69 research outputs found

    Network Coding in Live Peer-to-Peer Streaming

    Full text link

    R2: Random Push with Random Network Coding in Live Peer-to-Peer Streaming

    Full text link

    VISUALISE: Enhancing the spectator experience

    Get PDF

    Band Codes for Energy-Efficient Network Coding with Application to P2P Mobile Streaming

    Get PDF
    A key problem in random network coding (NC) lies in the complexity and energy consumption associated with the packet decoding processes, which hinder its application in mobile environments. Controlling and hence limiting such factors has always been an important but elusive research goal, since the packet degree distribution, which is the main factor driving the complexity, is altered in a non-deterministic way by the random recombinations at the network nodes. In this paper we tackle this problem proposing Band Codes (BC), a novel class of network codes specifically designed to preserve the packet degree distribution during packet encoding, ecombination and decoding. BC are random codes over GF(2) that exhibit low decoding complexity, feature limited and controlled degree distribution by construction, and hence allow to effectively apply NC even in energy-constrained scenarios. In particular, in this paper we motivate and describe our new design and provide a thorough analysis of its performance. We provide numerical simulations of the performance of BC in order to validate the analysis and assess the overhead of BC with respect to a onventional NC scheme. Moreover, peer-to-peer media streaming experiments with a random-push protocol show that BC reduce the decoding complexity by a factor of two, to a point where NC-based mobile streaming to mobile devices becomes practically feasible.Comment: To be published in IEEE Transacions on Multimedi

    On the Limit of Fountain MDC Codes for Video Peer-To-Peer Networks

    Get PDF
    Video streaming for heterogeneous types of devices, where nodes have different devices characteristics in terms of computational capacity and display, is usually handled by encoding the video with different qualities. This is not well suited for Peer-To-Peer (P2P) systems, as a single peer group can only share content of the same quality, thus limiting the peer group size and efficiency. To address this problem, several existing works propose the use of Multiple Descriptions Coding (MDC). The concept of this type of video codec is to split a video in a number of descriptions which can be used on their own, or aggregated to improve the global quality of the video. Unfortunately existing MDC codes are not flexible, as the video is split in a defined number of descriptions. In this paper, we focus on the practical feasibility of using a Fountain MDC code with properties similar to existing Fountain erasure codes, including the ability to create any number of descriptions when needed (on the fly). We perform simulations using selected pictures to assess the feasibility of using these codes, knowing that they should improve the availability of the video pieces in a P2P system and hence the video streaming quality. We observe that, although this idea seems promising, the evaluated benefits, demonstrated by the PSNR values, are limited when used in a real P2P video streaming system

    Network Coding Channel Virtualization Schemes for Satellite Multicast Communications

    Full text link
    In this paper, we propose two novel schemes to solve the problem of finding a quasi-optimal number of coded packets to multicast to a set of independent wireless receivers suffering different channel conditions. In particular, we propose two network channel virtualization schemes that allow for representing the set of intended receivers in a multicast group to be virtualized as one receiver. Such approach allows for a transmission scheme not only adapted to per-receiver channel variation over time, but to the network-virtualized channel representing all receivers in the multicast group. The first scheme capitalizes on a maximum erasure criterion introduced via the creation of a virtual worst per receiver per slot reference channel of the network. The second scheme capitalizes on a maximum completion time criterion by the use of the worst performing receiver channel as a virtual reference to the network. We apply such schemes to a GEO satellite scenario. We demonstrate the benefits of the proposed schemes comparing them to a per-receiver point-to-point adaptive strategy

    Lightweight Encrytion Scheme against Flow Analysis in Multi-Hop Wireless Network Based on Network Coding

    Get PDF
    Traffic analysis is a major issue faced in multi-hop wireless networks (MWN) in the case of privacy preservation. Network coding is essential in achieving greater capacity for any network and we extend this network coding for privacy preservation in multi-hop networks as it offers coding and mixing functions at intermediate nodes. Certain existing privacy preserving methods like onion routing can be employed here. Applying homomorphic encryption on Global Encoding Vectors(GEV’s), our method offers confidentiality and privacy preserving features. Only the sink has capability of decrypting the message content by inverting the GEV. Here, we focus on the privacy issue in order to prevent traffic analysis and flow tracing and achieve source anonymity in MWNs. Source anonymity refers to carrying the communication through the network maintaining the secrecy of the source node. Energy consumption when compared with the existing system was found to be reduced. Simulative evaluation by NS2 shows the efficiency of the system. Keywords: MWN, Privacy preservation, NS2, GEV

    Avoiding Interruptions - QoE Trade-offs in Block-coded Streaming Media Applications

    Get PDF
    We take an analytical approach to study Quality of user Experience (QoE) for video streaming applications. First, we show that random linear network coding applied to blocks of video frames can significantly simplify the packet requests at the network layer and save resources by avoiding duplicate packet reception. Network coding allows us to model the receiver's buffer as a queue with Poisson arrivals and deterministic departures. We consider the probability of interruption in video playback as well as the number of initially buffered packets (initial waiting time) as the QoE metrics. We characterize the optimal trade-off between these metrics by providing upper and lower bounds on the minimum initial buffer size, required to achieve certain level of interruption probability for different regimes of the system parameters. Our bounds are asymptotically tight as the file size goes to infinity.Comment: Submitted to ISIT 2010 - Full versio
    • 

    corecore