67,302 research outputs found

    Pattern for malware remediation – A last line of defence tool against Malware in the global communication platform

    Get PDF
    Malware is becoming a major problem to every organization that operates on the global communication platform. The malicious software programs are advancing in sophistication in many ways in order to defeat harden deployed defenses. When an organization’s defense fails to keep this malice invasion out, the organization would incur significant amount of risks and damages. Risks include data leakage, inability to operate and tarnished corporate image. Damages include compensation costs to customers and partners, service unavailability and loss of customers’ and partners’ confidence in the organization. This in turn will affect the organization’s business continuity. In order to manage the risks and damages induced by Malware incidents, incident responders are called upon to be the last line of defense against the digital onslaught assault. However incident responders are challenged too by the deep levels of knowledge, skills and experience required to contain the ever advancing and persistent Malware. This paper proposes the establishment of a Pattern template for Malware Remediation to aid incident responders to overcome their competency limitations in order to provide organizations the tool to repel Malware and to reduce the associated risks. Examples and details of the proposed patters are provided with discussions on future direction of the research work

    Trusted Computing and Secure Virtualization in Cloud Computing

    Get PDF
    Large-scale deployment and use of cloud computing in industry is accompanied and in the same time hampered by concerns regarding protection of data handled by cloud computing providers. One of the consequences of moving data processing and storage off company premises is that organizations have less control over their infrastructure. As a result, cloud service (CS) clients must trust that the CS provider is able to protect their data and infrastructure from both external and internal attacks. Currently however, such trust can only rely on organizational processes declared by the CS provider and can not be remotely verified and validated by an external party. Enabling the CS client to verify the integrity of the host where the virtual machine instance will run, as well as to ensure that the virtual machine image has not been tampered with, are some steps towards building trust in the CS provider. Having the tools to perform such verifications prior to the launch of the VM instance allows the CS clients to decide in runtime whether certain data should be stored- or calculations should be made on the VM instance offered by the CS provider. This thesis combines three components -- trusted computing, virtualization technology and cloud computing platforms -- to address issues of trust and security in public cloud computing environments. Of the three components, virtualization technology has had the longest evolution and is a cornerstone for the realization of cloud computing. Trusted computing is a recent industry initiative that aims to implement the root of trust in a hardware component, the trusted platform module. The initiative has been formalized in a set of specifications and is currently at version 1.2. Cloud computing platforms pool virtualized computing, storage and network resources in order to serve a large number of customers customers that use a multi-tenant multiplexing model to offer on-demand self-service over broad network. Open source cloud computing platforms are, similar to trusted computing, a fairly recent technology in active development. The issue of trust in public cloud environments is addressed by examining the state of the art within cloud computing security and subsequently addressing the issues of establishing trust in the launch of a generic virtual machine in a public cloud environment. As a result, the thesis proposes a trusted launch protocol that allows CS clients to verify and ensure the integrity of the VM instance at launch time, as well as the integrity of the host where the VM instance is launched. The protocol relies on the use of Trusted Platform Module (TPM) for key generation and data protection. The TPM also plays an essential part in the integrity attestation of the VM instance host. Along with a theoretical, platform-agnostic protocol, the thesis also describes a detailed implementation design of the protocol using the OpenStack cloud computing platform. In order the verify the implementability of the proposed protocol, a prototype implementation has built using a distributed deployment of OpenStack. While the protocol covers only the trusted launch procedure using generic virtual machine images, it presents a step aimed to contribute towards the creation of a secure and trusted public cloud computing environment

    Measurement-device-independent quantum communication with an untrusted source

    Get PDF
    Measurement-device-independent quantum key distribution (MDI-QKD) can provide enhanced security, as compared to traditional QKD, and it constitutes an important framework for a quantum network with an untrusted network server. Still, a key assumption in MDI-QKD is that the sources are trusted. We propose here a MDI quantum network with a single untrusted source. We have derived a complete proof of the unconditional security of MDI-QKD with an untrusted source. Using simulations, we have considered various real-life imperfections in its implementation, and the simulation results show that MDI-QKD with an untrusted source provides a key generation rate that is close to the rate of initial MDI-QKD in the asymptotic setting. Our work proves the feasibility of the realization of a quantum network. The network users need only low-cost modulation devices, and they can share both an expensive detector and a complicated laser provided by an untrusted network server.Comment: 13 pages, 4 figures. arXiv admin note: the security proof technique is based on arXiv:0802.2725, arXiv:0905.4225

    State of The Art and Hot Aspects in Cloud Data Storage Security

    Get PDF
    Along with the evolution of cloud computing and cloud storage towards matu- rity, researchers have analyzed an increasing range of cloud computing security aspects, data security being an important topic in this area. In this paper, we examine the state of the art in cloud storage security through an overview of selected peer reviewed publications. We address the question of defining cloud storage security and its different aspects, as well as enumerate the main vec- tors of attack on cloud storage. The reviewed papers present techniques for key management and controlled disclosure of encrypted data in cloud storage, while novel ideas regarding secure operations on encrypted data and methods for pro- tection of data in fully virtualized environments provide a glimpse of the toolbox available for securing cloud storage. Finally, new challenges such as emergent government regulation call for solutions to problems that did not receive enough attention in earlier stages of cloud computing, such as for example geographical location of data. The methods presented in the papers selected for this review represent only a small fraction of the wide research effort within cloud storage security. Nevertheless, they serve as an indication of the diversity of problems that are being addressed

    Secure, reliable and dynamic access to distributed clinical data

    Get PDF
    An abundance of statistical and scientific data exists in the area of clinical and epidemiological studies. Much of this data is distributed across regional, national and international boundaries with different policies on access and usage, and a multitude of different schemata for the data often complicated by the variety of supporting clinical coding schemes. This prevents the wide scale collation and analysis of such data as is often needed to infer clinical outcomes and to determine the often moderate effect of drugs. Through grid technologies it is possible to overcome the barriers introduced by distribution of heterogeneous data and services. However reliability, dynamicity and fine-grained security are essential in this domain, and are not typically offered by current grids. The MRC funded VOTES project (Virtual Organisations for Trials and Epidemiological Studies) has implemented a prototype infrastructure specifically designed to meet these challenges. This paper describes this on-going implementation effort and the lessons learned in building grid frameworks for and within a clinical environment
    • 

    corecore