6 research outputs found

    OPTIMIZING LARGE COMBINATIONAL NETWORKS FOR K-LUT BASED FPGA MAPPING

    Get PDF
    Optimizing by partitioning is a central problem in VLSI design automation, addressing circuit’s manufacturability. Circuit partitioning has multiple applications in VLSI design. One of the most common is that of dividing combinational circuits (usually large ones) that will not fit on a single package among a number of packages. Partitioning is of practical importance for k-LUT based FPGA circuit implementation. In this work is presented multilevel a multi-resource partitioning algorithm for partitioning large combinational circuits in order to efficiently use existing and commercially available FPGAs packagestwo-way partitioning, multi-way partitioning, recursive partitioning, flat partitioning, critical path, cutting cones, bottom-up clusters, top-down min-cut

    A complete design path for the layout of flexible macros

    Get PDF
    XIV+172hlm.;24c

    Decomposing linear programs for parallel solution

    Get PDF
    Ankara : Department of Computer Engineering and Information Science and the Institute of Engineering and Science of Bilkent University, 1996.Thesis (Master's) -- Bilkent University, 1996.Includes bibliographical references leaves 88-91.Many current research efforts are based on better exploitation of sparsity— common in most large scaled problems—for computational efEciency. This work proposes different methods for permuting sparse matrices to block angular form with specified number of equal sized blocks for efficient parallelism. The problem has applications in linear programming, where there is a lot of work on the solution of problems with existing block angular structure. However, these works depend on the existing block angular structure of the matrix, and hence suffer from unscalability. We propose two hypergraph models for decomposition, and these models reduce the problem to the well-known hypergraph partitioning problem. We also propose a graph model, which reduces the problem to the graph partitioning by node separator problem. We were able to decompose very large problems, the results are quite attractive both in terms solution quality and running times.Pınar, AliM.S

    High-Quality Hypergraph Partitioning

    Get PDF
    This dissertation focuses on computing high-quality solutions for the NP-hard balanced hypergraph partitioning problem: Given a hypergraph and an integer kk, partition its vertex set into kk disjoint blocks of bounded size, while minimizing an objective function over the hyperedges. Here, we consider the two most commonly used objectives: the cut-net metric and the connectivity metric. Since the problem is computationally intractable, heuristics are used in practice - the most prominent being the three-phase multi-level paradigm: During coarsening, the hypergraph is successively contracted to obtain a hierarchy of smaller instances. After applying an initial partitioning algorithm to the smallest hypergraph, contraction is undone and, at each level, refinement algorithms try to improve the current solution. With this work, we give a brief overview of the field and present several algorithmic improvements to the multi-level paradigm. Instead of using a logarithmic number of levels like traditional algorithms, we present two coarsening algorithms that create a hierarchy of (nearly) nn levels, where nn is the number of vertices. This makes consecutive levels as similar as possible and provides many opportunities for refinement algorithms to improve the partition. This approach is made feasible in practice by tailoring all algorithms and data structures to the nn-level paradigm, and developing lazy-evaluation techniques, caching mechanisms and early stopping criteria to speed up the partitioning process. Furthermore, we propose a sparsification algorithm based on locality-sensitive hashing that improves the running time for hypergraphs with large hyperedges, and show that incorporating global information about the community structure into the coarsening process improves quality. Moreover, we present a portfolio-based initial partitioning approach, and propose three refinement algorithms. Two are based on the Fiduccia-Mattheyses (FM) heuristic, but perform a highly localized search at each level. While one is designed for two-way partitioning, the other is the first FM-style algorithm that can be efficiently employed in the multi-level setting to directly improve kk-way partitions. The third algorithm uses max-flow computations on pairs of blocks to refine kk-way partitions. Finally, we present the first memetic multi-level hypergraph partitioning algorithm for an extensive exploration of the global solution space. All contributions are made available through our open-source framework KaHyPar. In a comprehensive experimental study, we compare KaHyPar with hMETIS, PaToH, Mondriaan, Zoltan-AlgD, and HYPE on a wide range of hypergraphs from several application areas. Our results indicate that KaHyPar, already without the memetic component, computes better solutions than all competing algorithms for both the cut-net and the connectivity metric, while being faster than Zoltan-AlgD and equally fast as hMETIS. Moreover, KaHyPar compares favorably with the current best graph partitioning system KaFFPa - both in terms of solution quality and running time
    corecore