X0,
M⋃
i=1

Wi→0,

i−1⋃
j=1

W0→Π(j),

i−1⋃
j=1

WΠ(j),

i−1⋃
j=1

W ′
Π(j)

)

+
M∑
i=1

H

(
W ′

Π(i)

∣∣∣X0,

M⋃
i=1

Wi→0,

i−1⋃
j=1

W0→Π(j),

i⋃
j=1

WΠ(j),

i−1⋃
j=1

W ′
Π(j)

)

+
M∑
i=1

H

(
W0→Π(i)

∣∣∣X0,
M⋃
i=1

Wi→0,
i−1⋃
j=1

W0→Π(j),
i⋃

j=1

WΠ(j),
i⋃

j=1

W ′
Π(j)

)
. (3.21)

To simplify (3.21), we first observe that messages decoded at the hub’s output node

O0 are a function of X0, and so H
(⋃M

i=1 Wi→0

∣∣∣X0

)
= 0.

Next consider any term in the second summation of (3.21). For each i, W ′
Π(i) is a

union over j < i of the messages WΠ(i)→Π(j). WΠ(i)→Π(j) is decoded at OΠ(j) as a function

of XΠ(j). We observe that XΠ(j) is a function of X0,WΠ(j),W
′
Π(j), and WΠ(j)→0. Since our

entropy term is conditional on all such random variables for j < i, it is therefore equal to

zero.

Next consider any term in the third summation of (3.21). Since W0→Π(i) is decoded as

a function of X0,WΠ(i),W
′
Π(i), and WΠ(i)→0 and since our entropy term is conditional on

all these random variables, our entropy term is equal to zero. Finally, to bound the terms in

the first summation of (3.21), observe that

H

(
WΠ(i)

∣∣∣X0,
M⋃
i=1

Wi→0,
i−1⋃
j=1

W0→Π(j),
i−1⋃
j=1

WΠ(j),
i−1⋃
j=1

W ′
Π(j)

)
≤ H

(
WΠ(i)

)
.

As a consequence of these arguments, we obtain the following bound on H (X0):

H (X0) ≥ H (W )−
M∑
i=1

H
(
WΠ(i)

)
. (3.22)
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To establish (3.17), we replace the entropy terms in (3.22) with their corresponding rates

and divide both sides of the resulting inequality by T .

Since (3.17) is valid for every choice of permutation Π, the most restrictive bound on

the rates corresponds to that Π which minimizes
∑M

i=1

∑M
j=i+1RΠ(i)→Π(j). In the next part

we will discuss a coding scheme which sometimes solves this optimization problem, and

we will discuss cases in which our outer bound on the capacity region is tight.

Remark 12 The bound (3.17) can alternatively be written as
∑M

i=2

∑i−1
j=1RΠ(i)→Π(j) ≤

C0.

Remark 13 Notice that by Theorem 11,

C0 ≥
M∑
i=1

M∑
j=1

Ri→j −min
Π

M∑
i=1

M∑
j=i+1

RΠ(i)→Π(j),

where C0 is the capacity of the central node. Also for any set of rates {Ri→j}i,j , we have

min
Π

M∑
i=1

M∑
j=i+1

RΠ(i)→Π(j) ≤ 0.5
M∑
i=1

M∑
j=1

Ri→j.

Therefore C0 ≥ 0.5
∑M

i=1

∑M
j=1Ri→j . Observe that for the routing scheme in which all

messages are separately sent through the central link, the total capacity consumption of

the central link is
∑M

i=1

∑M
j=1Ri→j . Hence, the capacity used by the central node in any

network coding scenario can never be less than half of the capacity consumption of the

routing scheme.

Remark 14 The bound (3.17) also follows by the PdE argument in [49] by choosing E =

{I0, O0} and S =
⋃M
i=2

⋃i−1
j=1 {s : νs = Ii, Ds = j} .

We next discuss the outer bounds (3.18), (3.19), and (3.20) on the capacity region which

involve the terms Ci, Ci,0, and C0,i for i ≥ 1 respectively. We proceed by constructing

another network from the star network depicted in Figure 3; the new network will have a
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i
O

iI

Q

0,'iX

iX '

iX ,0'

Fig. 13. Modified star network.

capacity region containing the achievable rate region of the star network in Figure 3. To

create the new network, fix the index i and increase to infinity the capacity of all links

except the ones used for the transmission of random variables Xi, Xi,0, and X0,i. For this

new network, we will focus on the rate bounds involving only terms corresponding to a

source at Ii or a destination at Oi; i.e., we implicitly set other rate terms to 0. Since for

j, k 6= i the path from Ij to Ok has infinite capacity, we will merge all nodes except for Ii

and Oi into a single supernode which we label Q; Figure 13 depicts the modified network.

We point out that the network coding bounds for this network are discussed in [49] and the

results are obtained using progressive d-separating edge set (PdE) bounds. We here use

entropy bounds directly.

Observe that in the modified network we have a unicast session from Oi to Q with

rate
∑

j 6=iRi→j , and we have a second unicast session from Q to Ii with rate
∑

j 6=iRj→i.

Let us respectively denote the corresponding messages by Wi→Q and WQ→i. As illustrated

in Figure 13, the counterpart vectors in the modified network for Xi, Xi,0, and X0,i are

respectively called X ′i, X
′
i,0, and X ′0,i. Since X ′i is a function of Wi→Q and WQ→i, the chain

rule for entropy implies

H (Wi→Q,WQ→i) = H (X ′i,Wi→Q,WQ→i)

= H (X ′i) +H (WQ→i|X ′i) +H (Wi→Q|X ′i,WQ→i) . (3.23)



64

Since the messages destined for Oi are decoded using the vector X ′i, it follows that

H (WQ→i|X ′i) = 0.

Furthermore, the messages destined for Q are decoded from X ′i,0 and WQ→i. Observe that

the structure of the network implies that X ′i,0 is a function of X ′i. Therefore, we have

H (Wi→Q|X ′i,WQ→i) = 0. These entropy terms and (3.23) imply

H (X ′i) = H (Wi→Q,WQ→i) (3.24)

By dividing both sides of (3.24) by T , we obtain

∑
j 6=i

(Ri→j +Rj→i) ≤ Ci. (3.25)

Note that (3.25) clearly holds for the original network as well.

We next apply a cut-set bound argument from [15, Ch. 14] to the triangular network in

Figure 13 in order to obtain bounds on achievable rates involving capacities Ci,0 and C0,i.

First, consider the cut set S = {Ii, Oi} and apply the cut-set arguments of [15, Ch. 14] to

show that ∑
j 6=i

Ri→j ≤ Ci,0. (3.26)

Next consider Sc = {Ii, Oi} and apply the cut-set arguments of [15, Ch. 14] to show that

∑
j 6=i

Rj→i ≤ C0,i. (3.27)

2. Network coding scheme for star networks

a. Network coding scheme

We describe the encoding and decoding processes used at every node. We assume through-

out that there is a unit delay associated with the channel from an output node to the input
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node of another processor. With a few changes in the indices of different messages our

analysis is valid for the case of processors with non–zero delays.

Encoding and decoding at I0: At time t, I0 has access to X t−1
i,0 for i ∈ {1, · · · ,M}.

Therefore its outputX(t)
0 is a function of this information as well as its messagesW t

0→j, j 6=

0, to other nodes. We only use the most recent X(t−1)
i,0 , which is a function of W (t−1)

i→j , j 6= i.

We claim that all messages W (t−1)
i→j are decodable from X

(t−1)
i,0 ; this assertion will become

clear when we describe the encoding rules for Oi. Node I0 transmits

[
W

(t−1)
1→0 , · · · ,W

(t−1)
M→0,W

(t)
0→1, · · · ,W

(t)
0→M

]
within X(t)

0 to O0. It also performs a series of operations on the messages W (t−1)
i→j , i, j 6= 0.

1. I0 forms a directed multigraph called a demand graph, which is the multigraph

D(V,E) with V = {1, · · · ,M} and with Ri→j parallel edges from node i to j if

the rate of W (t−1)
i→j is Ri→j bits/use of the network for i, j 6= 0. Notice that there is a

one to one correspondence between the edges of D and the bits of W (t−1)
i→j , i, j 6= 0,

in binary form.

2. I0 extracts a set of edge disjoint cycles {C1, C2, · · · , CP} fromD. A cycle is a directed

path of edges which starts and ends at the same node and in between visits other

nodes, each one at most once.

3. Let ⊕ denote the XOR operation and |Ck| be the number of edges in cycle Ck. For

k ∈ {1, · · · , P}, I0 encodes the bits corresponding to the edge of cycle Ck into the

following binary vector and sends this to O0:

[
bk1 ⊕ bk2, bk1 ⊕ bk3, · · · , bk1 ⊕ bk|Ck|

]
(3.28)

Here the ordering of bits bk1, · · · , bk|Ck| corresponds to their ordering along cycle Ck

starting at an arbitrary edge.
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4. The remaining bits on D which correspond to the edges in E \
⋃P
k=1 Ck are sent to

O0 without encoding.

The length of X(t)
0 is therefore

[∑
i,j Ri→j

]
− P bits.

Encoding and decoding at O0: By receiving X(t)
0 , O0 has to decode the messages

[
W

(t−1)
1→0 , · · · ,W

(t−1)
M→0

]
which are destined for O0. This can be done directly, since W (t−1)

i→0 is a vector included

in X(t)
0 . Then O0 encodes the vector X(t)

0,i as a function of X(t)
0 for i ∈ {1, · · · ,M}. The

encoding of X(t)
0,i is done in the following steps:

1. The vector W (t)
0→i is part of X(t)

0,i which is directly available from X
(t)
0 .

2. For each cycle Ck, k ∈ {1, · · · , P}, O0 determines if node i is a vertex along the

cycle. If so, then it lets bkj and bkj+1 denote the bits entering and exiting node i

along cycle Ck (using the convention bk|Ck+1| = bk1) and it forms and transmits the

bit bkj ⊕ bkj+1 = (bk1 ⊕ bkj )⊕ (bk1 ⊕ bkj+1).

3. The bits of the messages with destination at Oi that belong to E \
⋃P
k=1 Ck are sent

without encoding as part of X(t)
0,i .

Encoding and decoding at Ii: By receivingX(t)
0,i , Ii first decodes all messagesW (t−1)

j→i , j 6=

0,W
(t)
0→i that have destination Oi:

1. The vector W (t)
0→i is directly decodable as a part of X(t)

0,i .

2. If a bit of a message W (t−1)
j→i , j 6= 0, is part of a cycle Ck and is represented by bkl ,

then the bit bkl ⊕ bkl+1 is part of X(t)
0,i , and since bkl+1 is part of a message with source

Ii then X(t)
0,i extracts bkl by using (bkl ⊕ bkl+1)⊕ bkl+1.
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3. If a bit of a message W (t−1)
j→i , j 6= 0, is part of E \

⋃P
k=1 Ck, then it is directly available

from X
(t)
0,i .

After the decoding process, Ii chooses the following vector as X(t+1)
i and sends it to node

Oi:

[
W

(t−1)
1→i , · · · ,W

(t−1)
i−1→i,W

(t−1)
i+1→i, · · · ,W

(t−1)
M→i ,W

(t)
0→i,W

(t+1)
i→0 , · · · ,W (t+1)

i→M

]
.

Encoding and decoding at Oi: Node Oi directly decodes the messages

[
W

(t−1)
1→i , · · · ,W

(t−1)
i−1→i,W

(t−1)
i+1→i, · · · ,W

(t−1)
M→i ,W

(t)
0→i

]
with destination Oi and encodes X(t+1)

i,0 as the vector
[
W

(t+1)
i→0 , · · · ,W (t+1)

i→M

]
. This vector

also includes all of the information that is needed for the encoding process at I0. We

conclude our description of the encoding and decoding processes in the node-constrained

star network with the following simple example:

Example 15 Assume that the following rates are the demands in a star network with M =

4 branches: R1→2 = 1, R2→1 = 2, R1→3 = 1, R3→4 = 2, R4→1 = 1, and R3→2 = 1.

Figure 14 shows the demand graph corresponding to the rates. Here, bk, k ∈ {1, · · · , 8},

denotes the bits to be transmitted. We describe here part of the operations of nodes I0,
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O0, I1, and O1. Node I0 after receiving the demand graph information from O1, · · · , O4,

uses the cycles C1 = {b1, b2} and C2 = {b6, b5, b7} for the coding scheme, and forms

X
(t)
0 = [b3, b4, b8, b1 ⊕ b2, b7 ⊕ b5, b7 ⊕ b6], and sends it toO0. Now we concentrate on node

1 and its corresponding vectors. Node 1 is the source of b1 and b5, and is the destination

of b2, b3, and b6. After receiving X(t)
0 , O0 forms X(t)

0,1 = [b3, b1 ⊕ b2, b5 ⊕ b6] and sends it

to I1. Since I1 knows b1 and b5, it forms X(t+1)
1 = [b3, b2, b6] and sends it to O1 which

is the destination of these bits. Notice that in order to transmit X(t)
0 , C0 must be at least

6 bits/use of the network. To show that this requirement on C0 is tight for all encoding

schemes, we compute the tightest bound of the form (3.17). In this case the permutation

Π(1) = 1,Π(2) = 2,Π(3) = 4, and Π(4) = 3 results in the tightest bound, which is

C0 ≥ 6. Since our scheme always achieves the upper bounds on the capacity of all edges

except the hub edge, it is optimal for this example. In the next section we will prove that

our coding scheme is optimal for a broad class of demand graphs.

b. Optimality of the network coding scheme

We first establish that our network coding scheme is optimal for all edges except the one

from I0 to O0; i.e., the vectors X(t)
i , X

(t)
i,0 , and X(t)

0,i corresponding to any rate tuple (Ri→j :

i, j ∈ {0, · · · ,M}) that satisfies the bounds (3.18), (3.19), and (3.20), satisfy the capacity

constraints H(X
(t)
i ) ≤ Ci, H(X

(t)
i,0 ) ≤ Ci,0, and H(X

(t)
0,i ) ≤ C0,i for any i ∈ {1, · · · ,M} .

Recall that

X
(t+1)
i =

[
W

(t−1)
1→i , · · · ,W

(t−1)
i−1→i,W

(t−1)
i+1→i, · · · ,W

(t−1)
M→i ,W

(t)
0→i,W

(t+1)
i→0 , · · · ,W (t+1)

i→M

]
.

The total length of X(t+1)
i is H(X

(t+1)
i ) =

∑
j 6=i (Ri→j +Rj→i) ≤ Ci. Next consider

X
(t+1)
i,0 =

[
W

(t+1)
i→0 , · · · ,W (t+1)

i→M

]
.
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The total length of X(t+1)
i,0 is H(X

(t+1)
i,0 ) =

∑
j 6=iRi→j ≤ Ci,0. Finally from the encoding

process at node O0 we know that there is one bit corresponding to every bit of messages

W
(t−1)
j→i , j 6= 0, andW (t)

0→i, and therefore the total length ofX(t)
0,i isH(X

(t)
0,i ) =

∑
j 6=iRj→i ≤

C0,i.

Next we focus on the performance of the hub edge. We will establish that for some

special cases of the demand graphs, if the rate tuple (Ri→j : i, j ∈ {0, · · · ,M}) satisfies

the bound (3.17), then the corresponding vector of X(t)
0 obtained from our network coding

scheme satisfies the condition H(X
(t)
0 ) ≤ C0. Along with the optimality results on the

other edges, this shows that the upper bounds on the achievable rates in Theorem 11 exactly

characterize the capacity region for these demand graphs.

Recall that we have chosen X(t)
0 to be a function of the bits along P edge disjoint

cycles of the demand graph and that X(t)
0 has

∑
i,j Ri→j − P bits. Suppose that the

rates are constrained by (3.17); i.e.,
∑

i,j Ri→j −
∑M

i=1

∑M
j=i+1 RΠ(i)→Π(j) ≤ C0. For

our coding scheme the size of the smallest possible vector X(t)
0 can be found from the

maximum number P ∗ of edge disjoint cycles in the demand graph D. Let Π∗ repre-

sent a permutation that minimizes
∑M

i=1

∑M
j=i+1RΠ(i)→Π(j). We will show a class of

demand graphs for which P ∗ =
∑M

i=1

∑M
j=i+1RΠ∗(i)→Π∗(j). In these cases it follows

H(X
(t)
0 ) =

∑
i,j Ri→j − P ∗ =

∑
i,j Ri→j −

∑M
i=1

∑M
j=i+1 RΠ∗(i)→Π∗(j) ≤ C0, and our

coding and decoding schemes are optimal. The following theorem provides the maximum

number of edge disjoint cycles in planar directed multigraphs:

Theorem 16 [Lucchesi, 1976[57]] Let D(V,E) be a planar directed multigraph. We de-

fine a set S ⊆ E to be a feedback edge set if graph (V,E \ S) is an acyclic, directed

multigraph. The maximum number P ∗ of edge disjoint cycles of D is equal to the number

of elements of the minimal feedback edge set S∗.

For example, in Figure 14 the set S = {b1, b5} is a minimal feedback edge set, where we
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have labeled the edges with the bits they carry. Thus, the maximal number of edge-disjoint

cycles in Figure 14 is two.

Notice that for every feedback edge set S, the multigraph (V,E \ S) is acyclic, and

hence there is a permutation Π of nodes in (V,E \ S) such that the edges from Π(i) to

Π(j) corresponding to RΠ(i)→Π(j) are in (V,E \ S) if and only if i > j; i.e., the edges

corresponding to RΠ(i)→Π(j) are in S if and only if i < j. This implies that S∗ corresponds

to the permutation Π∗ that minimizes
∑M

i=1

∑M
j=i+1 RΠ(i)→Π(j). It follows from Theorem

16 that |S∗| = P ∗, and hence our scheme is optimal for planar demand graphs.

Since [57] also establishes that the minimal feedback edge set can be computed by

a polynomial time algorithm, our coding algorithm is a polynomial time algorithm. Fur-

thermore, Theorem 16 has been extended to a broader class of directed graphs (see, e.g.,

[91]). The smallest directed graph that violates Theorem 16 is the nonplanar complete bi-

partite graph K3,3 depicted in Figure 15. We can potentially improve the rate of our coding

scheme by coding over multiple copies of the demand graph; we consider a demand graph

corresponding to the set of rates nRi→j for each i and j. The capacity needed to transmit

the new values of the rates will be normalized by n to give the capacity needed per use of

the network. For the example of K3,3 graph observe that if we replace each edge in the

graph with n parallel edges, the number of disjoint cycles is at most 1.5n because we have

3n edges directed from left hand side nodes to the right hand side nodes and each cycle
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uses at least two of these edges. On the other hand, for even values of n, 1.5n disjoint

cycles exist. They are formed by nodes 1, 4, 2, 5, 1 and 2, 5, 3, 6, 2 and 1, 4, 3, 6, 1 and use

.5n cycles from each form. However, it is easy to verify that when n = 1, the maximum

number of disjoint cycles is 1. Hence, our scheme requires C0 = 9n−1.5n
n

= 7.5 bits/use of

the network. However, the best bound from (3.22) is that C0 ≥ 7 bits/use of the network,

and this corresponds to the permutation function Π∗ = (1, 3, 5, 2, 4, 6). Yet for this case

there is a linear code with C0 = 7 bits/use of the network. This code will be described in

Subsection 3.

3. Star networks and index coding

In this section we first review the problem of index coding with side information and the

optimal linear coding scheme for it, and then we will discuss the relationship between

the index coding problem and the network coding problem in star networks with node

constraints. We restrict our attention to linear codes over the binary field and we assume

that every edge is used only once, namely we set T = 1. However it is straightforward to

generalize most of the results to the case of coding over multiple time instants with T > 1.

Definition 17 (Index coding with side information [10]) Consider a broadcast network N

with a source node s and destination nodes d1, d2, · · · , dn. The source is connected to the

destinations via a broadcast link and all destinations have access to all of the broadcasted

data. The source has an input of n bits b = [b1, · · · , bn]Tand each di needs the bit bi and

knows a subset of the bits in b. The subset of bits known by each destination is specified by a

side information graph I(V,E) that is a directed graph with n nodes such that (i, j) ∈ E(I)

if node di knows the bit bj . The problem is to find the optimal communication scheme where

s maps b into a binary codeword c = [c1, · · · , cl]T such that every node di can recover bi

from the vector c and the subset of bits in b that it knows. The goal is to minimize the
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length of the broadcast codeword.

In the following we establish a connection between the network coding problem in

node constrained star networks and index coding with side information. For the directed

graphD(V,E) define its line graph LD(V ′, E ′) as the directed graph with node set V ′ = E

and edges (ei, ej) ∈ E ′ if the head of ei and the tail of ej coincide in graphD. For example,

Figure 16 is the line graph corresponding to K3,3.

Lemma 18 The network coding problem in a star network with all capacities other than

C0 being infinite, and in which the rates R0→i and Ri→0 are zero for i ∈ {1, · · · ,M},

is equivalent to the index coding problem in which the side information graph I is a line

graph LD of some directed graph D.

Proof Consider a star network with only a hub node constraint and with the demand graph

D(V,E). Since the only constraint is C0, we merge nodes Oi and Ii together and consider

each node i 6= 0 as a single unit. Without loss of generality we can assume that each node i

sends its uncoded messages to the node I0 and the coding is performed at the node I0. The

length of the coded message will be H(X0) = C0. Also without loss of generality in our

coding scheme,O0 forwards the whole vectorX0 to all nodes i 6= 0.At node i the messages

with destination at node i are decoded from the received vector X0 and the messages from

node i to other nodes. We decompose the decoder at node i into several decoders where
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each decodes one bit from the
∑

j Rj→i messages with destination at node i and each

decoder has access to the vector X0 and
∑

j Ri→j bits of messages with source at node

i. This corresponds to the index coding problem where there are
∑

i,j Ri→j destination

nodes and the broadcast vector, X0, is received by all destinations. Each node in the side

information graph I(V ′, E ′) corresponds to a bit of a message or an edge of the graph

D(V,E). Let di denote the destination of bit ei ∈ E. If we let ei = (u, v) where u, v ∈ V ,

then by the definition of a demand graph, di knows all bits that have a source at v. Therefore

in graph I , ei is connected to ej if and only if ej is of the form (v, w) for some node w ∈ V.

This shows that I is the line graph of the graph D. Conversely if the side information graph

I is of the form LD, then the network coding problem in the star network with demand

graph D corresponds to the index coding with side information graph I.

�

Next we discuss the optimal linear codes for the index coding problem.

Definition 19 Consider a general index coding problem with a side information graph

I(V ′, E ′) for which V ′ = {1, · · · , n} . An n× n matrix A in the binary field is said to fit I

if Ai,i = 1 for i ∈ {1, · · · , n} and Ai,j = 0 if (i, j) /∈ E ′, i 6= j.

Given a matrix A that fits I and the message vector b we form vector c′ = [c′1, · · · , c′n]T by

the transformation c′ = A · b. We will argue that every destination node di will be able to

decode the message bit bi from the vector c′ and its side information bits. Upon receiving

c′, node di first extracts bit c′i from it. Since A fits graph I, c′i can be written as follows:

c′i =
∑
j

Ai,jbj = bi +
∑

j:di knows bj
Ai,jbj.

Then di successfully recovers bi from the equation bi = c′i−
∑

j:di knows bj Ai,jbj since c′i,

{bj : di knows bj} , and A are known at di.
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Next suppose that rank(A) = r and without loss of generality let the first r row of A

be linearly independent. This implies that vector [c′1, · · · , c′r] suffices for reconstructing the

whole vector c′. We choose our transmitted vector to be c = [c′1, · · · , c′r] . Then we have

the following result:

Theorem 20 [Optimal linear code [10]] The length of the optimal linear code for the index

coding problem with side information graph I is minrk(I) , min {rank(A) : A fits I}.

The preceding discussion also suggests that an optimal linear code can be constructed us-

ing a matrix A that fits I and satisfies rank(A) = minrk(I). However, the calculation of

minrk(I) and finding a corresponding matrix can, in general, be NP-Hard [10].

Remark 21 The authors of [10] consider the index coding problem for multiple unicast

sessions. However, Theorem 20 can easily be extended to the multiple multicast case. It

then will correspond to the optimal linear coding scheme of the multiple multicast problem

in node-constrained star networks with only a hub constraint.

Example 22 By applying Theorem 20 we find the optimal network coding scheme for the

star network with demand graphK3,3 and with only node constraintC0. The corresponding

index coding problem has the side information graph LK3,3 as depicted in Figure 16. By
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definition, the matrices that fit LK3,3 have the following form:

A =



1 0 0 y1 y2 0 0 0 0

0 1 0 0 0 y3 y4 0 0

0 0 1 0 0 0 0 y5 y6

0 y7 0 1 0 0 0 0 0

0 0 y8 0 1 0 0 0 0

y9 0 0 0 0 1 0 0 0

0 0 y10 0 0 0 1 0 0

y11 0 0 0 0 0 0 1 0

0 y12 0 0 0 0 0 0 1


where each yj, j ∈ {1, · · · , 12} can either be 0 or 1. We find that minrk(LK3,3) = 7, which

is achieved by setting yj = 1, j ∈ {1, · · · , 12} . We see that this matches the lower bound

of 7 on C0 from the previous section and this shows that linear network coding is optimal

for this problem.
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CHAPTER IV

A MAX-FLOW/MIN-CUT ALGORITHM FOR LINEAR DETERMINISTIC RELAY

NETWORKS

A. Introduction

Our focus in this chapter is on illustrating some connections between the flow of infor-

mation in linear deterministic relay networks (LDRNs) and the submodular flow problem.

Submodular flow was first introduced by Edmonds and Giles [20]. It generalizes the clas-

sical model of network flow and includes several combinatorial optimization problems as

special cases. In the classical model of flow, each edge has a capacity that constrains the

flow through that edge. The submodular flow model replaces these edge constraints with

constraints on the total flow passing through each subset of nodes. These constraints sat-

isfy a certain submodularity property. Frank [29] proved a max–flow/min–cut theorem

for the submodular flow model and polynomial-time algorithms [31] exist for finding the

maximum flow.

The new connection that we make in this chapter to submodular flow will provide us

with powerful tools from submodular optimization theory to study the linear deterministic

model of relay networks. We will use this framework to prove the optimality of a simple,

flow–based coding scheme for LDRNs and to provide polynomial–time algorithms for the

scheme.

In Section B we review the LDRN model and some basic results from [7]. The network

model is a layered graph with the first layer consisting of the source node, the last layer

consisting of the destination node, and each intermediate layer consisting of one or more

relay nodes. The channel model from one layer to the next layer of the network is described

by a transfer function which is a linear function described by matrix multiplication in some
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fixed finite field. We will begin our development in Section C by introducing a notion of

flow from one layer to the next layer. Our flow corresponds to a non–singular submatrix of

the transfer function between two consecutive layers, and it preserves the information sent

from one layer to the next layer. In order to analyze our transmission scheme between two

consecutive layers and to find the set of achievable flows from one layer to the next layer, we

apply the Rado–Hall theorem [68, 93, Ch. 7] from transversal theory [38, 58, 67, 93, Ch.

7]. Transversal theory studies independent structures in matroids. In Section D, we extend

our notion of flow from one layer to the next layer of a network to the flow over the whole

network. This corresponds to a transmission scheme from the source to the destination

of an LDRN. In this section we prove that our flow is a special case of submodular flow

and demonstrate that it is capacity–achieving by using the max–flow/min–cut theorem for

submodular flow.

In Section E, we discuss the algorithmic aspects and computational complexity of

finding the capacity of an LDRN and an optimal transmission scheme for it based on our

flow algorithm. Our algorithms are based on polynomial–time algorithms for obtaining

independent sets for the Rado–Hall theorem [78, Ch. 41] and submodular minimization

[77] as well as algorithms for maximum submodular flow [31, 36].

B. The Linear Deterministic Model of Relay Networks

In this section we describe the LDRN and the corresponding max–flow/min–cut result for it

from [7]. An LDRN is a layered directed networkN with set of nodes V =
⋃M
i=1 Vi, where

Vi denotes the set of nodes in layer i, and set of edges E. Let Vi = {vi(1), · · · , vi(mi)},

where mi denotes the number of nodes in layer i. The first layer consists of a single node

s = v1(1) called the source node, and the last layer consists of a single node t = vM(1)

called the destination node. There is an “edge” from every node in Vi to every node in
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Vi+1 which corresponds to a matrix we will define shortly. Observe that the study of an

arbitrary directed network can also be placed in this framework if one instead considers its

time-expanded representation of the network [7].

During one use of the communication channel between layers i and i+ 1, vi(j) trans-

mits vector xi[j] to the nodes in layer i + 1 and vi+1(k) receives a vector yi+1[k] given

by

yi+1[k] =

mi∑
j=1

Gi[k, j]xi[j],

where Gi[k, j] is a predetermined “transfer function” of the edge (vi(j), vi+1(k)) ∈ E.

Note that we can set Gi[k, j] to be the all-zero matrix if there is no connection from vi(j)

to vi+1(k). When Avestimehr, Diggavi and Tse [7] approximate a Gaussian relay network

with an LDRN they set Gi[k, j] to the (n0 − nk,ji )th power of matrix J, where

• J is a shift matrix of size n0 × n0, i.e., the element in row i and column j of J is one

if i = j + 1 and is zero otherwise,

• nk,ji =

⌈
1
2

log
∣∣∣hk,ji ∣∣∣2⌉ ,

• n0 = maxi,j,k n
k,j
i ,

• hj,ki represents the fading channel from node vi(j) to node vi+1(k).

Here we consider the case where Gi[k, j] has a general form. All vectors and matrices are

over a fixed finite field Fq. One can define

xi =


xi[1]

...

xi[mi]

 ,yi+1 =


yi+1[1]

...

yi+1[mi+1]


and the block matrix Gi = [Gi[k, j]] , 1 ≤ k ≤ mi+1, 1 ≤ j ≤ mi. Then the received

vectors at layer i + 1 are related to the transmitted vectors at layer i by the following
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relationship

yi+1 = Gi · xi.

In general, in one session, each node can successively transmit and/or receive n vec-

tors . Let the superscript 1 ≤ h ≤ n denote the hth transmitted or received vector.

Node s successively sends the vectors x1
s, · · · ,xns to the nodes in V2. Likewise, each node

vi(j) receives all of the vectors y1
i [j], · · · ,yni [j] and subsequently transmits the vectors

x1
i [j], · · · ,xni [j]. The session ends when node t receives vectors y1

t , · · · ,ynt . The received

vectors at layer i+ 1 are related to the transmitted vectors at layer i as follows

yhi+1 = Gi · xhi .

Node vi(j) may in general choose the transmitted vector xhi [j] to be any function of its

received vectors y1
i [j], · · · ,yni [j].

The capacity or maximum rate of reliable information transfer between s and t in the

limit when n is very large can be characterized in terms of the cuts of the network. A cut

Ω is a subset of the nodes V , and Ω is said to separate s and t if s ∈ Ω and t ∈ Ω , V \Ω.

For J ⊆ {1, · · · ,mi} and K ⊆ {1, · · · ,mi+1} define Gi[K, J ] as the submatrix of Gi

which includes the blocks Gi[k, j] with j ∈ J and k ∈ K. Let A = {a : vi(a) ∈ Ω} and

B =
{
b : vi+1(b) ∈ Ω

}
. In an abuse of notation we define

Gi[Ω] , Gi[B,A].

For any cut Ω, let the cut function C(Ω) be given by

C(Ω) =
M−1∑
i=1

rank(Gi[Ω]),

where the rank function is computed in the field Fq. Avestimehr, Diggavi, and Tse [7]

proved
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Theorem 23 The capacity of the networkN is given byC = min
Ω separates s and t

C(Ω).

The minimum of the cut functions considered in Theorem 23 is shown in [7] to be an upper

bound on the network capacity C by means of an information-theoretic cut–set bound [15,

15.10.1]. The capacity–achieving scheme is over a session with n consecutive transmis-

sions at every node. First, node s encodes its message ω ∈
{

1, · · · , qnR
}

as a vector in

FnRq denoted by ys(ω). Relay node vi(j) selects xhi [j] for every 1 ≤ h ≤ n to be a random

linear function of its received vectors y1
i [j], · · · ,yni [j].

It is shown in [7] that if R < C and n is sufficiently large, then with probability ap-

proaching one node t receives nR linearly independent linear combinations of the message

vector ys(ω) from which it will be able to decode message ω.

In contrast to the randomized scheme with large number of blocks proposed in [7], we

offer a deterministic, capacity–achieving scheme in which each node has only one trans-

mission, i.e., n = 1. Our scheme, which can be found in polynomial time, is a closer

counterpart to the flow–based schemes in traditional directed networks than is the scheme

of [7].

C. Transmission from One Layer to the Next Layer

In this section we consider a notion of flow from the nodes in Vi to the nodes in Vi+1 for

1 ≤ i ≤M − 1. Since in our algorithm each node has only one transmission, we hereafter

drop the time superscript.

For a matrix G label the rows of G with elements from a set P and the columns of

G with elements from a set Q. For p ∈ P and q ∈ Q let G(p, q) denote the element in

row p and column q. For A ⊆ P and B ⊆ Q let G(A,B) denote the submatrix of G

consisting of the rows in A and the columns in B. Next consider a partition of the row

indices as P =
⋃m
k=1 P [k] and a partition of the column indices as Q =

⋃n
j=1Q[j]. Given
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Fig. 17. An example of a matrix flow for vector d = (2, 2; 1, 3) in a matrix G with four
blocks. Each small square is an entry of G and the full–rank submatrix is the
intersection of dashed rows with dashed columns.

these partitions, we say that matrix G is a block matrix with m× n blocks and we use the

notation G[k, j] to denote the block G(P [k], Q[j]). Notice that the matrix Gi defined in the

previous section is a block matrix with mi+1 ×mi blocks.

Definition 24 Let d = (h1, · · · , hn; g1, · · · , gm) be a two–part vector of non–negative

integers which satisfies R ,
∑n

j=1 hj =
∑m

i=1 gi. We say that matrix G supports flow d if

there exists a full rank R×R submatrix Ĝ of G such that

Ĝ = G

(
m⋃
k=1

P̂ [k],
n⋃
j=1

Q̂[j]

)

with |P̂ [k]| = gk, |Q̂[j]| = hj , P̂ [k] ⊆ P [k], and Q̂[j] ⊆ Q[j] for all 1 ≤ k ≤ m and

1 ≤ j ≤ n. Furthermore, we say that such a submatrix Ĝ is a solution for flow d and that

it has rate R.

Figure 17 illustrates a matrix flow. For the physical interpretation of flow, suppose that

rows of matrix Gi are indexed by elements of a set P and its columns are indexed by

elements of a set Q. We consider a partition of P =
⋃mi+1

k=1 P [k] and Q =
⋃mi

j=1Q[j] such

that Gi[k, j] = Gi(P [k], Q[j]). Furthermore, we index the elements of each vector xi[j]

with elements of the set Q[j] for 1 ≤ j ≤ mi and the elements of yi+1[k] with elements
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of the set P [k] for 1 ≤ k ≤ mi+1 so that the indices of the elements of xi and yi+1 are

respectively consistent with the indices of the corresponding columns and rows of Gi. For

some vector e with indices of elements in some setH , we let e(z) for z ∈ H be the element

with index z and e(Ĥ) for Ĥ ⊆ H be the subvector of e with elements with indices in Ĥ.

Next, suppose that Gi supports a flow di with rate R which is given by

Ĝi = Gi

(
mi+1⋃
k=1

P̂ [k],

mi⋃
j=1

Q̂[j]

)

with P̂ [k] ⊆ P [k] and Q̂[j] ⊆ Q[j] for all 1 ≤ k ≤ mi+1 and 1 ≤ j ≤ mi. Set every

element of xi[j] with index in Q[j] \ Q̂[j] to zero. Let

x̂i =


xi(Q̂[1])

...

xi(Q̂[mi])

 , ŷi+1 =


yi+1(P̂ [1])

...

yi+1(P̂ [mi+1])

 .
Then our construction implies that

ŷi+1 = Ĝi · x̂i.

Notice that xi(Q̂[j]) has length hj for 1 ≤ j ≤ mi, yi+1(P̂ [k]) has length gk for 1 ≤ k ≤

mi+1, and the vectors x̂i and ŷi+1 each have length R. Since Ĝi is a full–rank matrix, it is

possible to uniquely decode the information x̂i from ŷi+1. Hence this scheme enables R

units of information to flow from the nodes in Vi to the nodes in Vi+1 during a transmission.

Next we provide the necessary and sufficient conditions for matrixG to support a flow

d = (h1, · · · , hn; g1, · · · , gm). Suppose that for W ⊆ {1, · · · ,m} and U ⊆ {1, · · · , n} ,

G[W,U ] denotes the submatrix G(
⋃
k∈W P [k],

⋃
j∈U Q[j]). Then

Theorem 25 Matrix G supports flow d if and only if for every W ⊆ {1, · · · ,m} and

U ⊆ {1, · · · , n} ,
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rank(G[W,U ]) ≥
∑
k∈W

gk +
∑
j∈U

hj −R. (4.1)

This combinatorial property of matrices is, to our knowledge, new and may be of inde-

pendent interest in the theory of matrices as well as in the study of independent structures.

Theorem 25 holds for matrices with entries from an arbitrary field and is therefore more

general than its application to this relay problem. The rest of this section is devoted to the

proof of Theorem 25. A different proof appears in [85].

1. Matroids and Transversal theory

In this section we provide some basic results from matroid theory that we will use later in

our proofs.

First we introduce matroids (see [93, Ch. 1]). Suppose that for a set H, 2H denote the

set of all its subsets.

Definition 26 Given a set E and a function r : 2E → N we say that the pair (E, r) is a

matroid if:

1. r(A) ≤ |A| for all A ⊆ E.

2. If A,B ⊆ E with A ⊆ B, then r(A) ≤ r(B).

3. For any A,B ⊆ E, we have r(A ∪B) + r(A ∩B) ≤ r(A) + r(B).

Consider a matrix G with set of indices of rows P and set of indices of columns Q. Let

E0 , P ∪Q denote the disjoint union of the indices of rows and columns of the matrix G.

We next define the function r0 : 2E0 → N. For every A ⊆ P and every B ⊆ Q we let

r0(A ∪B) , rank(G(A,Q\B)) + |B|. (4.2)
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Theorem 27 (Kung [51])(E0, r0) as defined above is a matroid.

The following is a corollary of Theorem 27 that will be particularly useful in our proofs:

Lemma 28 Given matrix G with sets of indices of rows and columns respectively denoted

by P and Q. For every A1, A2 ⊆ P,B1, B2 ⊆ Q we have

rank(G(A1, Q\B1)) + rank(G(A2, Q\B2)) ≥

rank(G(A1 ∩ A2, Q\(B1 ∩B2))) + rank(G(A1 ∪ A2, Q\(B1 ∪B2))). (4.3)

Proof By Property 3 of a matroid

r0(A1 ∪B1) + r0(A2 ∪B2) ≥ r0((A1 ∩ A2) ∪ (B1 ∩B2)) + r0((A1 ∪ A2) ∪ (B1 ∪B2)).

By expanding function r0 we have

rank(G(A1, Q\B1)) + rank(G(A2, Q\B2)) + |B1|+ |B2| ≥

rank(G(A1 ∩ A2, Q\(B1 ∩B2))) + rank(G(A1 ∪ A2, Q\(B1 ∪B2)))

+ |B1 ∩B2|+ |B1 ∪B2|.

Since |B1|+ |B2| = |B1 ∩B2|+ |B1 ∪B2| the result follows.

�

Finally we will use the following transversal theorem for matroids. In every matroid (E, r),

a set A ⊆ E is an independent set if r(A) = |A|.

Theorem 29 (Rado–Hall [68, 93, Ch. 7]) Let (E, r) be a matroid and A1, · · · , An ⊆ E.

Given non–negative integers `1, · · · , `n, there exists disjoint subsets Â1 ⊆ A1, · · · , Ân ⊆

An with |Âi| = `i and Â1 ∪ · · · ∪ Ân an independent set if and only if for every subset
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I ⊆ {1, · · · , n} the following holds

r

(⋃
i∈I

Ai

)
≥
∑
i∈I

`i.

2. Proof of theorem 25

We next apply the Rado–Hall theorem to the matroid structure of matrices in Theorem 27

to prove Theorem 25.

Consider matrix G with rows and columns indices from P and Q respectively. Define

r0 as in (4.2). By Theorem 27, (P ∪ Q, r0) is a matroid. Next consider the partition of

P ∪Q = P [1]∪· · ·∪P [m]∪Q[1]∪· · ·∪Q[n] as in the setting of Definition 24 and Theorem

25. Assign to each P [k] a non–negative integer gk and to each Q[j] a non–negative integer

hj . By the Rado–Hall theorem, there exist disjoint subsets P̂ [1] ⊆ P [1], · · · , P̂ [m] ⊆ P [m]

and Q̃[1] ⊆ Q[1], · · · , Q̃[n] ⊆ Q[n] such that |P̂ [k]| = gk, |Q̃[j]| = |Q[j]| − hj, and⋃m
i=1 P̂ [k]

⋃n
j=1 Q̃[j] is an independent set in (P ∪ Q, r0) if and only if for every W ⊆

{1, · · · ,m} and J ⊆ {1, · · · , n} we have

r0

(⋃
k∈W

P [k]
⋃
j∈J

Q[j]

)
≥
∑
k∈W

gk +
∑
j∈J

(|Q[j]| − hj). (4.4)

By using the definition of the rank function r0 from (4.2), condition (4.4) is equivalent to

rank

(
G

(⋃
k∈W

P [k], Q\

(⋃
j∈J

Q[j]

)))
+ |
⋃
j∈J

Q[j]| ≥
∑
k∈W

gk +
∑
j∈J

(|Q[j]| − hj)

or

rank

(
G

(⋃
k∈W

P [k], Q\

(⋃
j∈J

Q[j]

)))
≥
∑
k∈W

gk −
∑
j∈J

hj.

Let U = {1, · · · , n} \J. Then the preceding condition is equivalent to having for every

W ⊆ {1, · · · ,m} and for every U ⊆ {1, · · · , n} ,

rank

(
G

(⋃
k∈W

P [k],
⋃
j∈U

Q[j]

))
≥
∑
k∈W

gk +
∑
j∈U

hj −
n∑
k=1

hk =
∑
k∈W

gk +
∑
j∈U

hj −R.
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Next let Q̂[j] = Q[j]\Q̃[j]. By definition,
⋃m
k=1 P̂ [k]

⋃n
j=1 Q̃[j] is an independent set

of the matroid if

r0

(
m⋃
k=1

P̂ [k]
n⋃
j=1

Q̃[j]

)
= |

m⋃
k=1

P̂ [k]
n⋃
j=1

Q̃[j]| =
m∑
k=1

gk +
n∑
j=1

(|Q[j]| − hj).

By the definition of r0 from (4.2), the preceding condition is equivalent to

rank

(
G

(
m⋃
k=1

P̂ [k],
n⋃
j=1

Q̂[j]

))
+

n∑
j=1

(|Q[j]| − hj) =
m∑
k=1

gk +
n∑
j=1

(|Q[j]| − hj).

Therefore
⋃m
k=1 P̂ [k]

⋃n
j=1 Q̃[j] is an independent set of the matroid if

rank

(
G

(
m⋃
k=1

P̂ [k],
n⋃
j=1

Q̂[j]

))
=

m∑
k=1

gk = R. (4.5)

Observe that since G
(⋃m

k=1 P̂ [k],
⋃n
j=1 Q̂[j]

)
has R rows and R columns the condition

above holds if and only ifG
(⋃m

k=1 P̂ [k],
⋃n
j=1 Q̂[j]

)
has full rank. Our argument therefore

implies that there exists a full–rank submatrix G
(⋃m

k=1 P̂ [k],
⋃n
j=1 Q̂[j]

)
with P̂ [1] ⊆

P [1], · · · , P̂ [m] ⊆ P [m] and Q̂[1] ⊆ Q[1], · · · , Q̂[n] ⊆ Q[n] such that |P̂ [k]| = gk and

|Q̂[j]| = hj if and only if for every W ⊆ {1, · · · ,m} and for every U ⊆ {1, · · · , n} ,

rank (G[W,U ]) ≥
∑
k∈W

gk +
∑
j∈U

hj −R.

This proves Theorem 25.

D. Flow in the Network

In this section we generalize the notion from Section C of the flow from a layer to the

next layer to the flow in the entire network. This notion of flow underlies our transmis-

sion scheme for LDRNs. We will show the connection between our flow and submodular

flow and will prove that our transmission scheme is capacity–achieving by applying known

results on maximum submodular flow in networks.
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Fig. 18. A schematic of a rate–3 flow in a relay network with 6 nodes. Here we have

`1(1) = 3, `2(1) = 1, `2(2) = 2, `3(1) = 2, `3(2) = 1, and `4(1) = 3.

Definition 30 Suppose non–negative integers, `i(j), 1 ≤ i ≤ M, 1 ≤ j ≤ mi are given

such that they satisfy
∑mi

j=1 `i(j) = R for every 1 ≤ i ≤ M . We say that vector d =

(`i(j) : 1 ≤ i ≤M, 1 ≤ j ≤ mi) is a rate–R flow supported by network N if for every

1 ≤ i ≤M − 1 the vector

di = (`i(1), · · · , `i(mi); `i+1(1), · · · , `i+1(mi+1))

is a rate–R flow supported by matrix Gi. Figure 18 illustrates a flow in an LDRN.

Suppose that for each 1 ≤ i ≤ M − 1 the row and column indices of matrix Gi are

respectively from elements of the sets Pi and Qi. Consider the partitions Pi =
⋃mi+1

k=1 Pi[k]

and Qi =
⋃mi

j=1 Qi[j], and let Gi[k, j] = Gi(Pi[k], Qi[j]) for every 1 ≤ k ≤ mi+1 and

1 ≤ j ≤ mi. We also use the elements of Pi and Qi to respectively index the elements

of the vectors yi+1 and xi to be consistent with the indices for the rows and columns of

Gi; i.e., yi+1[k] = yi+1(Pi[k]) for every 1 ≤ k ≤ mi+1 and xi[j] = xi(Qi[j]) for every

1 ≤ j ≤ mi.
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Suppose that network N supports flow d = (`i(j) : 1 ≤ i ≤M, 1 ≤ j ≤ mi); i.e.,

every matrix Gi supports a rate–R flow

di = (`i(1), · · · , `i(mi); `i+1(1), · · · , `i+1(mi+1)) .

Let Ĝi = Gi

(⋃mi+1

k=1 P̂i[k],
⋃mi

j=1 Q̂i[j]
)

, where P̂i[k] ⊆ Pi[k] and Q̂i[j] ⊆ Qi[j] denote

the solution of the flow for Gi. Then by the definition of a flow |P̂i[k]| = `i+1(k) for every

1 ≤ k ≤ mi+1 and |Q̂i[j]| = `i(j) for every 1 ≤ j ≤ mi. Define

x̂i =


xi(Q̂i[1])

...

xi(Q̂i[mi])

 , ŷi+1 =


yi+1(P̂i[1])

...

yi+1(P̂i[mi+1])

 .
A rate–R flow supported by network N corresponds to the following simple rate–R

transmission scheme:

Transmission scheme:

Given the length–R encoded vector ys(ω), node s generates vector x1 by setting x̂1 =

ys(ω) and the other entries of x1 to zero. The transformation at every relay node vi(j) is

similar: after receiving vector yi(j), node vi(j) encodes vector xi(j) by setting

xi(Q̂i[j]) = yi(P̂i−1[j]) (4.6)

and setting

xi(Qi[j] \ Q̂i[j]) = 0.

Notice that the dimension of the subvectors on both sides of (4.6) are equal since both have

length `i(j). Finally node t first extracts subvector ŷM from the received vector yM and
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then decodes the encoded message ys(ω) as follows. Observe that for every i,

ŷi+1 = Ĝi · x̂i.

Since Ĝi is a full–rank matrix, we have x̂i = Ĝ−1
i · ŷi+1. Furthermore, from (4.6) we

have x̂i = ŷi. These imply that ys(ω) = G−1
1 G−1

2 · · ·G−1
M−1ŷM . Since the matrices Ĝi are

nonsingular, the decoding operation is well defined.

In this section we prove the following result:

Theorem 31 A network N with capacity C has a rate–R flow if and only if R ≤ C.

This result shows that our coding scheme can achieve the capacity of the network. A

different proof from the one which follows appears in [85]. To analyze our flow, we begin

with some basic definitions and results from the theory of submodular flow:

1. Submodular flow

Here we introduce submodular flow and the corresponding max–flow/min–cut theorem

from [60, §9.3].

Let G(V ,A) be a directed graph with node set V and edge set A. For every a ∈ A, let

∂+a be the tail of a and ∂−a be the head of a. Therefore we can write a = (∂+a, ∂−a). For

each node v ∈ U define

δ+v =
{
a : a ∈ A, ∂+a = v

}
,

δ−v =
{
a : a ∈ A, ∂−a = v

}
.

For H ⊆ V define

∆+H =
{
a : a ∈ A, ∂+a ∈ H, ∂−a ∈ V \H

}
,

∆−H =
{
a : a ∈ A, ∂−a ∈ H, ∂+a ∈ V \H

}
.
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In words ∆+H is the set of edges that are leaving H and ∆−H is the set of edges that are

entering H.

A function ρ : 2V → R ∪ {+∞} is called a submodular set function if for every

X, Y ⊆ V it satisfies

ρ(X) + ρ(Y ) ≥ ρ(X ∩ Y ) + ρ(X ∪ Y ).

In a submodular flow problem we are given a graph G(V ,A), an upper capacity func-

tion cu : A → R ∪ {+∞} , a lower capacity function cl : A → R ∪ {−∞} , and a

submodular set function ρ : 2V → R ∪ {+∞} , where cu(a) ≥ cl(a) for every a ∈ A and

ρ(∅) = ρ(V) = 0. A feasible submodular flow means a function φ : A → R that satisfies

1. for every a ∈ A, cl(a) ≤ φ(a) ≤ cu(a),

2. for every H ⊆ V , ∑
a∈∆+H

φ(a)−
∑

a∈∆−H

φ(a) ≤ ρ(H).

The submodular flow problem is feasible if it admits a feasible flow.

The maximum submodular flow problem is to find a feasible flow φ that maximizes

φ(a0) for a specific edge a0 ∈ A. Formally we have

Maximum submodular flow problem

Maximize φ(a0)

subject to cl(a) ≤ φ(a) ≤ cu(a), for every a ∈ A (4.7)∑
a∈∆+H

φ(a)−
∑

a∈∆−H

φ(a) ≤ ρ(H), for every H ⊆ V (4.8)

φ(a) ∈ R, for every a ∈ A. (4.9)

A max–flow/min–cut theorem holds for this problem:
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Theorem 32 (Max–flow/min–cut theorem for submodular flow [29]) For a feasible maxi-

mum submodular flow problem

max {φ(a0) : (4.7), (4.8), (4.9)} =

min

cu(a0),min
X⊆V

 ∑
a∈∆−X

cu(a)−
∑

a∈∆+X\{a0}

cl(a) + ρ(X) : a0 ∈ ∆+X


 . (4.10)

If cl, cu and ρ are integer valued and (4.10) is finite, then there exists an integer–valued

maximum flow φ : A → Z.

2. Proof of theorem 31

In this section we first construct an auxiliary graph G(V ,A) for the LDRN N . Then we

define a submodular flow problem on the graph G which is equivalent to finding a flow in

our LDRN. The proof of Theorem 31 will follow from an application of Theorem 32 to this

submodular flow problem on graph G.

The auxiliary graph: Define G = (V ,A) by

V = {νi(j) : 2 ≤ i ≤M − 1, 1 ≤ j ≤ mi}∪

{υi(j) : 2 ≤ i ≤M − 1, 1 ≤ j ≤ mi} ∪ {υ1(1), νM(1)}

and

A = {ai(j) : 2 ≤ i ≤M − 1, 1 ≤ j ≤ mi} ∪ {a0}

where ai(j) = (νi(j), υi(j)) and a0 = (νM(1), υ1(1)). (See Figure 19 for an example of

graph G.)

The submodular flow problem on graph G: Fix a positive integer R0. Let cu(a) = +∞

for a ∈ A\{a0}, cu(a0) = R0, and cl(a) = 0 for every edge a ∈ A. To define the function
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Fig. 19. Graph G corresponding to the LDRN in Figure 18.

ρ : 2V → R ∪ {+∞} we need some definitions. For any H ⊆ V and 1 ≤ i ≤M − 1 let

Ji(H) , {j : υi(j) /∈ H} ,

Ki(H) , {k : νi+1(k) ∈ H} .

Consider the correspondence of the indices of the node set V and the node set V and define

ρi(H) , rank(Gi[Ki(H), Ji(H)])

and ρ by

ρ(H) ,
M−1∑
i=1

ρi(H).

Lemma 33 The function ρ defined above is submodular and satisfies ρ(∅) = ρ(V) = 0.

Proof To establish the submodularity of ρ, we need to show that for every H1, H2 ⊆ V ,

ρ(H1) + ρ(H2) ≥ ρ(H1 ∩H2) + ρ(H1 ∪H2).

Fix 1 ≤ i ≤M − 1, and for H ⊆ V let

Fi(H) = {j : υi(j) ∈ H} .
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Notice that Fi(H1 ∩H2) = Fi(H1)∩ Fi(H2), Ki(H1 ∩H2) = Ki(H1)∩Ki(H2), Fi(H1 ∪

H2) = Fi(H1) ∪ Fi(H2), and Ki(H1 ∪H2) = Ki(H1) ∪Ki(H2). Let Qi = {1, · · · ,mi} .

Then

ρi(H) = rank(Gi[Ki(H), Qi\Fi(H)]),

and

ρi(H1) + ρi(H2) = rank(Gi[Ki(H1), Qi\Fi(H1)]) + rank(Gi[Ki(H2), Qi\Fi(H2)])

(a)

≥ rank(Gi[Ki(H1) ∩Ki(H2), Qi\ (Fi(H1) ∩ Fi(H2))])

+ rank(Gi[Ki(H1) ∪Ki(H2), Qi\ (Fi(H1) ∪ Fi(H2))])

= ρi(H1 ∩H2) + ρi(H1 ∪H2),

where (a) follows by Lemma 28. From the preceding inequality and the definition of ρ it

follows that

ρ(H1) + ρ(H2) =
M−1∑
i=1

(ρi(H1) + ρi(H2))

≥
M−1∑
i=1

(ρi(H1 ∩H2) + ρi(H1 ∪H2))

= ρ(H1 ∩H2) + ρ(H1 ∪H2),

which is the desired inequality.

Next observe that Ki(∅) = ∅ and Ji(V) = ∅ for every 1 ≤ i ≤ M − 1. Thus

ρi(∅) = ρi(V) = 0 for every 1 ≤ i ≤M − 1. Therefore ρ(∅) = ρ(V) = 0.

�

The functions cl, cu, and ρ defined above are the setting for a submodular flow problem.

The submodular flow problem is feasible because the flow φ(a) = 0 for every a ∈ A is

always a feasible flow.
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Let Φ be the set of all integer functions φ : A → Z with φ(a0) ≤ R0.Also let D be the

set of all integer vectors d = (`i(j) : 1 ≤ i ≤M, 1 ≤ j ≤ mi) with `1(1) = `M(1) ≤ R0.

Define the bijection T : Φ→ D by T (φ) = (`i(j) : 1 ≤ i ≤M, 1 ≤ j ≤ mi) , where

`i(j) = φ (ai(j)) , 2 ≤ i ≤M − 1, 1 ≤ j ≤ mi

`1(1) = `M(1) = φ(a0).

Lemma 34 The flow φ ∈ Φ is a feasible submodular flow for graph G if and only if the

vector d = T (φ) is a feasible flow in the corresponding network N .

Notice that since for any feasible flow d = (`i(j) : 1 ≤ i ≤M, 1 ≤ j ≤ mi) in networkN

with rate R we have `1(1) = `M(1) = R, the set D includes all feasible flow vectors for

N . Furthermore, the rate R for a feasible flow d = (`i(j) : 1 ≤ i ≤M, 1 ≤ j ≤ mi) is the

value of φ(a0), where φ = T−1(d). Next we prove Lemma 34.

Proof First suppose that φ ∈ Φ is a feasible submodular flow. We begin by showing that

d = T (φ) is a feasible flow in N . Let d = (`i(j) : 1 ≤ i ≤M, 1 ≤ j ≤ mi). First notice

that d is an integer vector with non–negative elements since 0 = cl(a) ≤ φ(a). Next we

show that for every 2 ≤ i ≤M − 1,

mi∑
j=1

`i(j) = `1(1) = `M(1).

Fix a value of 1 ≤ i ≤M−1 and letH = {υi(1), · · · , υi(mi)}∪ {νi+1(1), · · · , νi+1(mi+1)}.

Then Kj(H) = ∅ for j 6= i and Ji(H) = ∅. This implies that for every 1 ≤ j ≤ M − 1,

ρj(H) = 0, and hence ρ(H) = 0. Now by the second condition of a feasible submodular

flow and the fact that ρ(H) = 0 we have

∑
a∈∆+H

φ(a) ≤
∑

a∈∆−H

φ(a).
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For i = 1 the above condition is

m2∑
j=1

φ (a2(j)) ≤ φ(a0). (4.11)

For 2 ≤ i ≤M − 2 the condition is

mi+1∑
j=1

φ (ai+1(j)) ≤
mi∑
k=1

φ (ai(k)) . (4.12)

For i = M − 1 the condition is

φ(a0) ≤
mM−1∑
j=1

φ (aM−1(j)) . (4.13)

Inequalities (4.11), (4.12), (4.13) imply that

mi∑
j=1

φ(ai(j)) = φ(a0)

for 2 ≤ i ≤M − 2, which proves our claim.

Let R = φ(a0). Next we show that

di = (`i(1), · · · , `i(mi); `i+1(1), · · · , `i+1(mi+1))

is a rate–R flow for matrixGi for 1 ≤ i ≤M−1. Fix 1 ≤ i ≤M−1,K ⊆ {1, · · · ,mi+1} ,

and J ⊆ {1, · · · ,mi} . Let H = {υi(j) : j /∈ J} ∪ {νi+1(k) : k ∈ K} . Then for every

l 6= i, we have Kl(H) = ∅ and hence ρl(H) = 0. Also, Ji(H) = J and Ki(H) = K, and

hence ρi(H) = rank(Gi[K, J ]). Therefore ρ(H) = ρi(H) = rank(Gi[K, J ]). The second

condition of a feasible submodular flow implies that

∑
a∈∆+H

φ(a)−
∑

a∈∆−H

φ(a) ≤ rank(Gi[K, J ]).
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We have ∆+H = {ai+1(k) : k ∈ K} and ∆−H = {ai(j) : j /∈ J} . Thus
∑

a∈∆+H φ(a) =∑
k∈K `i+1(k) and

∑
a∈∆−H φ(a) = R−

∑
j∈J `i(j). Therefore

∑
j∈J

`i(j) +
∑
k∈K

`i+1(k)−R ≤ rank(Gi[K, J ])

for every K ⊆ {1, · · · ,mi+1} and J ⊆ {1, · · · ,mi} . Therefore di is a feasible flow for Gi

and d is a feasible flow for network N .

Our next step is to show that if d = (`i(j) : 1 ≤ i ≤M, 1 ≤ j ≤ mi) is a feasible

rate–R flow in network N and d ∈ D, then φ = T−1(d) is a feasible submodular flow

in G. Notice that the first property of a feasible submodular flow is satisfied because d is

a non–negative vector and hence for any ai(j) ∈ A\{a0} , φ(ai(j)) = `i(j) is a non–

negative integer. Furthermore, φ(a0) = `1(1) and 0 ≤ φ(a0) ≤ R0. Next fix H ⊆ V . For

the second property we have to show that:

∑
a∈∆+H

φ(a)−
∑

a∈∆−H

φ(a) ≤ ρ(H).

Let Hi = H ∩ ({υi(1), · · · , υi(mi)} ∪ {νi+1(1), · · · , νi+1(mi+1)}) for 1 ≤ i ≤ M − 1.

We notice that Hi’s for 1 ≤ i ≤ M − 1 form a partition of H, i.e.,
⋃M−1
i=1 Hi = H and

Hi ∩Hj = ∅ for i 6= j. This implies that

∑
a∈∆+H

φ(a)−
∑

a∈∆−H

φ(a) =
M−1∑
i=1

 ∑
a∈∆+Hi

φ(a)−
∑

a∈∆−Hi

φ(a)

 . (4.14)

To arrive at (4.14), observe that each a ∈ ∆+H corresponds to exactly one i such that

a ∈ ∆+Hi and each a ∈ ∆−H corresponds to exactly one i such that a ∈ ∆−Hi. Next

suppose that for some i, a ∈ ∆+Hi but a /∈ ∆+H. This implies that there exists exactly one

j such that a ∈ ∆−Hj. Therefore the terms φ(a) and −φ(a) cancel each other out on the

right hand side. Similarly if for some i, a ∈ ∆−Hi but a /∈ ∆−H , then there exists exactly

one j such that a ∈ ∆+Hj. Therefore the terms −φ(a) and +φ(a) cancel each other out on
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the right–hand side. Therefore the right–hand side of (4.14) is equal to its left–hand side.

Next fix 1 ≤ i ≤ M − 1. We have Ki(H) = Ki(Hi) and Ji(H) = Ji(Hi), and thus

ρi(H) = ρi(Hi). Therefore

ρ(H) =
M−1∑
i=1

ρi(H) =
M−1∑
i=1

ρi(Hi). (4.15)

Since d is a feasible flow in N ,

di = (`i(1), · · · , `i(mi); `i+1(1), · · · , `i+1(mi+1))

is a feasible flow for Gi for 1 ≤ i ≤ M − 1. Let J = Ji(Hi) and K = Ki(Hi). By the

feasibility of di we have

∑
j∈J

`i(j) +
∑
k∈K

`i+1(k)−R ≤ rank(Gi[K, J ]).

By substituting rank(Gi[K, J ]) = ρi(Hi),
∑

k∈K `i+1(k) =
∑

a∈∆+Hi
φ(a), and R −∑

j∈J `i(j) =
∑

a∈∆−Hi
φ(a) we find that

∑
a∈∆+Hi

φ(a)−
∑

a∈∆−Hi

φ(a) ≤ ρi(Hi). (4.16)

Summing the preceding inequalities for 1 ≤ i ≤M − 1 and by using (4.14) and (4.15) we

find that φ satisfies the second property of a submodular flow.

�

Next we prove the following lemma:

Lemma 35 The maximum feasible submodular flow φ(a0) in graph G is min {R0, C} .

Proof We use Theorem 32 to prove this result. We need to find the value of

γ = min

cu(a0),min
X⊆V

 ∑
a∈∆−X

cu(a)−
∑

a∈∆+X\{a0}

cl(a) + ρ(X) : a0 ∈ ∆+X


 .
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Since cu(a0) = R0 and cl(a) = 0 for every a ∈ A, we have

γ = min

[
R0,min

X⊆V

{ ∑
a∈∆−X

cu(a) + ρ(X) : a0 ∈ ∆+X

}]
.

Furthermore, since for every a ∈ A\{a0}, cu(a) = +∞, we can restrict the minimization

to the subsets X such that ∆−X = ∅. Therefore if for 2 ≤ i ≤ M − 1, νi(j) /∈ X ,

we should also have υi(j) /∈ X. In addition, since a0 ∈ ∆+X, we have νM(1) ∈ X and

υ1(1) /∈ X. Next suppose that for X ⊆ V we have ∆−X = ∅, a0 ∈ ∆+X , and for some

2 ≤ i ≤M−1 and 1 ≤ j ≤ mi we have νi(j) ∈ X and υi(j) /∈ X. SetX ′ = X∪{υi(j)} .

We still have ∆−X ′ = ∅ and a0 ∈ ∆+X ′. Also for every l 6= i, Kl(X) = Kl(X
′)

and Jl(X ′) = Jl(X). Thus, ρl(X ′) = ρl(X). But we have Ji(X ′) = Ji(X) \ {j} and

Ki(X
′) = Ki(X). Therefore, rank(Gi[Ki(X

′), Ji(X
′)]) ≤ rank(Gi[Ki(X), Ji(X)]) and

ρi(X
′) ≤ ρi(X). Consequently ρ(X ′) ≤ ρ(X). This shows that for computing γ, X can be

ignored given the set X ′. In this way we can consider the minimization only over the sets

X ⊆ V such that a0 ∈ ∆+X and for every 2 ≤ i ≤ M − 1 and 1 ≤ j ≤ mi, either νi(j)

and υi(j) are both in X or are both out of X. Call the set of all such sets X and let M be

the set of all cuts in network N that separate s from t. Consider the bijection B : X→M

in which B(X) = {s}
⋃
{vi(j) : 2 ≤ i ≤M − 1, 1 ≤ j ≤ mi, υi(j) /∈ X} . In words, if

for 2 ≤ i ≤ M − 1 and 1 ≤ j ≤ mi, the nodes νi(j) and υi(j) are both out of X we

include vi(j) in B(X) and if are both in X we exclude vi(j) from X . Furthermore, we let

s ∈ B(X) and t /∈ B(X). In this way every separating cut in network N corresponds to a

set X ∈ X and vice versa. Observe that Gi[Ki(X), Ji(X)] is the transfer function from the

nodes υi(j) /∈ X to the nodes νi+1(k) ∈ X in graph G, which is the same as the transfer

function from the nodes vi(j) ∈ B(X) to the nodes vi+1(k) /∈ B(X) in N . Therefore
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Gi[Ki(X), Ji(X)] = Gi[B(X)]. Thus

ρ(X) =
M−1∑
i=1

ρi(X) =
M−1∑
i=1

rank(Gi[Ki(X), Ji(X)])

=
M−1∑
i=1

rank(Gi[B(X)]) = C(B(X)).

Therefore for every X ∈ X, ρ(X) = C(B(X)), and the result follows by

γ = min

{
R0,min

X∈X
ρ(X)

}
= min

{
R0, min

Ω∈M
C(Ω)

}
= min {R0, C} .

�

We have chosen cl and ρ(H) to be integer valued. Also cu(a) can be selected as a very

large integral constant for all edges in A\{a0} and is an integer for a0 with cu(a0) = R0.

Therefore the second part of Theorem 32 implies that a submodular flow with φ(a0) =

min {R0, C} is feasible in G with integer values for every integer R0 ≥ 0. By Lemma 34,

all flows with rate R0 ≤ C are achievable in N , proving Theorem 31.

E. Algorithmic Discussion

In this section we offer a two–part discussion on the complexity of constructing a trans-

mission scheme for network N . We begin by finding a solution for a feasible flow for a

matrix.

Lemma 36 Given matrixG as in Definition 30, a feasible flow d = (h1, · · · , hn; g1, · · · , gm)

can be found in time O(d6), where d is the maximum number of rows and columns of G.

Proof We use some basic facts and results from matroid theory. In Subsection 1 we saw

one definition of a matroid in terms of the rank function r. Next consider the following

equivalent definition of a matroid which focuses upon its independent sets:
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Definition 37 Given a set E and a family of its subsets I, we say that the pair (E, I) is a

matroid if:

1. ∅ ∈ I.

2. If A ∈ I, then B ∈ I for every B ⊆ A.

3. If X, Y ∈ I and |X| > |Y |, then there exists x ∈ X such that x /∈ Y and Y ∪ {x} ∈

I.

I is the set of all independent sets of the matroid.

For our purpose we construct a matroid as follows. Given a set E and a family of

disjoint subsets A1, · · · , An of E, let `1, · · · , `n be non–negative integers. Let

I =

{
X : X =

n⋃
i=1

Xi, Xi ⊆ Ai, |Xi| ≤ `i

}
. (4.17)

We next show thatM2 = (E, I) is a matroid with the set I of independent sets by con-

sidering the conditions of Definition 37. The first and second properties are easy to check

from the definition. For the third property, consider two subsets X, Y ∈ I with |X| > |Y |.

Suppose that X =
⋃n
i=1Xi and Y =

⋃n
i=1 Yi, where Xi, Yi ⊆ Ai, |Xi| ≤ `i, |Yi| ≤ `i.

Since |X| > |Y |, there exists 1 ≤ i ≤ n such that |Xi| > |Yi|. Therefore Xi\Yi is non–

empty. Choose an element x ∈ Xi such that x /∈ Yi, and let Zi = Yi ∪ {x} . Since Zi ⊆ Ai

and |Zi| = |Yi|+1 ≤ |Xi| ≤ `i the set Y ∪{x} = Y1∪· · ·∪Yi−1∪Zi∪Yi+1∪· · ·∪Yn ∈ I,

and therefore the third condition is satisfied.

Let M1 = (E, r) be another matroid with rank function r defined on the set E.

Let I1 = {X : X ⊆ E, |X| = r(X)} represent the set of all independent sets of M1. In

the maximum–size common independent set problem (see [78, Ch. 41]) we look for a set

M ∈ I ∩ I1 of maximum cardinality, i.e., |M | = maxI∈I∩I1 |I|. Suppose that there exists

disjoint subsets Â1 ⊆ A1, · · · , Ân ⊆ An with |Âi| = `i and Â = Â1 ∪ · · · ∪ Ân an
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independent set inM1. We observe that in this case Â is a solution of the maximum–size

common independent set problem. There are polynomial–time algorithms for solving the

maximum–size common independent set problem; for instance, the “cardinality matroid

intersection algorithm” of [78, §41.2] has a complexity of O(`2|E|(` + t)) where in our

setting ` = `1 + · · ·+ `n, and t is the maximum time needed to evaluate r(A) for any subset

A ⊆ E.

Returning to the problem of finding a solution for a feasible flow, suppose that ma-

trix G admits a flow d = (h1, · · · , hn; g1, · · · , gm). As we have shown in the proof of

Theorem 25, finding a solution Ĝ to the flow d is equivalent to finding subsets P̂ [1] ⊆

P [1], · · · , P̂ [m] ⊆ P [m] and Q̃[1] ⊆ Q[1], · · · , Q̃[n] ⊆ Q[n] such that |P̂ [k]| = gk

and |Q̃[j]| = |Q[j]| − hj and
⋃m
k=1 P̂ [k]

⋃n
j=1 Q̃[j] is an independent set in the matroid

(P ∪ Q, r0). Let t be the time needed to evaluate r0 for any subset of P ∪ Q, where r0

is defined in (4.2), and let d be the maximum number of rows and columns of G. By the

previous argument, the approach of applying the cardinality matroid intersection algorithm

of [78, §41.2] has complexity O(`2|P ∪Q|(`+ t)), where

` =
m∑
i=1

gi +
n∑
j=1

(|Q[j]| − hj) =
n∑
j=1

|Q[j]| = |Q| ≤ d.

To evaluate r0 we need to find the rank of a submatrix of the matrixG,which has a complex-

ity of at most O(d3) by the Gaussian elimination technique [6]. Also since |P ∪ Q| ≤ 2d,

we find that the total complexity of this problem is O(`2|P ∪Q|(`+ t)) = O(d6).

�

We next discuss the complexity of finding a rate–R flow in network N when R ≤ C.

Lemma 38 Given rateR, the complexity of finding a flow d in networkN with rateR ≤ C

is O(|V |9d3M).
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Proof As we discussed in the proof of Theorem 31, finding a flow vector d in N with

rate R is equivalent to finding a maximum submodular flow in graph G. There are several

polynomial–time algorithms for the latter problem. Here we use the one which is described

in [31], which has a running time of O(|V|3tm). The notation |V| denotes the number of

nodes in graph G, and tm represents the time needed to evaluate the following minimization

problem for some two fixed nodes u, v ∈ V , and for some fixed function η : V → R :

min

{
ρ(X)−

∑
x∈X

η(x) : X ⊆ V , v ∈ X, u /∈ X

}
.

This problem is a “submodular minimization problem” [36] and can be solved in time

tm = O(|V|6tρ) by the submodular minimization algorithm in [77], where tρ is the time of

evaluating function ρ for any subset of V . Since ρ(X) =
∑M−1

i=1 ρi(X), there are M − 1

rank evaluations needed to calculate the function ρ. In each step we have to evaluate the

rank of a submatrix of a matrix Gi, which if we assume an upper bound of d on each of

its dimensions, requires O(d3) time by the Gaussian elimination technique [6]. Therefore

tρ = O(d3M) and tm = O(|V|6d3M). Finally O(|V|3tm) = O(|V|9d3M) = O(|V |9d3M)

is the complexity of finding a flow vector of rate R in network N .

�

The algorithm in Lemma 38 finds the flow vector d and consequently every di for 1 ≤

i ≤ M − 1. Then by Lemma 36, for each Gi we can find a solution Ĝi in time O(d6),

1 ≤ i ≤M−1, leading to a total complexity for this part ofO(d6M). The total complexity

for constructing our coding scheme will be O(|V |9d3M) +O(d6M).

In order to most effectively use Lemma 38, we need to know the capacity of the

network N .

Lemma 39 The capacity of the network N can be found in time O(|V |6Md3).
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Proof Let Ωs be the set of all cuts that separate s from t in the network N . We first show

that the function C(Ω) : Ωs → Z is a submodular set function. Let Ω1,Ω2 ∈ Ωs. We

observe that Ω3 = Ω1 ∩ Ω2 and Ω4 = Ω1 ∪ Ω2 are also in Ωs. Fix i ∈ {1, · · · ,M − 1}

and let P = {1, · · · ,mi+1} . For j ∈ {1, 2, 3, 4} define Aj = {a : vi(a) ∈ Ωj} and Bj =

{b : vi+1(b) ∈ Ωj} . By definition,Gi[Ωj] = Gi[P \Bj, Aj].AlsoA1∩A2 = A3, B1∩B2 =

B3, A1 ∪ A2 = A4, and B1 ∪ B2 = B4. By applying Lemma 28 to the transpose of matrix

Gi it follows that

rank(Gi[Ω1]) + rank(Gi[Ω2])

= rank(Gi[P \B1, A1]) + rank(Gi[P \B2, A2])

≥ rank(Gi[P \ (B1 ∩B2), (A1 ∩ A2)]) + rank(Gi[P \ (B1 ∪B2), (A1 ∪ A2)])

= rank(Gi[P \B3, A3]) + rank(Gi[P \B4, A4])

= rank(Gi[Ω3]) + rank(Gi[Ω4]).

Summing the preceding inequality over all values of i ∈ {1, · · · ,M − 1} we find that

C(Ω1) + C(Ω2) ≥ C(Ω3) + C(Ω4),

which is the submodularity relationship.

Since the capacity C is the minimum value of the set {C(Ω) : Ω ∈ Ωs} we can use the

submodular function minimization algorithm of [77] to find C in time O(|V |6tC), where

tC is the time needed for calculating function C(Ω) for any Ω ∈ Ωs. This calculation

involves M − 1 rank calculation each of a submatrix of matrix Gi for 1 ≤ i ≤ M − 1.

As we discussed in the proof of Lemma 38, this has a total time complexity of O(Md3).

Therefore we can find the capacity in time O(|V |6Md3).

�
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CHAPTER V

A DETERMINISTIC POLYNOMIAL–TIME ALGORITHM FOR CONSTRUCTING A

MULTICAST CODING SCHEME FOR LINEAR DETERMINISTIC RELAY

NETWORKS

A. Introduction

In this chapter we build upon our work in [85, 84] to design a simple and low complexity

transmission scheme for a multicast session over an LDRN. Our scheme will be constructed

by progressively combining the coding schemes for unicast sessions from the source to

each destination. In many ways our scheme is similar to and is a generalization of the

scheme in [37] for a multicast session in wired networks. We will offer both randomized

and deterministic versions of our algorithm and show that when there are g destinations,

dlog(g + 1)e uses of the network suffice to achieve capacity, which resembles the result for

wired networks [37].

We will next review our earlier results on a single unicast session [85, 84] in Section

B and then discuss our coding construction for a multicast session in Section C.

B. A Single Unicast Session

In this section we briefly explain the coding scheme for a single unicast session from [85,

84]. This will be the building block of our multicast coding scheme. The setting of the

network in this chapter is similar to the setting of the network in Chapter IV by noticing

that here we consider g destination nodes of tl , vKl
(dl), l ∈ {1, · · · , g}, distributed in

layers K1, K2, · · · , Kg.

Recall that for each i ∈ {1, · · · ,M − 1} the transmitted vector of layer i and the

received vector of layer i+ 1 are related through matrix Gi by yi+1 = Gixi.
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For each layer i ∈ {1, · · · ,M} label the indices of the vector yi with the elements of

a set Pi and label the indices of the vector xi with the elements of a set Qi. We choose all

sets Pi and Qi to be disjoint for different values of i. For any A ⊆ Pi, let yi(A) denote the

subvector of yi corresponding to indices with labels from set A. Similarly, for anyB ⊆ Qi,

let xi(B) denote the subvector of xi associated with indices with labels from set B. Next

partition each set Pi into subset Pi = ∪mi
j=1Pi[j] and Qi into subsets Qi = ∪mi

j=1Qi[j]

such that Pi[j] is the subset of indices of yi that belong to the subvector yi[j] and Qi[j] is

the subset of indices of xi that belong to the subvector xi[j]. Therefore we have yi[j] =

yi(Pi[j]) and xi[j] = xi(Qi[j]) for any j ∈ {1, · · · ,mi} . For any i ∈ {1, · · · ,M − 1} we

will use the sets Pi+1 and Qi to label the rows and the columns of the matrix Gi such that

for each p ∈ Pi+1 the row of Gi corresponding to the element yi+1(p) is labeled with p and

for each q ∈ Qi the column of Gi corresponding to the element xi(q) is labeled with q. For

p ∈ Pi+1 and q ∈ Qi let Gi(p, q) denote the element in row p and column q of matrix Gi.

For A ⊆ Pi+1 and B ⊆ Qi let Gi(A,B) denote the submatrix of Gi consisting of the rows

in A and the columns in B. Our labeling implies that Gi(Pi+1[k], Qi[j]) = Gi[k, j] for any

j ∈ {1, · · · ,mi} and k ∈ {1, · · · ,mi+1} .

If node s holds a column vector message w ∈ FR×1 and we are looking at a linear

coding scheme, then at each layer i ∈ {1, · · · ,M} , each element of vectors xi and yi

will be a linear transformation of the vector w. We represent the “global coding vector”

(see [37]) for the element xi(q), q ∈ Qi, with row vector xi(q) ∈ F1×R such that xi(q) =

xi(q)w and the global coding vector for the element yi(p), p ∈ Pi, with row vector yi(p) ∈

F1×R such that yi(p) = yi(p)w. For subsetsB ⊆ Qi andA ⊆ Pi we use the notationxi(B)

and yi(A) to respectively denote the matrices that are formed by the vectorsxi(q) and yi(p)

for q ∈ B and p ∈ A. Therefore we have xi(B) = xi(B)w and yi(A) = yi(A)w.

Suppose that the network supports a rate–R unicast connection between source node

s and a destination node t = vK(d) for K ≤M and d ∈ {1, · · · ,mK} . The main result of
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[85, 84] can be summarized in the following theorem:

Theorem 40 For each 1 ≤ i ≤ K and for each 1 ≤ j, k ≤ mi there exist subsets Q̂i[j] ⊆

Qi[j] and P̂i[k] ⊆ Pi[k] such that the following hold

1. |P̂i[j]| = |Q̂i[j]| for i ∈ {1, · · · , K} , j ∈ {1, · · · ,mi} ,

2.
∑mi

j=1 |P̂i[j]| =
∑mi

j=1 |Q̂i[j]| = R, for i ∈ {1, · · · , K − 1} ,

3. |P̂K [d]| = R and |P̂K [k]| = 0 for k 6= d,

4. Gi(
⋃mi+1

k=1 P̂i+1[k],
⋃mi

j=1 Q̂i[j]) is a nonsingular matrix for i ∈ {1, · · · , K − 1} .

Furthermore such subsets can be found by an algorithm that runs in a time that is polyno-

mial in the size of the network N .

We call the subsets Q̂i[j] ⊆ Qi[j] and P̂i[k] ⊆ Pi[k] for i ∈ {1, · · · ,M} and j, k ∈

{1, · · · ,mi} a flow of rate R in the LDRN from the source node s to the destination node

t.

The four properties of a flow in Theorem 40 depend on G1, ..., GM−1 and do not

depend on the specific choice of the set P̂1[1] among all subsets of P1[1] with size R.

Therefore, if there exists a rate–R flow, we can set P̂1[1] to be any subset of P1[1] of size

R.

Notice that the existence of a flow of rate R implies the following simple and low

complexity coding scheme of rateR from the source s to the destination t: To send message

w ∈ FR×1, source node s = v1(1) sets y1(P̂1[1]) = w and y1(P1[1] \ P̂1[1]) = 0. Next,

any node vi(j), i ∈ {1, · · · ,M} , j ∈ {1, · · · ,mi} , in the network forms the vector xi[j]

by setting

xi(Q̂i[j]) = yi(P̂i[j]).

We say that element p ∈ P̂i[j] is “matched” with element q ∈ Q̂i[j] when xi(q) is set to

yi(p) through the preceding equation (see Figure 20 for an example of a flow). We further
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Fig. 20. An example of a rate–3 flow from the source node s to the destination node t1. Here
the matched elements of flow are connected together through dashed lines.

let xi(Qi[j] \ Q̂i[j]) = 0. From the properties of flow it follows that at the destination

t = vK(d)

xK(Q̂K [d])

= GK−1(P̂K [d],

mK−1⋃
j=1

Q̂K−1[j]) · · ·G2(

m3⋃
k=1

P̂3[k],

m2⋃
j=1

Q̂2[j])G1(

m2⋃
k=1

P̂2[k], Q̂1[1])w.

Since each matrix Gi(
⋃mi+1

k=1 P̂i+1[k],
⋃mi

j=1 Q̂i[j]) is nonsingular, node t can recover vector

w from the received vector xK(Q̂K [d]) through a linear transformation.

C. A Coding Scheme for a Multicast Session

Assume that there are g destination nodes t1, · · · , tg in the network and the min–cut ca-

pacity from the source node s to each destination is at least R. We are interested in a

multicast coding scheme in which all destinations can simultaneously receive the message

w ∈ FR×1 of the source. Our scheme will be designed by combining the flows of rate R

from the source to each destination.

Suppose that tl = vKl
(dl) for l ∈ {1, · · · , g} . From Theorem 40 for each tl, l ∈

{1, · · · , g}, there exists a flow with subsets P l
i [k] ⊆ Pi[k] andQl

i[j] ⊆ Qi[j] for 1 ≤ i ≤ Kl
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and 1 ≤ j, k ≤ mi such that:

1. |P l
i [j]| = |Ql

i[j]| for i ∈ {1, · · · , Kl} , j ∈ {1, · · · ,mi} ,

2.
∑mi

j=1 |P l
i [j]| =

∑mi

j=1 |Ql
i[j]| = R, for i ∈ {1, · · · , Kl − 1} ,

3. |P l
Kl

[dl]| = R and |P l
Kl

[k]| = 0 for k 6= dl,

4. Gi(
⋃mi+1

k=1 P l
i+1[k],

⋃mi

j=1Q
l
i[j]) is a nonsingular matrix for i ∈ {1, · · · , Kl − 1} .

Since P l
1[1], l ∈ {1, · · · , g} , can be any subset of P1[1] of size R, we set all subsets

P l
1[1], l ∈ {1, · · · , g} , to be the same subset of P1[1].

Our design criterion for a multicast coding scheme is that for each destination tl, l ∈

{1, · · · , g} , at each layer i ∈ {1, · · · , Kl} , the global coding vectors correponding to the

elements of the vectors yi(P
l
i [j]) for j ∈ {1, · · · ,mi}must be linearly independent vectors

and hence the length–R vector

yi

(
mi⋃
j=1

P l
i [j]

)
can uniquely determine the message vector w. In other words we require for each destina-

tion tl and each layer i ∈ {1, · · · , Kl} :

• Condition (*): the matrix yi
(⋃mi

j=1 P
l
i [j]
)

must be nonsingular.

The destination node tl = vKl
(dl) will receive the length–R vector

yKl
(P l

Kl
[dl]) = yKl

(P l
Kl

[dl])w.

Since yKl
(P l

Kl
[dl]) is a nonsingular matrix, tl will be able to decode message w.

Notice that at each node vi(j) for i ∈ {2, · · · ,M} we only have control over the

design of the coding vectors xi(q) for q ∈ Qi[j] which can be a linear function of the

coding vectors {yi(p) : p ∈ Pi[j]} . The coding vectors yi(p) for p ∈ Pi[j] are determined

from the coding vectors of the previous layer and matrix Gi−1. In our design we will assign
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coding vectors layer by layer, starting from the first layer. At each layer iwe fix an arbitrary

order on the elements of the set Qi and assign the coding vectors xi(q) in this order.

Initialization: We start from the first layer. Since P l
1[1] is the same subset for every

l ∈ {1, · · · , g} we set y1(P l
1[1]) = IR×R, i.e., the R×R identity matrix, and set y1(P1[1] \

P l
1[1]) = 0 for every l ∈ {1, · · · , g} . In other words we set y1(P l

1[1]) = w and y1(P1[1] \

P l
1[1]) = 0 for every l ∈ {1, · · · , g}. Therefore Condition (*) will be satisfied for all

destinations in the first layer.

Inductive Step: We continue our coding construction inductively. Suppose that the

Condition (*) holds for layer i and for all destinations tl = vKl
(dl) with Kl ≥ i. Next

we will design the coding vectors xi(q) for q ∈ Qi one by one and in the order of the

elements of Qi so that at the end the Condition (*) holds for layer i+ 1 and all destinations

tl = vKl
(dl) with Kl ≥ i+ 1.

At this step of the algorithm for each destination tl with Kl ≥ i + 1 we maintain two

matrices. One is the matrix Al which is initially

Al = yi

(
mi⋃
j=1

P l
i [j]

)
,

and is updated throughout the algorithm. The other matrix is

Fl = Gi(

mi+1⋃
k=1

P l
i+1[k], Q′l),

where initiallyQ′l =
⋃mi

j=1Q
l
i[j] and it is updated throughout the algorithm. Throughout the

algorithm we maintain the invariance that the product FlAl is a nonsingular matrix for every

destination tl withKl ≥ i+1. We will also verify that after all of the elements ofQi are pro-

cessed, for every destination tl withKl ≥ i+1 we will have FlAl = yi+1

(⋃mi+1

j=1 P l
i+1[j]

)
,

which is sufficient for Condition (*) to hold at layer i+ 1.

Al is initially invertible since Condition (*) holds for layer i. Matrix Fl is also initially
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nonsingular by the definition of a flow to destination tl given in Theorem 40. Therefore the

product FlAl is initially nonsingular. Next we will explain the design of the coding vector

xi(q) for q ∈ Qi and describe the updating process of Fl and Al for every destination tl

with Kl ≥ i+ 1. We consider two cases:

1. If q is part of the flow for destination tl, i.e., q ∈ Ql
i[j] for some j ∈ {1, · · · ,mi} ,

then update matrixAl by replacing row yi(pl) with xi(q),which we will later explain

how to design starting with the Analysis of Case 1 below. Here pl ∈ P l
i [j] is the

unique element that is matched with q ∈ Ql
i[j] in the flow for destination tl. There is

no change needed for matrix Fl.

2. If q is not part of the flow for destination tl, then update Al by adding a new row

xi(q) to it and insert a column Gi(
⋃mi+1

k=1 P l
i+1[k], {q}) into Fl so that the set of col-

umn indices grows from Q
′

l to Q′l ∪ {q}. In this step we place xi(q) in the row

of Al counting from the top which is the same as the position of the new column

Gi(
⋃mi+1

k=1 P l
i+1[k], {q}) in the updated Fl counting from the left. The constraints on

xi(q) will be discussed in the Analysis of Case 2.

When we have gone through all of the elements of Qi, Fl would be Gi(
⋃mi+1

k=1 P l
i+1[k], Qi)

and Al would be the matrix xi(Qi). Therefore we have

FlAl = Gi(

mi+1⋃
k=1

P l
i+1[k], Qi)xi(Qi) = yi+1

(
mi+1⋃
j=1

P l
i+1[j]

)

where the second equation holds since Gi is the transfer matrix from xi(Qi) = xi to yi+1.

This equation guarantees that yi+1

(⋃mi+1

j=1 P l
i+1[j]

)
is nonsingular, as desired.

Next we analyze each case and find the condition that xi(q) needs to satisfy in order

for FlAl to remain nonsingular:



111

1. Analysis of case 1

Without loss of generality suppose that xi(q) is the first row of Al and that matrix Al after

the update is of the form

Al =

 xi(q)
A′l

 .

Therefore Al before the update is of the form

 yi(pl)
A′l

 . We require that the matrix FlAl

be nonsingular. We write

Fl =

[
α F ′l

]
,

where α ∈ FR×1 is the first column of Fl. Let us define H =

[
α F ′l

] yi(pl)
A′l

 ,
which is the matrix FlAl resulting from the previous step and is nonsingular by the inductive

assumption.

Theorem 41 Let γ l = H−1α. In Case 1, if xi(q) is chosen such that

1 + (xi(q)− yi(pl))γ l 6= 0, (5.1)

then after the updating process FlAl remains nonsingular.

Proof Using standard matrix calculus, FlAl after the updating process can be written as

FlAl =

[
α F ′l

] xi(q)
A′l


= αxi(q) + F ′lA

′
l.

We can write

F ′lA
′
l = H −αyi(pl)
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and therefore

FlAl = H +α(xi(q)− yi(pl)).

For the moment suppose that FlAl is singular. This means that there exist a non–zero

column vector β ∈ FR×1 with FlAlβ = 0. This implies that

Hβ +α(xi(q)− yi(pl))β = 0. (5.2)

Since α = Hγ l, (5.2) can be rewritten as

Hβ +Hγ l(xi(q)− yi(pl))β = H(β + γ l(xi(q)− yi(pl))β) = 0.

Since H is nonsingular, the identity holds if and only if

β + γ l(xi(q)− yi(pl))β = 0.

If we premultiply the vectors from both sides of the preceding vector equation by xi(q)−

yi(pl), we find that

(xi(q)− yi(pl))β + (xi(q)− yi(pl))γ l(xi(q)− yi(pl))β

= (1 + (xi(q)− yi(pl))γ l)(xi(q)− yi(pl))β = 0.

The expression above is product of two numbers (1 + (xi(q) − yi(pl))γ l) and (xi(q) −

yi(pl))β. We argue that (xi(q) − yi(pl))β is not zero. Observe that if this number was

zero, then equation (5.2) and the nonsingularity of H would imply that Hβ and β are both

zero vectors, contradicting our assumption that β is a non–zero vector. Therefore

1 + (xi(q)− yi(pl))γ l = 0.
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This argument implies that for FlAl to be nonsingular it is sufficient to have the following

inequality:

1 + (xi(q)− yi(pl))γ l 6= 0.

�

2. Analysis of case 2

The analysis is very similar to Case 1. Without loss of generality assume that the new row

is added to the bottom of Al and the new column is added to the right of Fl. After the

update Al is of the form

Al =

 A′l

xi(q)

 .
Here A′l represents matrix Al before the update. Also matrix Fl after the update is of the

form

Fl =

[
F ′l α

]
,

where α ∈ FR×1 is the new column added to F ′l , which is the matrix Fl before the update.

Our inductive assumption implies that H = F ′lA
′
l is nonsingular. We again let γ l = H−1α.

Theorem 42 In Case 2, if xi(q) is chosen such that

1 + xi(q)γ l 6= 0, (5.3)

then after the updating process FlAl remains nonsingular.

Proof We can write

FlAl = H +αxi(q).

FlAl is singular if there exists a non–zero vector β such that

FlAlβ = Hβ +αxi(q)β = 0.
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Since α = Hγ l, the preceding equations can be rewritten

FlAlβ = Hβ +Hγ lxi(q)β = H(β + γ lxi(q)β) = 0. (5.4)

Since H is nonsingular, (5.4) implies

β + γ lxi(q)β = 0.

If we premultiply both sides of the preceding equation by xi(q) we obtain

xi(q)β + xi(q)γ lxi(q)β = xi(q)β(1 + xi(q)γ l) = 0.

The previous equality holds if either xi(q)β = 0 or if 1 + xi(q)γ l = 0. If xi(q)β = 0

then by (5.4) Hβ = 0, which together with the invertibility of H implies that β = 0. But

β 6= 0 by assumption. Therefore if FlAl is a singular matrix, we have

1 + xi(q)γ l = 0.

The preceding argument implies that FlAl is nonsingular if

1 + xi(q)γ l 6= 0.

�

3. A randomized algorithm and the existence of a solution

Let us summarize the analysis up to this point. Here we fix a node q ∈ Qi and concentrate

on the design of the coding vector xi(q). The coding vector xi(q) can be assigned in a way

that meets our requirements if

τ ,
∏

tl:q∈Ql
i[j],j∈{1,··· ,mi}

(1 + (xi(q)− yi(pl))γ l)
∏

tl:q /∈Ql
i[j],j∈{1,··· ,mi}

(1 + xi(q)γ l) 6= 0.
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In the preceding equation tl is restricted to the destinations for which Kl ≥ i + 1, and the

vectors γ l and yi(pl) are specified in the analyses of Cases 1 and 2.

One other constraint is that xi(q) can only be a linear combination of the vectors

{yi(p) : p ∈ Pi[j]} . Let us set xi(q) =
∑

p∈Pi[j]
θpyi(p). The following theorem through

a probabilistic argument guarantees the existence of a valid solution for the coefficients θp

when |F| > g:

Theorem 43 If xi(q) =
∑

p∈Pi[j]
θpyi(p) and the coefficients {θp : p ∈ Pi[j]} are chosen

from the uniform distribution over the field F and |F| > g, then with positive probability

τ 6= 0.

Proof For each destination tl with Kl ≥ i+ 1 define φl as the event that the corresponding

term in the defining product of τ is zero. Then we have

Pr(τ = 0) = Pr(
∨

tl:Kl≥i+1

φl) ≤
∑

tl:Kl≥i+1

Pr(φl).

Now consider a destination tl with Kl ≥ i+ 1. If q ∈ Ql
i[j] and pl ∈ P l

i [j] is matched with

q, we need to have 1 + (xi(q) − yi(pl))γ l 6= 0. There exist ω0 ∈ F, ωp ∈ F, p ∈ Pi[j],

which are determined by yi(p), p ∈ Pi[j], and γ l and satisfy

1 + (xi(q)− yi(pl))γ l = ω0 +
∑
p∈Pi[j]

ωpθp

There are two cases to consider. First, if ωp = 0 for all p ∈ Pi[j], then ω0 +
∑

p∈Pi[j]
ωpθp =

ω0 is a constant independent of θp, p ∈ Pi[j]. Furthermore by setting θpl
= 1 and θp = 0

for p ∈ Pi[j] and p 6= pl so that xi(q) = yi(pl), we find that

ω0 = 1 + (xi(q)− yi(pl))γ l = 1.

Therefore in this case Pr(φl) = 0.Next if there exists some p ∈ Pi[j] for which ωp 6= 0 then

ω0 +
∑

p∈Pi[j]
ωpθp depends on θp, p ∈ Pi[j]. Since θp, p ∈ Pi[j], are uniformly distributed
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random variables over F, ω0 +
∑

p∈Pi[j]
ωpθp is likewise uniformly distributed over F. In

this case Pr(φl) = 1
|F| .

Next suppose that q /∈ Ql
i[j]. Here we need to have 1 + xi(q)γ l 6= 0. Following

the preceding argument, there exist ω0 ∈ F, ωp ∈ F, p ∈ Pi[j], which are determined by

yi(p), p ∈ Pi[j], and γ l and satisfy

1 + xi(q)γ l = ω0 +
∑
p∈Pi[j]

ωpθp.

If ωp = 0 for all p ∈ Pi[j], then ω0 +
∑

p∈Pi[j]
ωpθp = ω0 is a constant independent of

θp, p ∈ Pi[j]. By setting θp = 0 for all p ∈ Pi[j] so that xi(q) = 0, we obtain ω0 =

1 + xi(q)γ l = 1, and Pr(φl) = 0. If there is some p ∈ Pi[j] for which ωp 6= 0, then an

analogous argument to our earlier one implies that Pr(φl) = 1
|F| .

As a result, for any destination tl with Kl ≥ i+ 1, we have Pr(φl) ≤ 1
|F| . Therefore

Pr(τ = 0) ≤
∑

tl:Kl≥i+1

Pr(φl) ≤
g

|F|
.

Since we are interested in the event that τ 6= 0, we have

Pr(τ 6= 0) ≥ 1− g

|F|
.

Therefore if |F| > g, then Pr(τ 6= 0) > 0 and there is at least one valid solution for xi(q).

This also yields a randomized algorithm with probability of success of at least 1 − g
|F| . If

we take the size of the field to be |F| ≥ 2g then the probability of success will be at least

1− g
2g

= 1
2
.

�
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4. A deterministic polynomial time algorithm

We next describe a deterministic algorithm with polynomial running time for finding the

vectors xi(q), q ∈ Qi[j]. For each q ∈ Qi we seek a vector u = xi(q) which is a linear

combination of the vectors in {yi(p) : p ∈ Pi[j]} such that for any destination tl with Kl ≥

i + 1, if q ∈ Ql
i[j] and pl ∈ P l

i [j] is matched with q, then 1 + (u − yi(pl))γ l 6= 0, and if

q /∈ Ql
i[j] then 1 + uγ l 6= 0.

Define the subset of indices of destinations W as

W =
{
l ∈ {1, · · · , g} : Kl ≥ i+ 1, q ∈ Ql

i[j] for some j ∈ {1, · · · ,mi} ,yi(pl)γ l 6= 0
}
.

We can express the conditions that u needs to satisfy as


1 + (u− yi(pl))γ l 6= 0, for l ∈ W,

1 + uγ l 6= 0, for l /∈ W and Kl ≥ i+ 1.

(5.5)

In the following two steps we are going to find a vector u that is a linear combination of

the vectors {yi(p) : p ∈ Pi[j]} and satisfies the above conditions:

Step 1: Find a vectorw which is a linear combination of the vectors {yi(pl) : l ∈ W}

and satisfies wγ l 6= 0 for every l ∈ W.

Step 2: Set u = σw for some σ ∈ F to meet the constraints of (5.5).

To demonstrate the validity of this procedure we begin by using a result from [37] to

show that Step 1 is feasible if |F| ≥ g:

Lemma 44 ([37, Lemma 8]) Let n ≤ |F|. Let a1, · · · ,an ∈ F1×R and b1, · · · , bn ∈ FR×1

with aibi 6= 0, i ∈ {1, · · · , n} . There exists a linear combination c of a1, · · · ,an such that

cbi 6= 0, i ∈ {1, · · · , n} . Such a vector c can be found in time O(n2R).

By applying the preceding lemma, if g ≤ |F| then |W | ≤ |F|, and we can find a vector

w ∈ F1×R such that w is a linear combination of the vectors in {yi(pl) : l ∈ W} and for
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every l ∈ W, we have that wγ l 6= 0. Next given g < |F| we prove the feasibility of Step 2:

Lemma 45 Given vector w from Step 1, there exists σ ∈ F such that u = σw satisfies

(5.5).

Proof For l ∈ W, we require 1 + (σw − yi(pl))γ l 6= 0. Therefore

σ 6= yi(pl)γ l − 1

wγ l
. (5.6)

For l /∈ W and Kl ≥ i+ 1 we need to have 1 + σwγ l 6= 0. If wγ l = 0 then this condition

holds for all values of σ. Otherwise we need to have

σ 6= −1

wγ l
. (5.7)

There are at most g constraints of the form (5.6) and (5.7) on σ. Therefore if the size of

field F is greater than the number of destinations g, this deterministic approach will find at

least one σ that is not in the discriminating set by considering at most g elements of F.

�

Theorem 46 The overall complexity of constructing the multicast coding scheme by using

the deterministic algorithm in Steps 1 and 2 is

O(gmMr(mrR +R3 + gR + (mr)2 logmr)).

Proof If we are given the set of vectors γ l, then it takes O(gR) steps to form the set W.

Given set W and g ≤ |F|, Lemma 44 implies that we can find a vector w ∈ F1×R in

time O(g2R). By adding the time O(gR) needed to produce set W, we need a total time of

O(g2R + gR) = O(g2R) to find vector w. The complexity of finding an appropriate σ by

forming the discriminating set in Lemma 45 isO(g) and therefore the complexity of finding

vector u is O(g + g2R) = O(g2R). To find the overall complexity of finding the vector
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xi(q),we need to evaluate the complexity of finding vector γ l for every l ∈ {1, · · · , g}with

Kl ≥ i+1. From the analyses of Cases 1 and 2, γ l = H−1α, where matrix H is FlAl from

the previous step of the algorithm. Since matrix Fl has size R × L and matrix Al has size

L×R for some R ≤ L ≤ |Qi|, computing H needs O(R|Qi|) operations. Evaluating H−1

also needs O(R3) steps and so there are a total of O(R|Qi|+R3) operations for evaluating

γ l. Since there are at most g different l ∈ {1, · · · , g} with Kl ≥ i + 1, we will have

O(gR|Qi|+gR3) as the total complexity of evaluating different values of γ l for any specific

q ∈ Qi. Therefore the total complexity of evaluating xi(q) will beO(gR|Qi|+gR3 +g2R).

Let us assume that the number of nodes mi at each layer i ∈ {1, · · · ,M} is at most m.

Furthermore assume that the size of transmitted and received signals at each node is at

most r. Therefore the total complexity of evaluating each xi(q) will be O(gRmr + gR3 +

g2R). Since there are at most mMr different xi(q) to be evaluated, if we assume that

the unicast flows from source to each destination is provided, the total complexity of our

algorithm is O(gRm2Mr2 + gR3mMr + g2RmMr) = O(gRmMr(mr +R2 + g)). The

complexity of computing a unicast flow to a destination by the algorithm given in [33] is

O(M(mr)3 logmr). Since we have g destinations, the total complexity of computing the

unicast flows will be O(gM(mr)3 logmr). If we add this running time to the running time

of our algorithm, the total running time will beO(gmMr(mrR+R3+gR+(mr)2 logmr)).

�

We can compare the running time of our algorithm to the running time of the algoithm given

in [18] which isO(g(r2mM+R)3 log(r2mM+R)+r2mM(r2mM+R)2+(g log gRM)3)

and see that our proposed algorithm is considerably faster.
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5. Number of network uses to achieve capacity

We have shown that it is sufficient for the size of the field of operation F of the LDRN to be

greater than g to guarantee the existence of a multicast coding solution. In general however,

the network operates over some fixed field which is usually Fp for some prime number p.

In order to achieve a greater field size, we will use multiple rounds of the network. Here

we will argue that if we use the network for k rounds, it is equivalent to an LDRN with

field of operation F = Fkp. This implies that in order to have a field size at least g + 1, it is

sufficient to use the network for k =
⌈
logp(g + 1)

⌉
rounds.

Suppose that the network is used for k rounds and we use the superscript 0 ≤ t ≤ K−

1 to denote the time index that a vector is received or sent. For each i ∈ {1, · · · ,M − 1}

we have

yti+1 = Gix
t
i, 0 ≤ t ≤ K − 1.

Observe we can use a dummy variable D as the unit delay operator and represent the

preceding k equations as a single equation

k−1∑
t=0

yti+1D
t = Gi

k−1∑
t=0

xtiD
t.

Next, notice that
∑k−1

t=0 yti+1D
t and

∑k−1
t=0 xtiD

t can be regarded as new vectors in the ex-

tension field Fkp and we can assume that the network is operating in the extension field Fkp.

Since the transfer matrix between the layers i and i + 1 is still Gi and has not changed in

the new field, the existence of the unicast flow over the original field implies the existence

of flow over the extended field. Therefore our analysis is valid over any field Fkp.
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CHAPTER VI

CONCLUSIONS

In this dissertation we considered different topologies of wired and wireless networks and

proposed network coding schemes with low-complexity encoding and decoding at the in-

termediate nodes of the network. We used a variety of tools and ideas from combinatorics,

graph theory, linear algebra, and submodular optimization theory to study the optimality of

our coding schemes and to offer low-complexity algorithms to design the coding schemes.

In the first part we gave a new characterization of the routing capacity region of wired

networks. We also offered an elimination technique that reduces the initial characteriza-

tion from an infinite set of inequalities into a finite and minimal set of inequalities. Our

technique led to a simple characterization of the routing capacity region of undirected ring

networks in two different scenarios. In a related work [39], we study the new character-

ization from a computational complexity point of view. For future work it is interesting

to study the design of efficient algorithms for computing the set of minimal inequalities.

Another direction of research is to quantify the approximation of the routing capacity re-

gion with a subset of the inequalities in the minimal set. For the study of undirected ring

networks we have also devised new information theoretic bounds that are stronger than

the known cut set bounds. We believe that such bounds can be applied to a larger class of

networks to obtain tighter outer bounds on the network coding capacity region of networks.

In the second part we studied the network coding capacity region of node-constrained

line and star networks. As another direction of research one can study more complex net-

work structures such as tree networks or lattice networks. We believe that our coding con-

structions can be extended to such structures to obtain optimal or near-optimal transmission

schemes.

In the last part we studied the linear deterministic relay model of wireless networks
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from a combinatorial point of view. In particular, we applied tools from matrix theory,

matroid theory, and submodular optimization theory to devise polynomial-time algorithms

for a unicast connection or a multicast connection in the network. Our algorithm is similar

to a routing scheme for wired networks in the case of a unicast connection and is similar

to the algorithm of Jaggi et al. [37] in the case of a multicast connection. We also offered

polynomial-time algorithms for finding the transmission schemes. For future work it would

be interesting to extend our techniques to the multiple unicast connections. If this is possi-

ble it may lead to new results for the transversal theory of matrices. Another direction of

study would be to investigate if our coding techniques could be used to construct codes for

Gaussian relay networks. The recent paper [69] offers initial results along these lines.
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APPENDIX A

Here we prove Theorem B.2 from Chapter II. A rate vector R = (R1, · · · , R|S|) is routable

in a network G(V,E) if and only if the following linear program has a solution for {rT}:

1.
∑

T∈Ts
rT ≥ Rs for every s ∈ S

2.
∑

s∈S
∑

T∈Ts:e∈T rT ≤ Ce for every e ∈ E.

3. 0 ≤ rT , for every T ∈ Ts and every s ∈ S.

Notice that the first set of inequalities can be changed to equalities, but it is equivalent and

more convenient here to work with inequalities.

Label the elements of E and S from 1 to |E| and from 1 to |S| respectively. Also

label the elements of Ts, by T 1
s , · · · , T

|Ts|
s . For e ∈ {1, · · · , |E|}, s ∈ {1, · · · , |S|}, T js ∈

{T 1
s , · · · , T

|Ts|
s }, let

δs
e,T j

s
=

 1, e ∈ E(T js )

0, otherwise.

Define

r =

(
rT 1

1
, · · · , r

T
|T1|
1
, · · · , rT 1

|S|
, · · · , r

T
|T|S||
|S|

)T
(A.1)

c =
(
C1, · · · , C|E|,−R1, · · · ,−R|S|, 0, · · · , 0

)T (A.2)
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and matrix M as follows:

M =



δ1
1,T 1

1
. . . δ1

1,T
|T1|
1

δ
|S|
1,T 1
|S|

. . . δ
|S|

1,T
|T|S||
|S|

... . . . ... . . .
... . . . ...

δ1
|E|,T 1

1
. . . δ1

|E|,T |T1|1

δ
|S|
|E|,T 1

|S|
. . . δ

|S|

|E|,T
|T|S||
|S|

−1 . . . −1 0 . . . 0
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. (A.3)

Then a routing-feasible assignment of {rT : T ∈ Ts, s ∈ S } satisfies the following matrix

inequality:

Mr ≤ c. (A.4)

Farkas’ lemma (see, e.g., [100, §1.4]) provides necessary and sufficient conditions for the

feasibility of a system of linear inequalities. The following lemma applies Farkas’ lemma

to inequality (A.4):

Lemma .1 (Farkas) There exists a solution to (A.4) if and only if every row vector vT with
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v ≥ 0 and vTM = 0 satisfies vT c ≥ 0.

We define

vT =
(
v1, · · · , v|E|, v|E|+1, · · · , v|E|+|S|, v|E|+|S|+1, · · · , v|E|+|S|+∑s∈S |Ts|

)
. (A.5)

Note that the steps of Fourier-Motzkin elimination maintain rational or integral rate coeffi-

cients throughout the procedure; this is why we need not consider irrational edge distances.

Equation vTM = 0 implies:

∑
e∈E

veδ
s
e,T j

s
− v|E|+s − v|E|+|S|+zj

s
= 0, s ∈ S, j ∈ {1, · · · , |Ts|}, (A.6)

where

zjs =

 |T1|+ |T2|+ · · ·+ |Ts−1|+ j, s ∈ S, s > 1, j ∈ {1, · · · , |Ts|}

j, s = 1, j ∈ {1, · · · , |T1|}

Therefore by Lemma .1, for every v ≥ 0 satisfying (A.6), the inequality vT c ≥ 0 must

hold. It can be written as

v|E|+1R1 + v|E|+2R2 + · · ·+ v|E|+|S|R|S| ≤
∑
e∈E

veCe. (A.7)

Fix a distance vector a = (a1, · · · , a|E|) and let

va = {v ≥ 0 : (v1, · · · , v|E|) = (a1, · · · , a|E|)}

. Then for v ∈ va inequality (A.6) can be written as

La(T js )− v|E|+s − v|E|+|S|+zj
s

= 0, s ∈ S, j ∈ {1, · · · , |Ts|}, (A.8)

and inequality (A.7) can be written as

v|E|+1R1 + v|E|+2R2 + · · ·+ v|E|+|S|R|S| ≤
∑
e∈E

aeCe. (A.9)
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Since v|E|+|S|+zj
s
≥ 0, then by (A.8), v|E|+s ≤ La(T js ) for every s and j. Therefore for

every v ∈ va, v|E|+s can be bounded from above by minj La(T js ) = `a(s). Observe that it

is possible to choose v|E|+s = `a(s) for every s by setting v|E|+s = `a(s) and v|E|+|S|+zj
s

=

La(T js )− `a(s). Next notice that the left hand side of (A.9) is maximized among vectors in

va when the values of v|E|+s are maximized; i.e., when v|E|+s = `a(s). Equivalently (A.9)

holds if and only if the following inequality is satisfied:

∑
s∈S

`a(s)Rs ≤
∑
e∈E

aeCe; (A.10)

this is the routing bound corresponding to the distance vector a.
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APPENDIX B

Here we prove Lemma B.3 from Chapter II. We begin by introducing some terminology

and a result from [76, Ch. 8].

Let E be an arbitrary nonempty subset of the inequalities from (2.1) that define the

polytope P of all routing-feasible rate vectors. Let F represent the collection of rate-vectors

in P that satisfy each inequality in E with equality. If F is nonempty, it is called a face of

the polytope P . A face F of P is said to be a facet of P if there is no face F ′ 6= F of P for

which F ⊂ F ′. The following result from [76, §8.4] is central to the proof of Lemma B.3:

Theorem .2 ([76], Theorem 8.2) Suppose polytope P has no inequality which is always

satisfied by equality. Further assume that Ax ≤ b is a minimal set of inequalities that

define P . Let ATi denote the ith row of A and let bi denote the ith element of column vector

b. For each row i, there is a one-to-one correspondence between the defining halfspace

ATi x ≤ bi and a facet Fi of P given by Fi = {R ∈ P : ATi R = bi}, where we represent

rate-tuples as column vectors. Furthermore Ax ≤ b is the unique minimal representation

of P up to the multiplication of inequalities by positive scalars.

To apply the preceding theorem we must first establish that there is no inequality in

(2.1) that is always satisfied with equality. We assume that there is at least one Steiner tree

in the network corresponding to each session s ∈ S so that there is at least one rate-tuple

with Rs > 0 for each s ∈ S. Next consider the inequality corresponding to the distance

vector a 6= 0. Let Fa = {R ∈ P :
∑

s∈S `a(s)Rs =
∑

e∈E aeCe}. If R is a rate-tuple on

the face Fa, then R is not the all-zero vector. Furthermore, for any 0 < ε < 1, εR will be

a feasible rate-tuple not on Fa. Therefore, this inequality can not be always satisfied with

equality.
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To complete the proof of the lemma, observe that if for two distance vectors a and

b the face Fa is included in Fb, then Fa is not a facet of P. By the previous theorem, the

inequality corresponding to distance vector a cannot be part of a minimal representation of

P . Hence distance vector a is redundant in the presence of distance vector b.
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APPENDIX C

Here we provide an algebraic proof for Proposition B.5 from Chapter II. Given distance

vector a = (a1, · · · , a|E|), let Ms, s ∈ {1, . . . , |S|}, denote the number of shortest routing

trees for session s. Assume without loss of generality that for a fixed s, La(T sj ) is non-

decreasing with j so that

La(T s1 ) = · · · = La(T sMs
) = `a(s).

Suppose that (R1, . . . , R|S|) is a routable rate-tuple lying on the hyperplane
∑

s∈S `a(s)Rs =∑
e∈E aeCe. By Condition 1) of Lemma B.4 it follows that

∑
s∈S

`a(s)Rs =
∑
s∈S

`a(s)
Ms∑
j=1

rT s
j

=
∑
s∈S

Ms∑
j=1

La(T sj )rT s
j

=
∑
e∈E

aeCe.

Define δ̃e,(s,j) to be one if edge e is in the jth shortest routing tree for session s with respect

to distance vector a and 0 otherwise. Then by writing each La(T sj ) as the sum of the edge

distances ae for which edge e occurs in the jth shortest routing tree for session s, we see

that

`a(s) = La(T sj ) =
∑
e∈E

δ̃e,(s,j)ae, s ∈ S, j ∈ {1, · · · ,Ms}. (C.1)

Condition 1) of Lemma B.4 states that edge e is used by session s only if e is on a short-

est routing tree for s. Therefore the partial flow of session s through routing tree T sj is

δ̃e,(s,j)rT s
j
, which is zero for j > Ms. Condition 2) of Lemma B.4 states that every edge

with a non-zero distance is fully utilized. Therefore if ae > 0 for e ∈ E, then

∑
s∈S

Ms∑
j=1

δ̃e,(s,j)rT s
j

= Ce. (C.2)
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Set S to be the |E|×|E| diagonal matrix with diagonal entries σe =
∑

s∈S
∑Ms

j=1 δ̃e,(s,j)rT s
j
−

Ce, and setD to be the |E|×|E| diagonal matrix with diagonal entries de = be
ae

when ae 6= 0

and de = 0 when ae = 0. It follows from (C.2) that SaT = 0, and hence DSaT = 0 as

well. Diagonal matrices commute, so SDaT = 0. Consider any edge e ∈ E. If ae 6= 0

then deae = be. If ae = 0, then deae = 0, and Condition 1) of Proposition B.5 implies that

be = 0. Therefore deae = be in this case as well. Thus DaT = bT = (b1, · · · , b|E|)T and it

follows that SbT = 0. Therefore,

0 =
∑
e∈E

σebe =
∑
s∈S

Ms∑
j=1

(∑
e∈E

δ̃e,(s,j)be

)
rT s

j
−
∑
e∈E

beCe. (C.3)

By Condition 2) of Proposition B.5, Lb(T s1 ) = · · · = Lb(T sMs
) = `b(s) for each s ∈ S,

and the counterpart to (C.1) is

`b(s) = Lb(T sj ) =
∑
e∈E

δ̃e,(s,j)be, s ∈ S, j ∈ {1, · · · ,Ms}. (C.4)

Substituting (C.4) into (C.3) we obtain

0 =
∑
s∈S

Ms∑
j=1

`b(s)rT s
j
−
∑
e∈E

beCe =
∑
s∈S

`b(s)Rs −
∑
e∈E

beCe,

and so (R1 · · · , R|S|) does lie on the hyperplane
∑

s∈S `b(s)Rs =
∑

e∈E beCe.

Thus, if a routable rate-tuple (R1, · · · , R|S|) is on the hyperplane corresponding to a,

then it is also on the hyperplane corresponding to b. Since the routing rate region can be

described in terms of its defining hyperplanes, the bound given by the hyperplane for a is

redundant assuming we already have the bound given by the hyperplane given by b.
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APPENDIX D

Fig. 21. An instance of a distance vector of type 1 on a ring network.

Here we prove Theorem C.5 from Chapter II. Properties 1 and 2 are trivially satisfied in

this case. Next we show that Property 3 also holds. We begin our discussion with unicast

sessions. Consider two arbitrary vertices o and d of the network as in Figure 21 and the

unicast session s from o to d. Recall that for any two vertices i and j and distance vector a,

La(i, j) represents the length of the clockwise path from i to j on the ring with respect to

the vector a. Suppose La(d, o) < La(o, d). We wish to show that Lb(d, o) ≤ Lb(o, d) so

that the shortest path between two vertices remains shortest for b. We first discuss the case

for which there are at least two edges on the clockwise path from d to o with edge distance

of 1 in b. Consider an arbitrary edge α on the clockwise path from d to o such that bα = 1.

Let β denote the next edge after α on the path from d to o in the clockwise direction

with bβ = 1. Let C(o, d) denote the clockwise path from o to d. Since bα = bβ = 1,

there must be at least two distinct vertices, say γ and η, on C(o, d) for which the diameter

starting from these points will intersect the arcs corresponding to edges α and β (see Figure

21). Next consider the diameter starting from point corresponding to vertex α + 1. This

diameter should intersect C(o, d) at an edge between vertices η and γ. Therefore, for each

pair of successive edges on the clockwise path from d to o with unit edge distances in b
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there is an edge on the clockwise path from o to d with unit edge distance in b. Thus

Lb(d, o) − 1 ≤ Lb(o, d). Furthermore, the two diameters starting from vertices o and

d intersect C(o, d), and will produce two more unit edge distances in b that we have not

yet counted. Thus we have Lb(d, o) ≤ Lb(o, d). To complete this argument, consider

the case with Lb(d, o) = 0; in this case apparently 0 = Lb(d, o) ≤ Lb(o, d). Finally, if

Lb(d, o) = 1, we know that at least one of the diameters starting from o or d will produce

a unit edge distance on C(o, d), and hence 1 = Lb(d, o) ≤ Lb(o, d).

Next we show that Property 3 holds for broadcast sessions. Since the trees for routing

broadcast sessions are the collection of paths consisting of all but one edge in the network,

a shortest tree for a broadcast session corresponds to omitting an edge with maximal edge

distance. Since bk ∈ {0, 1} for all k, we have to show that if ai is a maximal edge distance

in a then bi = 1. To arrive at a contradiction, assume that bi = 0. Then it follows that there

is another edge j for which the diameters starting from vertices i and i + 1 both intersect

the arc corresponding to edge j. Hence aj > ai, which contradicts the maximality of ai.
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APPENDIX E

Here we prove Theorem C.6 from Chapter II. To construct b for a Type 2 of distance

vector a, we use the Basic Generation Procedure, or the Basic Generation Procedure

followed by the change of a particular edge distance from 0 to 1. Observe that Property 1 is

trivially satisfied. Since we are only considering positive distance vectors a, then Property

2 also holds. We next discuss Property 3. Assume that {p, q} is the unique pair of vertices

satisfying La(p, q) = La(q, p). There are two subcases to consider:

1. Suppose the Basic Generation Procedure produces a vector b with Lb(p, q) =

Lb(q, p). Then in this case we do not need to make any changes to vector b. Let us

study a unicast session between two vertices o and d and show that Property 3 holds

for it. If the clockwise path from p to q includes the clockwise path from o to d, then

La(o, d) < La(d, o). Similarly, Lb(o, d) ≤ Lb(p, q) = Lb(q, p) ≤ Lb(d, o), which

shows that Property 3 holds for the unicast session between o and d. A symmetric

argument holds for the case where o and d are both located on the counterclockwise

path from p to q.

Next assume that o is located on the clockwise path from p to q and d is located on

the counterclockwise path from p to q and that La(o, d) < La(d, o) as depicted in

Figure 22. (By the assumption, La(o, d) 6= La(d, o).) By the same argument as in

the proof of Theorem C.5, we can show that for each pair of successive edges on

the clockwise path from o to q with unit distance in b, there is an edge with unit

distance on the clockwise path from d to p. Hence Lb(o, q)− 1 ≤ Lb(d, p). Observe

that the diameter originating at vertex o will intersect an edge between d and p, and
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Fig. 22. An instance of case 1 on a ring network.

will produce another unit edge distance which we have not yet counted. (Note that

vertex q can not produce any extra unit distance edge as the diameter originating

at this vertex intersects the circle at p.) Thus, Lb(o, q) ≤ Lb(d, p). By symmetry,

Lb(q, d) ≤ Lb(p, o). By summing these two inequalities we obtain

Lb(o, d) = Lb(o, q) + Lb(q, d) ≤ Lb(d, p) + Lb(p, o) = Lb(d, o)

which shows that Property 3 holds for the unicast session between o and d.

The argument for broadcast sessions from Theorem C.5 also holds for this case with-

out any change, and so Property 3 is satisfied for broadcast sessions in this case as

well.

Fig. 23. An instance of case 2 on a ring network.

2. Next suppose the lengths of the different paths between p and q do not remain the

same for vector b. We first describe how to modify distance vector b and we then

show that the resulting distance vector b satisfies Property 3. Figure 23 depicts the

circle corresponding to the edge distances in a. Observe that ap 6= aq since the



147

unicast session between p+ 1 and q + 1 do not have two equal length routing paths.

Assume without loss of generality that ap > aq. Consider the clockwise path from

q + 1 to p and the clockwise path from p to q. With an argument similar to that for

Type 1 distance vectors we can show that corresponding to every pair of successive

edges with unit distance in b on the first path, there is an edge with unit distance

on the second path. Thus we have Lb(q + 1, p) − 1 ≤ Lb(p, q). Observe that the

diameter originating at vertex q + 1 intersects the second path between vertices p

and p + 1 and produces another unit edge distance which we have not yet counted.

Furthermore, edge q will not be intersected by any diameter and thus bq = 0. We

have the following relationship:

Lb(q, p) = Lb(q + 1, p) ≤ Lb(p, q).

Now consider Figure 24 in which we have moved the point corresponding to vertex

Fig. 24. The situation in case 2 after moving q on C.

q an arbitrarily small distance ε in the counterclockwise direction. If we apply the

Basic Generation Procedure on this new set of edge distances and call the resulting

binary set of distance vector b′, then b′i = bi for all edges except for edge q which is

intersected by the diameter originating at vertex p, and possibly for edge p−1 which

is now intersected by the diameter originating at vertex q; i.e., b′p−1 = b′q = 1. If

we use the argument for Type 1 distance vectors here, we find that for every pair of

successive unit edge distances in b′ for the edges on the clockwise path from p to q
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there is another edge with distance one on the clockwise path from q to p, and thus

Lb′(p, q)− 1 ≤ Lb′(q, p). On the other hand note that the two diameters originating

at vertices p and q both produce two edges with unit distance in b′ which we have

not yet counted. Thus Lb′(p, q) + 1 ≤ Lb′(q, p). Using the relationship of elements

in b′ and b we have Lb′(p, q) = Lb(p, q) and Lb′(q, p) = Lb(q, p) + 1 + (1− bp−1).

Thus we have

Lb(p, q) ≤ Lb(q, p) + (1− bp−1).

Recall that Lb(q, p) ≤ Lb(p, q). Therefore the condition Lb(q, p) 6= Lb(p, q) implies

bp−1 = 0, and in this case we have Lb(p, q) = Lb(q, p) + 1. In order to obtain

Lb(q, p) = Lb(p, q) we manually change the value of bq from zero to one in b. We

next show that Property 3 holds for distance vector b.

First we consider the unicast sessions. For all unicast sessions where both the source

and destination are on the clockwise or counterclockwise path from p to q we use the

argument from the preceding case. Next consider the unicast session between two

vertices o and d, where o is located on the clockwise path from p to q and d is located

on the counterclockwise path from p to q on the ring. First assume that the shortest

Fig. 25. The situation in case 2 with the shorter path from o to d in the clockwise direction.

path between o and d by a is the clockwise path from o to d (see Figure 25) . Using the

argument for Type 1 distance vectors, we conclude that for every pair of successive

unit edge distances on the clockwise path from o to q there is another unit edge

distance on the clockwise path from d to p, and for every pair of successive unit edge
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distances on the clockwise path from q + 1 to d there is another edge with distance

of one on the clockwise path from p to o. Since we have reset bq = 1, we obtain

Lb(o, q)− 1 ≤ Lb(d, p) and Lb(q, d)− 2 ≤ Lb(p, o). Thus Lb(o, d)− 3 ≤ Lb(d, o).

Now if the diameters starting at q+ 1 and d generate two distinct unit edge distances

in b, these two along with the one generated by the diameter starting at o will add

three more ones to Lb(d, o) and result in Lb(o, d) ≤ Lb(d, o).

However it might happen that the diameters starting at q+1 and d both intersect edge

p on C. In this case we use the following argument. We have Lb(p, q) = Lb(q, p) as

the result of the modifications. Therefore 1 + Lb(p + 1, q) = 1 + Lb(q + 1, p) and

hence Lb(p+ 1, q) = Lb(q + 1, p). However Lb(q + 1, p) = Lb(d, p) because there

is no diameter intersecting the clockwise path between q + 1 and d. To arrive at a

contradiction, suppose that there is at least one diameter intersecting the clockwise

path between q + 1 and d. By assumption the diameters starting at q + 1 and d both

intersect edge p on C, and it follows that any diameter that intersects the clockwise

path between q + 1 and d must originate at a vertex between vertices p and p +

1. However there is no vertex between p and p + 1, and so there is no diameter

intersecting the clockwise path between q + 1 and d. Therefore Lb(q + 1, p) =

Lb(d, p). Thus Lb(p+ 1, q) = Lb(d, p). Since Lb(p+ 1, q) + 1 = Lb(p+ 1, d) and

Lb(d, p) + 1 = Lb(d, p+ 1), we have Lb(p+ 1, d) = Lb(d, p+ 1). Finally,

Lb(o, d) ≤ Lb(p+ 1, d) = Lb(d, p+ 1) ≤ Lb(d, o)

Next suppose the shortest path between o and d is the counterclockwise path (see

Figure 26). Using the argument for Type 1 distance vectors as in the previous in-

stance, we conclude that Lb(d, p) − 1 ≤ Lb(o, q) and Lb(p, o) − 1 ≤ Lb(q, d). By

accounting for the two unit edge distances produced by the diameters originating at

o and d which we have not yet counted and by summing the two inequalities we get
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Fig. 26. The situation in case 2 with the shorter path from o to d in the counterclockwise
direction.

Lb(d, o) ≤ Lb(o, d). Hence the shortest path for a will remain shortest for b and

Property 3 holds for unicast sessions.

To complete our proof we need to show that Property 3’ holds for broadcast sessions.

Consider a broadcast session s and the set of its complementary trees. Since each

routing tree for a broadcast session is the total ring after removing a single edge from

it, then the set of complementary trees will be the set of all trees formed by single

edges and their end vertices. Then to satisfy Property 3’, we need to show that if edge

e0 satisfies ae0 = maxe∈E ae, then be0 = maxe∈E be = 1. First notice that as we saw

in the argument for Type 1 distance vectors, the Basic Generation Procedure results

in every edge with largest edge distance having a unit distance in b. Moreover, the

modifications for this case increase one edge distance from zero to one. Therefore

all maximum length complementary trees with respect to a will have length 1 under

b, and hence Property 3’ will be satisfied.
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APPENDIX F

Fig. 27. The situation where there are several pairs of vertices with equal length clockwise
and counterclockwise paths.

Here we prove Theorem C.7 from Chapter II. Consider the case where there are exactly M

pairs of vertices, say {p1, q1}, {p2, q2}, · · · , {pM , qM} for which La(pi, qi) = La(qi, pi) for

all i ∈ {1, · · · ,M}. Without loss of generality we assume that 1 = p1 < p2 < · · · < pM <

q1 < q2 < · · · < qM ≤ n, as depicted in Figure 27. To construct b, we first decompose a

into M subvectors a1, · · · , aM , with

ai = (api
, api+1, · · · , api+1−1, aqi , aqi+1, · · · , aqi+1−1)

for 1 ≤ i ≤ M − 1 and aM = (apM
, apM +1, · · · , aq1−1, aqM , aqM +1, · · · , an). From Figure

27 it is easy to see that La(pi, pi+1) = La(qi, qi+1) for 1 ≤ i ≤ M − 1 and La(pM , q1) =

La(qM , p1). Therefore if we form the circle corresponding to subvector ai and relabel the

vertices on it from 1 to pi+1− pi + qi+1− qi, we obtain Lai
(1, pi+1− pi + 1) = Lai

(pi+1−

pi + 1, 1) for 1 ≤ i ≤ M − 1 and LaM
(1, q1 − pM + 1) = LaM

(q1 − pM + 1, 1). Observe

that each subvector ai, 1 ≤ i ≤ M , in isolation corresponds to a circle with |ai| vertices

which has exactly one pair of vertices with equal length clockwise and counterclockwise

paths between them, namely vertex 1 and vertex pi+1− pi + 1; if there were more than one

such pair, then there would be another pair p′ and q′ of vertices on the original ring such
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that pi < p′ < pi+1, qi < q′ < qi+1, and La(p′, q′) = La(q′, p′), contradicting our initial

assumption. Hence ai is a Type 2 distance vector.

For every ai we use the argument for Type 2 distance vectors to construct a binary

distance vector bi. We obtain b = (b1, · · · , bn) from the relationships

(bpi
, bpi+1, · · · , bpi+1−1, bqi , bqi+1, · · · , bqi+1−1) = bi

for 1 ≤ i ≤M − 1 and

(bpM
, bpM +1, · · · , bq1−1, bqM , bqM +1, · · · , bn) = bM .

Obviously b satisfies Properties 1 and 2. Next we prove that it also satisfies Property 3.

We first consider unicast sessions. The construction of b results in the following

relationships:

Lb(pi, pi+1) = Lb(qi, qi+1), 1 ≤ i ≤M − 1,

Lb(pM , p1) = Lb(qM , q1). (F.1)

Consider a pair o and d of vertices on the ring and the unicast session s between them.

Fig. 28. The case where d < q1.

Assume without loss of generality that p1 ≤ o ≤ p2 and La(o, d) ≤ La(d, o), so that

o < d ≤ q2. We must establish that Lb(o, d) ≤ Lb(d, o). To show this, first assume that

d < q1 (see Figure 28) . In this case it follows from (F.1) that

Lb(o, d) ≤ Lb(p1, q1) = Lb(q1, p1) ≤ Lb(d, o). (F.2)
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Next let q1 ≤ d ≤ q2 (see Figure 29). Then by assumption

Fig. 29. The case where q1 ≤ d ≤ q2.

La(o, d) = La(o, p2) + La(p2, p3) + · · ·+ La(pM , q1) + La(q1, d) ≤

La(d, q2) + La(q2, q3) + · · ·+ La(qM , p1) + La(p1, o) = La(d, o).(F.3)

It follows from (F.3) that

La(o, p2) + La(q1, d) ≤ La(d, q2) + La(p1, o). (F.4)

Since b1 satisfies Property 3 for a1 it follows from (F.4) and the definition of b that

Lb(o, p2) + Lb(q1, d) ≤ Lb(d, q2) + Lb(p1, o). (F.5)

Therefore (F.5) and (F.1) imply

Lb(o, d) = Lb(o, p2) + Lb(p2, p3) + · · ·+ Lb(pM , q1) + Lb(q1, d) ≤

Lb(d, q2) + Lb(q2, q3) + · · ·+ Lb(qM , p1) + Lb(p1, o) = Lb(d, o).(F.6)

Hence distance vector b satisfies Property 3 for the unicast sessions. To prove that this is

also true for broadcast sessions, we have to show that all edges with largest edge distances

for a have unit edge distances for b. Let pi ≤ k ≤ pi+1 be an edge distance with largest

distance for a. Then it must correspond to an edge with largest distance for ai. Hence our

earlier argument for Type 2 distance vectors establishes that the position corresponding to

bk in bi is equal to one, and this proves our claim.
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APPENDIX G

Here we prove the network coding bounds for a ring with four vertices. Consider a ring

network with four vertices and replace every edge in the network with two oppositely di-

rected edges and obtain the directed graphG(V,E) of Figure 7. Suppose that the network is

clocked, i.e., a universal clock ticks N times. For this network we introduce the following

notation for the network coding setting from time 1 to N .

• Let Ws denote the message of session s.

• LetX(t)
ij denote the bitstream of edge from i to j at time t andXk

ij =
[
X

(1)
ij , · · · , X

(k)
ij

]
.

Vertex i transmits the bitstream X
(t)
ij , (i, j) ∈ E after clock tick t− 1 and before clock tick

t for t = 1, · · · , N and vertex j receives bitstream X
(t)
ij at clock tick t. In a network coding

solution, X(t)
ij is a function of

{
Ws : νs = i

}
and

{
X t−1

(i+1)(i), X
t−1
(i−1)(i)

}
. After time N , at

every vertex i the received messages
{
Ws : i ∈ Ds

}
with destination i can be decoded

as a function of
{
Ws : νs = i

}
and

{
XN

(i+1)(i), X
N
(i−1)(i)

}
. For this setting we prove the

following lemma:

Lemma .3 For any network and any network coding solution, there is a one to one cor-

respondence between the set of messages in the network
{
Ws : s ∈ S

}
, and the set of

bitstreams of the edges
{
XN
ij : (i, j) ∈ E

}
.

Proof Since the encoding functions at vertices are deterministic, a set of messages uniquely

determine a set of bitstreams. Next suppose that there are two different realizations of{
Ws : s ∈ S

}
, say U =

{
us : s ∈ S

}
and V =

{
vs : s ∈ S

}
corresponding to a

realization of bitstreams
{
XN
ij : (i, j) ∈ E

}
, say X =

{
xNij : (i, j) ∈ E

}
. It means that
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there is at least one session s0 for which us0 6= vs0 . Next we show that F which is another

realization of messages and is a combination of messages in U and V as the following

F =
{
fs : s ∈ S

}
, fs =

 us if νs 6= νs0 ,

vs if νs = νs0 ,
(G.1)

also results in the bitstream X . We use induction over time instances. For every vertex i,

X1
ij is a function of

{
Ws : νs = i

}
. For i 6= νs0 , the realization of X1

ij corresponding to

F is the same as its realization for U , and for i = νs0 , the realization of X1
ij corresponding

to F is the same as its realization for V . Therefore by assumption X1
ij will have the same

realization for U, V , and F . As the indution step, suppose that for time instance k, the

realization of Xk
ij is the same for U, V, and F . Next, X(k+1)

ij is a function of
{
Ws : νs = i

}
and

{
Xk
ji, (j, i) ∈ E

}
. Therefore, the realization of X(k+1)

ij corresponding to F is equal

to its realization corresponding to U if i 6= νs0 and to its realization corresponding to V if

i = νs0 . Thus, by the induction hypothesis, X(k+1)
ij will have the same realization for U, V,

and F , which completes our induction.

Next consider a vertex d ∈ Ds0 . First notice that since d 6= νs0 , the realization of{
XN
jd, (j, d) ∈ E

}
and

{
Ws : νs = d

}
is the same for set of messages U and F . Therefore

d will decode the same messages for all sessions with destination d in both cases. But this

contradicts the fact that Ws0 has two different realizations for U and F . Therefore every set

of bitstreams
{
XN
ij : (i, j) ∈ E

}
corresponds to a unique set of messages

{
Ws : s ∈ S

}
.

�

We apply the result of Lemma .3 to the ring network of Figure 7. Furthermore in the ring

network of Figure 7 every realization of messages
{
Ws : νs ∈ {2, 4}

}
and bitstreams{

XN
ij : i ∈ {1, 3}, j ∈ {2, 4}

}
uniquely determines a realization of bitstreams

{
XN
ij : i ∈

{2, 4}, j ∈ {1, 3}
}

. Therefore together with Lemma .3 we conclude that every realiztion of{
Ws : νs ∈ {2, 4}

}
and

{
XN
ij : i ∈ {1, 3}, j ∈ {2, 4}

}
uniquely determines a realization
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of
{
Ws : s ∈ S

}
and vice versa. Therefore the following equation holds:

H
({
Ws : s ∈ S

})
= H

({
Ws : νs ∈ {2, 4}

}
,
{
XN
ij : i ∈ {1, 3}, j ∈ {2, 4}

})
. (G.2)

By expanding the right hand side of (G.2) we obtain the following equation:

H
({
Ws : s ∈ S

})
= H

({
Ws : νs = 2

}
, XN

12, X
N
32

)
+H

({
Ws : νs = 4

}
, XN

14, X
N
34

)
− I
({

Ws : νs = 2
}
, XN

12, X
N
32︸ ︷︷ ︸

U1

;
{
Ws : νs = 4

}
, XN

14, X
N
34︸ ︷︷ ︸

U2

)
. (G.3)

Next we find a lower bound for I(U1;U2). First notice that U1 consists of the set of mes-

sages originating at vertex 2 and the bitstreams received by vertex 2. Therefore, this set

uniquely determines the messages destined for vertex 2. Hence, this set can be used to

obtain the set of messagesM =
{
Ws : νs = 2, 4 ∈ Ds

}
∪
{
Ws : νs = 4, 2 ∈ Ds

}
∪
{
Ws :

{2, 4} ⊆ Ds

}
. By an analogous argument for vertex 4 it follows that the set of mes-

sages M is a function of U2. Thus the mutual information term in (G.3) can be written

as I(U1,M ;U2,M). By expanding this term and using the data processing inequality we

have,

I(U1,M ;U2,M) ≥ I(M ;M) = H(M).

We combine the preceding bound with (G.3) to establish:

H ({Ws : s ∈ S})

+H ({Ws : νs = 2, 4 ∈ Ds} , {Ws : νs = 4, 2 ∈ Ds} , {Ws : {2, 4} ⊆ Ds})

≤ H
(
{Ws : νs = 2} , XN

12, X
N
32

)
+H

(
{Ws : νs = 4} , XN

14, X
N
34

)
≤ H ({Ws : νs = 2}) +H ({Ws : νs = 4})

+H
(
XN

12

)
+H

(
XN

32

)
+H

(
XN

14

)
+H

(
XN

34

)
. (G.4)
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By the independence of messages of different sessions and (G.4) we have:

H ({Ws : νs ∈ {1, 3}})

+H ({Ws : νs = 2, 4 ∈ Ds} , {Ws : νs = 4, 2 ∈ Ds} , {Ws : {2, 4} ⊆ Ds})

≤ H
(
XN

12

)
+H

(
XN

32

)
+H

(
XN

14

)
+H

(
XN

34

)
. (G.5)

Notice that H
(
XN
ij

)
≤ NCij and H

(
Ws

)
= NRs. It follows that for a ring with four

vertices:

∑
s:νs∈{1,3}

Rs+
∑

s:νs=2, 4∈Ds

Rs+
∑

s:νs=4, 2∈Ds

Rs+
∑

s:{2,4}⊆Ds

Rs ≤ C12+C32+C14+C34. (G.6)
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APPENDIX H

Here we extend our results for node–constrained line networks in Section B to a slightly

different setting where the source of messages generated at node i in the original network

and the destination of messages decoded at node i in the original network are both node Ii

in the node–constrained model. In other words, the set of destination nodes Ds of session

s is a subset of {I1, ..., IM} rather than {O1, ..., OM}. We can characterize the capacity

region of the network as follows.

Theorem 47 A rate tuple (Rs : s ∈ S) is achievable in the node-constrained line network

with both source and destination at node Ii, if and only if it is nonnegative and it satisfies

the following bounds:

For every i ∈ {1, · · · ,M}

∑
νs=Ii

Rs + max

{∑
s∈U1

Rs,
∑
s∈U2

Rs

}
≤ Ci (H.1)

where U1 and U2 are defined as follows:

U1 = {s : νs = Ij, j < i}
⋂
{s : Ds ∩ {Ii+1, · · · , IM} 6= ∅}

U2 = {s : νs = Ij, j > i}
⋂
{s : Ds ∩ {I1, · · · , Ii−1} 6= ∅} ,

and for every i ∈ {1, · · · ,M}

∑
s:νs∈{Ij :j≥i},Ds∩{Ij :j<i}6=∅,

Rs ≤ Ci,i−1, (H.2)

∑
s:νs∈{Ij :j≤i},Ds∩{Ij :j>i}6=∅,

Rs ≤ Ci,i+1.
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Proof We will closely follow the argument of the proofs of Section B from Chapter III.

First we prove that bounds (H.1) and (H.2) provide upper bounds on the set of achievable

rate tuples. Construct network G′ as explained in Section B (see Figure 11). We have the

following entropy inequalities:

H
(
XT
i ,
{
W T
s′ : νs′ = Pi

}
,W T

Qi→Ii

)
a

≥ H
({
W T
s′ : νs′ = Pi

}
,W T

Qi→Ii , X
T
i,i−1, X

T
i,i+1

)
b
= H

({
W T
s′ : Pi ∈ Ds′

}
,
{
W T
s′ : νs′ = Pi

}
,W T

Qi→Ii , X
T
i,i−1, X

T
i,i+1

)
c

≥ H
({
W T
s′ : νs′ = Pi

}
,
{
W T
s′ : νs′ = Qi

}
, XT

i,i−1, X
T
i,i+1

)
d

≥ H
({
W T
s′ : νs′ = Pi

}
,
{
W T
s′ : νs′ = Qi

}
,
{
W T
s′ : νs′ = Ii

})
e
= H

({
W T
s′ : s′ ∈ S ′

})
. (H.3)

In (H.3) a holds because XT
i,i−1 and XT

i,i+1 are functions of XT
i . b holds because the mes-

sage set
{
W T
s′ : Pi ∈ Ds′

}
is a function of

{
W T
s′ : νs′ = Pi

}
and XT

i,i−1. c holds because{
W T
s′ : νs′ = Qi

}
is a subset of

{
W T
Qi→Ii

}
∪
{
W T
s′ : Pi ∈ Ds′

}
. d holds because if a mes-

sage in
{
W T
s′ : νs′ = Ii

}
is decoded at Pi then it is a function of

{
W T
s′ : νs′ = Pi

}
, XT

i,i−1

and if it is decoded at Qi then it is a function of
{
W T
s′ : νs′ = Qi

}
, XT

i,i+1. Finally e holds

because
{
W T
s′ : νs′ = Pi

}
∪
{
W T
s′ : νs′ = Qi

}
∪
{
W T
s′ : νs′ = Ii

}
is the set of all messages

in the network.

By (H.3) we have

H
(
XT
i ,
{
W T
s′ : νs′ = Pi

}
,W T

Qi→Ii

)
≥ H

({
W T
s′ : s′ ∈ S ′

})
.

From the preceding ineqality and

H
(
XT
i

)
+H

({
W T
s′ : νs′ = Pi

}
,W T

Qi→Ii

)
≥ H

(
XT
i ,
{
W T
s′ : νs′ = Pi

}
,W T

Qi→Ii

)
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we obtain

H
(
XT
i

)
≥ H

({
W T
s′ : s′ ∈ S ′

})
−H

({
W T
s′ : νs′ = Pi

}
,W T

Qi→Ii

)
.

The right hand side of the preceding inequality is

T

∑
s′∈S′

Rs′ −
∑

s′:νs′=Pi

Rs′ −RQi→Ii

 = T

 ∑
s′∈S′\({s′:νs′=Pi}∪{Qi→Ii})

Rs′

 .

Notice that S ′ \ ({s′ : νs′ = Pi} ∪ {Qi → Ii}) includes all sessions with source at Ii and

all sessions with source at Qi that have Pi as a destination. Thus, the right hand side of the

preceding inequality is T
(∑

νs′=Ii
Rs′ +

∑
νs′=Qi,Pi∈Ds′

Rs′

)
. Therefore we have

TCi ≥ H
(
XT
i

)
≥ T

∑
νs′=Ii

Rs′ +
∑

νs′=Qi,Pi∈Ds′

Rs′

 . (H.4)

By the symmetry of the network with respect to Pi and Qi we likewise have:

Ci ≥
∑
νs′=Ii

Rs′ +
∑

νs′=Pi,Qi∈Ds′

Rs′ . (H.5)

If we replace Rs′ by
∑

s∈Ss′
Rs in the bounds in (H.4), (H.5), we obtain the bound (H.1) in

the original network G.

The bounds (H.2) are cut set bounds analogous to the bounds (3.2) in Section B.

Next we describe the network coding scheme. We write

W
(t)
Li→Ri

=
[
W

(t)
Li→i,Ri

,W
(t)

Li→ī,Ri

]
,

W
(t)
Ri→Li

=
[
W

(t)
Ri→i,Li

,W
(t)

Ri→ī,Li

]
.
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The network coding scheme is indicated by the vectors X(t)
i , X

(t)
i,i−1, and X(t)

i,i+1 as follows:

X
(t)
i ,

[
W

(t)
Ri→Li

⊗W (t)
Li→Ri

,W
(t)
i→Li,Ri

,W
(t)

i→L̄i,Ri
,W

(t)

i→Li,R̄i

]
, (H.6)

X
(t)
i,i−1 ,

[
W

(t)
Ri→Li

⊕W (t)
Li→Ri

,W
(t)

i→Li,R̄i
,W

(t)
i→Li,Ri

]
, (H.7)

X
(t)
i,i+1 ,

[
W

(t)
Li→Ri

⊕W (t)
Ri→Li

,W
(t)

i→L̄i,Ri
,W

(t)
i→Li,Ri

]
. (H.8)

Next we will verify the validity of our network coding scheme. Recall from Section B that

F
(t)
i =

[
W

(t)
Ri→Li

,W
(t)

Ri→i,L̄i

]
, (H.9)

G
(t)
i =

[
W

(t)
Li→Ri

,W
(t)

Li→i,R̄i

]
. (H.10)

We prove that at time instant t, vectors F (t)
i and G(t)

i as defined in (H.9) and (H.10) respec-

tively and X(t)
i as defined in (H.6) are functions of the information available to node Ii at

time instant t and X(t)
i,i−1 and X(t)

i,i+1 as defined in (H.7) and (H.8) respectively, are functions

of the information available to node Oi at time instant t. For t = 0 the claim holds trivially.

Suppose that for all time instants t ≤ n− 1 and all nodes i ∈ {1, · · · ,M} our claim holds.

Next consider time instant t = n. Recall the following relationships from Section B:

F
(t)
i =

[
W

(t)
Ri→Li

,W
(t)

Ri→i,L̄i

]
is a permutation of[

W
(t−1)
Ri+1→Li+1

,W
(t−1)
i+1→Li+1,Ri+1

,W
(t−1)

i+1→Li+1,R̄i+1

]
, (H.11)

G
(t)
i =

[
W

(t)
Li→Ri

,W
(t)

Li→i,R̄i

]
is a permutation of[

W
(t−1)
Li−1→Ri−1

,W
(t−1)
i−1→Li−1,Ri−1

,W
(t−1)

i−1→Ri−1,L̄i−1

]
. (H.12)

We show how Ii can decode the right hand side of (H.11) and (H.12) at time instant n.

By the inductive hypothesis, at time instant n node Ii has access to the vectors X(n−1)
i−1,i and
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X
(n−1)
i+1,i ,

X
(n−1)
i+1,i =

[
W

(n−1)
Ri+1→Li+1

⊕W (n−1)
Li+1→Ri+1

,W
(n−1)

i+1→Li+1,R̄i+1
,W

(n−1)
i+1→Li+1,Ri+1

]
, (H.13)

X
(n−1)
i−1,i =

[
W

(n−1)
Li−1→Ri−1

⊕W (n−1)
Ri−1→Li−1

,W
(t)

i−1→L̄i−1,Ri−1
,W

(t)
i−1→Li−1,Ri−1

]
, (H.14)

and can extract the messages

[
W

(n−1)
i+1→Li+1,Ri+1

,W
(n−1)

i+1→Li+1,R̄i+1

]
,[

W
(n−1)
i−1→Li−1,Ri−1

,W
(n−1)

i−1→L̄i−1,Ri−1

]
.

The two remaining messages that Ii needs to decode are W (n−1)
Ri+1→Li+1

and W (n−1)
Li−1→Ri−1

, and

we next describe the process to do this. By our inductive hypothesis, at t = n − 2 node Ii

knows the vectors

F
(n−2)
i =

[
W

(n−2)
Ri→Li

,W
(n−2)

Ri→i,L̄i

]
,

G
(n−2)
i =

[
W

(n−2)
Li→Ri

,W
(n−2)

Li→i,R̄i

]
.

Observe that node Ii knows message vector

[
W

(n−2)
i→Li,Ri

,W
(n−2)

i→L̄i,Ri
,W

(n−2)

i→Li,R̄i

]
at time instant n. Therefore Ii knows the vectors

[
W

(n−2)
Ri→Li

,W
(n−2)
i→Li,Ri

,W
(n−2)

i→Li,R̄i

]
,[

W
(n−2)
Li→Ri

,W
(n−2)
i→Li,Ri

,W
(n−2)

i→L̄i,Ri

]
at time instant n. Set t to n − 1 and i to i − 1 in (H.11), and set t to n − 1 and i to i + 1

in (H.12). Then (H.11) and (H.12) imply that the preceding vectors are permutations of the
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following vectors and thus at time instant n they are available to node Ii:

F
(n−1)
i−1 =

[
W

(n−1)
Ri−1→Li−1

,W
(n−1)

Ri−1→i−1,L̄i−1

]
,

G
(n−1)
i+1 =

[
W

(n−1)
Li+1→Ri+1

,W
(n−1)

Li+1→i+1,R̄i+1

]
.

From F
(n−1)
i−1 and G

(n−1)
i+1 , Ii obtains W (n−1)

Ri−1→Li−1
and W

(n−1)
Li+1→Ri+1

. Since by (H.13) and

(H.14) Ii can extract W (n−1)
Ri+1→Li+1

⊕ W
(n−1)
Li+1→Ri+1

and W (n−1)
Li−1→Ri−1

⊕ W
(n−1)
Ri−1→Li−1

at time

instant n fromX
(n−1)
i+1,i andX(n−1)

i−1,i , respectively, it can decodeW (n−1)
Ri+1→Li+1

andW (n−1)
Li−1→Ri−1

.

Thus Ii can decode

[
W

(n−1)
Ri+1→Li+1

,W
(n−1)
i+1→Li+1,Ri+1

,W
(n−1)

i+1→Li+1,R̄i+1

]
,[

W
(n−1)
Li−1→Ri−1

,W
(n−1)
i−1→Li−1,Ri−1

,W
(n−1)

i−1→L̄i−1,Ri−1

]
,

or equivalently

F
(n)
i =

[
W

(n)
Ri→Li

,W
(n)

Ri→i,L̄i

]
,

G
(n)
i =

[
W

(n)
Li→Ri

,W
(n)

Li→i,R̄i

]
,

at time instant n, as desired. From (H.6) it is simple to check thatX(n)
i is a function of F (n)

i

and G(n)
i and the messages generated at Ii at time instance n. Therefore Ii may transmit

X
(n)
i at time instant n.

We next wish to show that X(n)
i,i+1 and X(n)

i,i−1 are functions of Xn
i . By (H.6), (H.7) and

(H.8) we see thatOi only needs to constructW (n)
Ri→Li

⊕W (n)
Li→Ri

andW (n)
Li→Ri

⊕W (n)
Ri→Li

to be

able to transmit X(n)
i,i−1 and X(n)

i,i+1. Observe that W (n)
Ri→Li

⊕W (n)
Li→Ri

and W (n)
Li→Ri

⊕W (n)
Ri→Li

can be obtained from W
(n)
Ri→Li

⊗W (n)
Li→Ri

, which is a component of X(n)
i .

We next must show that the receiver node, Ii, is able to successfully decode all mes-

sages destined for node i in the original network. Observe that
[
W

(n)
Ri→i,Li

,W
(n)

Ri→i,L̄i

]
is a

part of vector F (n)
i and

[
W

(n)
Li→i,Ri

,W
(n)

Li→i,R̄i

]
is a part of vector G(n)

i . F
(n)
i and G(n)

i can be
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decoded at Ii at time instant n. Therefore if a message originates at source Ij at time instant

n− |j − i| with a destination at Ii, it can be decoded at time instant n at Ii.

Next we demonstrate that any non–negative rate tuple (Rs : s ∈ S) that satisfies

the bounds in Theorem 47 results in X
(t)
i , X

(t)
i,i−1 and X

(t)
i,i+1 which have the properties

H
(
X

(t)
i

)
≤ Ci, H

(
X

(t)
i,i−1

)
≤ Ci,i−1, and H

(
X

(t)
i,i+1

)
≤ Ci,i+1, and thus can be sup-

ported on this network.

By (H.6) we have:

H
(
X

(t)
i

)
= H

(
W

(t)
Ri→Li

⊗W (t)
Li→Ri

)
+H

(
W

(t)
i→Li,Ri

)
+H

(
W

(t)

i→L̄i,Ri

)
+H

(
W

(t)

i→Li,R̄i

)
(H.15)

It follows from our earlier definitions that

∑
νs=Ii

Rs = H
(
W

(t)
i→Li,Ri

)
+H

(
W

(t)

i→L̄i,Ri

)
+H

(
W

(t)

i→Li,R̄i

)
,

∑
s∈U1

Rs = H
(
W

(t)
Li→Ri

)
,

∑
s∈U2

Rs = H
(
W

(t)
Ri→Li

)
.

Since H(a⊗ b) = max{H(a), H(b)}, (H.15) gives

H
(
X

(t)
i

)
=
∑
νs=Ii

Rs + max

{∑
s∈U1

Rs,
∑
s∈U2

Rs

}
≤ Ci.

By (H.7) we have

H
(
X

(t)
i,i−1

)
= H

(
W

(t)
Ri→Li

⊕W (t)
Li→Ri

)
+H

(
W

(t)

i→Li,R̄i

)
+H

(
W

(t)
i→Li,Ri

)
. (H.16)

Since H
(
W

(t)
Ri→Li

⊕W (t)
Li→Ri

)
= H

(
W

(t)
Ri→Li

)
we obtain

H
(
X

(t)
i,i−1

)
=

∑
s:νs∈{Ij :j≥i},Ds∩{Ij :j<i}6=∅,

Rs ≤ Ci,i−1.
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With a similar argument we obtain

H
(
X

(t)
i,i+1

)
=

∑
s:νs∈{Ij :j≤i},Ds∩{Ij :j>i}6=∅,

Rs ≤ Ci,i+1.

�

Notice that in the wired model of the wireless line described in the introduction, node Oi is

required to only forward the data to the other nodes and not to perform any network coding

operation on the incoming flow to produce the outgoing flow. This requirement is satisfied

by our network coding scheme since the vectors X(n)
i,i−1 and X(n)

i,i+1 are both parts of the

vector X(n)
i . Therefore our scheme is applicable to wireless network coding.
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