
V 5«ßs

? S ^ I! i IITI.Ili
4 *■ ύ i ¿ ^ i-i :*.̂ \J >{¿í j ; ,;. ÿ jy ¿ ÿ

íN ST íT u T E QF é .N G'N E£R!N G ANÜ SClGFiCx*'

DECOMPOSING LINEAR PROGRAMS EOR
PARALLEL SOLUTION

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING

AND INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
All Pınar
July, 1996

P5é
1936

В Л І 3 5 2 4 5

I certify that I have read this thesis and that in my opin­
ion it is fully adequate, in scope and in quality, as a thesis
for the degree of Master of Science.

Assoc. Prof. C ev^t Aykanat(Principal Advisor)

I certify that I have read this thesis and that in my opin­
ion it is fully adequate, in scope and in quality, as a thesis
for the degree of Master of Science.

I certify that I have read this thesis and that in my opin­
ion it is fully adequate, in scope and in quality, as a thesis
for the degree of Master of Science.

st. Prof. Hakan Karaata

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet Baray, Director of Insti(i«te of Engineering and Science

ABSTRACT

DECOMPOSING LINEAR PROGRAMS FOR PARALLEL
SOLUTION

All Pınar
M. S. in Computer Engineering and Information Science

Supervisor: Assoc. Prof. Cevdet Ay kanat
July, 1996

Many current research efforts are based on better exploitation of sparsity—
common in most large scaled problems—for computational efEciency. This work
proposes different methods for permuting sparse matrices to block angular form
with specified number of equal sized blocks for efficient parallelism. The problem
has applications in linear programming, where there is a lot of work on the so­
lution of problems with existing block angular structure. However, these works
depend on the existing block angular structure of the matrix, and hence suf­
fer from unscalability. We propose two hypergraph models for decomposition,
and these models reduce the problem to the well-known hypergraph partitioning
problem. We also propose a graph model, which reduces the problem to the
graph partitioning by node separator problem. We were able to decompose very
large problems, the results are quite attractive both in terms solution quality and
running times.

Key words: Sparse Matrices, Block Angular Form, Hypergraph Partitioning,
Graph Partitioning by Node Separator

III

ÖZET

DOĞRUSAL PROGRAMLARIN PARALEL ÇÖZÜMLEME
İÇİN BÖLÜNMESİ

Ali Pınar
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans

Danışman: Doç. Dr. Cevdet Aykanat
Temmuz, 1996

Birçok güncel araştırma büyük ölçekli problemlerin matrislerinde sıkça rast­
lanan seyreklikten daha iyi yararlanmaya dayalıdır. Bu araştırma, seyrek bir ma­
trisi belli sayıda eşit büyüklükte bloklardan oluşan blok açısal duruma çevirmek
için değişik metodlar önermektedir. Bu problemin önemli bir uygulaması doğrusal
programlamadadır. Doğrusal programlamada, varolan blok açısal yapıları kul­
lanan birçok çözüm yöntemi önerilmiştir. Ama bu yöntemler yalnızca varolan
blok açısal duruma dayandıkları için ölçeklendirme sorunuyla karşı karşıyadırlar.

Bu çalışma bölünme için iki hiperçizge modeli öneriyor, ve bu modeller prob­
lemi iyi bilinen hiperçizge parçalama problemine indirgiyor. Önerilen bir diğer
model ise çizge modeli, ve bu model de problemi düğüm ayıracıyla çizge parçalama
problemine indirgiyor. Önerilen modeller, çok sayıda çok büyük ölçekli matris­
leri bölmede denendi. Hem çözüm kalitesi, hem de zaman açısından çok çekici
sonuçlar elde edildi.

\nahtar sözcükler: Seyrek Matris, Block Açısal Durum, Hiperçizge Parçalama,
üm Ayıracıyla Çizge Parçalama

IV

To ту family

Acknowledgment

I would like to express my deep gratitude to my supervisor Dr. Cevdet
Aykanat for his guidance, suggestions, encouragement and enjoyable discussions
throughout the development of the thesis. I would like to thank Dr. Mustafa
Pınar for reading and commenting on the thesis. I would also like to thank Dr.
Hakan Karaata for reading and commenting on the thesis. I owe special thanks
to all members of the department for providing a pleasant environment for study.
Finally, I am very grateful to my family and my friends for their support and
patience.

Contents

1 Introduction 1

2 Block Angular Form of a Sparse Matrix 6
2.1 Prelim inaries.. 6
2.2 Block Angular Systems in Linear Program m ing............................ 8

3 Graph and Hypergraph Partitioning 11
.3.1 Preliminaries .. 12
3.2 Local Search H euristics... 15

3.2.1 Neighborhood Structures for the Hypergraph Partitioning
P rob lem ... 15

3.2.2 Hill-climbing... 17
3.2.3 Tie-breaking Strategies .. 17
3.2.4 Hypergraph Partitioning Heuristics...................................... 18
3.2.5 Alternative Strategies.. 25
3.2.6 Multi-start Techniques.. 25

3.3 Geometric E m beddings... 26
3.4 Multi-level Approaches ... 27

4 Graph Partitioning by Node Separators 30
4.1 Problem D efin ition .. 30
4.2 Applications... 31
4.3 Previous Work for Finding Node Separators.................................. 31

4.3.1 Improving an Initial Separator... 32
4.3.2 Finding a Node Separator from an Edge Separator 37
4.3.3 New Greedy Heuristics for Finding Separators.................... 41

vn

CONTENTS Vl l l

5 Permuting a Sparse Matrix to Block Angular Form 45
5.1 Bipartite Graph Model 46

5.1.1 The Graph M odel.. 46
5.1.2 B.A.F with Bipartite Graph M od e l... 47

5.2 Row-Net M o d e l .. 48

5.2.1 The Hypergraph M odel.. 49
5.2.2 BAF with Row-Net M odel.. 50

5.3 Column-Net Model .. 52
5.3.1 The Hypergraph M odel.. 52
5.3.2 BAF with Column-Net M od e l.. 52

5.4 Row Interaction Graph 55
5.4.1 The Graph M odel.. 56
5.4.2 BAF with Row-Interaction Graph... 56

5.5 Column-Interaction G raph... 57
5.5.1 The Graph M odel.. 57
5.5.2 BAF with Column-Interaction Graph................................... 58

6 Experimental Results 59

6.1 Data S e t s ... 59
6.2 Implementation of the A lgorith m s... 61
6.3 Experiments with the Bipartite Graph Model 61

6.3.1 Partitioning P hase... 63
6.3.2 Separator P h a s e .. 63

6.4 Experiments with the Row-Net Model .. 66
6.5 Experiments with the Column-Net M o d e l 68
6.6 Experiments with the Row Interaction Graph Model 70

6.6.1 Validity of Greedy Heuristics 70
6.6.2 Finding Wide Separators... 72

6.7 Comparison of the M odels.. 74

7 Conclusion 81

7.1 C onclusions... 81
7.2 Future W ork... 83

7.2.1 Hypergraph Partitioning with Vertex R eplication 83

CONTENTS IX

7.2.2 Iterative Improvement Methods for Multi-way Separations 84
7.2..3 Finding Coupling Rows after Partitioning on BG Model . 85

A Experimental Results in Detail 92

B Pictures of Matrices 119

List of Figures

3.1 A general view of a local search heuristic... 15
3.2 A generalized local search algorithm with hill-clim bing................ 18
3.3 Level 1 SN hypergraph partitioning heuristic................................... 23
3.4 Gain computation for a vertex u ... 24
3.5 An overview of Multi-level Hypergraph Partitioning...................... 29

4.1 Algorithm for Improving an initial separator................................... 32
4.2 Algorithm for finding a maximum matching on a bipartite graph . 34
4.3 Algorithm for Augmenting a matching with an augmenting path 35
4.4 Improving matchings via augmenting paths...................................... 36
4.5 Algorithm for the Maximum Inclusion Heuristic proposed by Leis-

erson and Lewis ... 40
4.6 Algorithm for the Minimum Recover Heuristic proposed by Leis-

erson and Lewis ... 41
4.7 Three Different Wide separators... 42
4.8 Algorithm for a new greedy heuristic, O n e -M a x 44

5.1 The nonzero structure of the matrix A 46
5.2 Bipartite Graph Representation of the matrix A in Figure'5.1 . . 47
5.3 Hypergraph Representation of the matrix A in Figure 5.1 with

Row-Net M odel.. 49
5.4 Block angular form of Matrix A in Figure 5.1 50
5.5 Hypergraph Representation of the matrix A in Figure 5.1 with

Column-Net M od e l.. 53
5.6 Dual block angular form of matrix A in Figure 5 .1 53
5.7 Matrix A in Figure 5.6 after column-splitting 55

LIST OF FICAIRES XI

5.8 Block angular matrix A in Figure 5.6 after column splitting and
permutation .. 55

5.9 Row-Interaction Graph Representation of the matrix A in Figure 5.1 56
5.10 Column-Interaction Graph Representation of the matrix A 58

6.1 Comparison of Metis and Sanchis partitioning tools on BG model.
Figure display results of 2,4,6, and 8 block decompositions. Mini­
mum and average are results of experiments on 27 different matri­
ces with 20 run for each, the numbers have been normalized with
respect to that of PaToH.. 64

6.2 Comparison of Greedy Heuristics with BG M o d e l 65
6.3 Comparison of PaToH and Sanchis (SN) for RN m o d e l 67
6.4 Comparison of PaToH and Sanchis (SN) for CN m o d e l 69
6.5 Comparisons of Greedy Heuristics for R I G .. 71
6.6 Comparison of Greedy heuristics with Optimal so lu tio n s 72
6.7 Comparison of Minimum Separator Sizes for different methods 73
6.8 Comparison of Average Separator Sizes for different methods . . . 74
6.9 Comparison of Running Times for different methods 75
6.10 Comparison of best solutions of different m od els 76
6.11 Comparison of averages of different m od els 77
6.12 Comparison of running times for different m o d e ls 78
6.13 Figure gives a general comparison of different models for 2,4,6 and

8 block decomposition of 27 different matrices. The results af­
ter due to average of 20 runs. Values have been normalized with
respect to RIG... 79

7.1 Multi-way Separator Improvement Algorithm 85

B.l Matrix GE Original Structure.. 119
B.2 Matrix GE after 2 Block Decomposition120
B.3 .Matrix GE after 4 Block Decom position.......................................120
B.4 Matrix GE after 6 Block Decom position.......................................121
B.5 Matrix GE after 8 Block Decom position.......................................121
B.6 Matrix CQ9 Original Structure... 122
B.7 Matrix CQ9 after 2 Block D ecom position ..123

LIST OF FIGURES Xll

B.8 Matrix CQ9 after 4 Block D ecom position ..123
B.9 Matrix CQ9 after 6 Block D ecom position ..124
B.IO Matrix CQ9 after 8 Block D ecom position ..124

List of Tables

6.1 Properties of the Problems used in the Experiments...................... 60
6.2 Properties of the RIG’s of Matrices used in the Experiments . . . 62
6.3 The effectiveness of RIG M o d e l ... 80

A .l General Comparison of Sanchis (SN) and M e t is 92
A.2 Comparison of Sanchis (SN) and M e t is .. 93
A.3 Comparison of Greedy Heuristics with BG M o d e l 94
A.4 Comparison of PaToH and Sanchis (SN) for RN m o d e l 95
A.5 Comparison of PaToH and Sanchis (SN) for RN model (cont.d) . 96
A.6 Comparison of PaToh and Sanchis (SN) for RN model (cont.d) . . 97
A.7 General Comparison of PaToH and Sanchis on RN M odel............. 98
A.8 Comparison of PaToH and Sanchis (SN) for CN m o d e l 99
A.9 Comparison of PaToH and Sanchis (SN) for CN model (cont.d) . 100
.A. 10 Results of Column-Net with transfer model with PaToh .101
A. 11 Results of Column-Net with transfer model with PaToh (cont.d) . 102
A. 12 Results of Column-Net with transfer model with PaToh (cont’d) . 103
A. 13 Comparisons of Greedy Heuristics for R I G104
A. 14 Comparison of Greedy heuristics with Optimal so lu tion s 105
A. 15 Comparison of Wide Separators for different m ethods.......................106
A. 16 Comparison of Edge Cuts for different m e th o d s107
A. 17 Comparison of Minimum Separator Sizes for different methods . 108
A. 18 Comparison of Average Separator Sizes for different methods . . 109
.A. 19 Comparison of run times for different methods110
A.20 Comparison of separators with weighted and unweighted models . I l l
A.21 Comparison of separators with weighted and unweighted models

(cont.d) .. 112

xm

LIST OF TABLES XIV

A .22 Comparison of separators with weighted and unweighted models
(cont.d) ..113

A .23 General Comparison of separators with weighted and unweighted
models : ... 114

A .24 Comparison of different models .. 115
A.25 Comparison of different models (cont.d)... 116
A.26 Comparison of different models (cont.d)... 117
A .27 General Comparison of Different M o d e ls .. 118

1. Introduction

Studies on sparse matrices has its origins in diverse fields such as management sci­
ence, power systems analysis, finite element problems, circuit theory, etc. Math­
ematical models in all of these areas give rise to very large systems of linear
equations that could not be solved if most of the entries in these matrices were
not zeros. This increases the interest in sparsity, because its exploitation can lead
to enormous computational savings and because many large problems that occur
in practice are sparse.

.An important exploitation of sparsity arises in solving linear systems of equa­
tions. A good ordering of the rows and columns of the matrix can help us to
preserve sparsity during factorization. The problem has been heavily studied
in the literature because of the significant computational savings and the wide-
applicability of the problem. Minimum Degree Ordering [25], Nested dissection
[26] are the most popular solution methods of this problem. Other special forms
of sparse matrices such as band matrices, block tridiagonal matrices, and block
triangular matrices give rise to computational savings and special solution tech­
niques, and permutation into these forms has been studied in the literature [20].

Although ordering sparse matrices to various special forms has been studied
in the literature, the problem of permuting rows and columns of a sparse matrix
into a block angular form, with specified number of equal sized blocks while min­
imizing the number of coupling rows, remains almost untouched. Solving linear
systems of equations with block angular matrices has an inherent parallelism, be­
cause the blocks are independent, and can be handled concurrently. This kind of
matrices arise in Linear Programming, such as multi-commodity flow, multi-stage
stochastic problems.

('HAPTER 1. INTRODUCTION

Linear Programming (LP) is concerned with the optimization (maximization
or minimization) of a linear function, while satisfying a set of linear eciuality
and/or inequality constraints, and it is currently one of the most popular tools in
modeling economic and physical phenomena where performance measures are to
i)e optimized subject to certain requirements. LP was first conceived by George
B. Dantzig around 1947. The most popular solution method for linear program­
ming problems is the Simplex Method proposed by Dantzig in 1949. The other
popular method is the Interior Point Method proposed by Karmarkar in 1984.
Both of these methods have been successfully applied to many LP problems of
moderate size. However, the performance of these two methods decreases as the
problem size increases. The sizes of the constraint matrices of many LP’s can be
extremely large, in practice, which restricts the applicability of the standard so­
lution techniques. This leads to the idea of applying divide-and-conquer schema
for solving very large problems. Solving linear programs by decomposition was
first proposed by Dantzig and Wolfe [18] in 1960, and has been the subject of
many research efforts since then. Problems with block angular constraint ma­
trices are very suitable for applying decomposition techniques. Also solution of
these problems with decomposition has an inherent parallelism.

The parallel solution of block angular LP’s has been a very active area of
research in both operations research and computer science societies. The most
I)opular decomposition technique, Dantzig-Wolfe decomposition has been suc­
cessfully adopted for parallel solution of the block angular LP’s. In this scheme,
the block structure of the constraint matrix is exploited for parallel solution in
the subproblem phase where each processor solves a smaller LP corresponding
to a distinct block. A sequential coordination phase (the master) follows. This
cycle is repeated until suitable termination criteria are satisfied. Coarse grain
|)arallelism inherent in these approaches has been exploited in many other recent
research works [27, 43]. However, the success of these approaches depends only
on the existing block angular structure of the given constraint matrix. The num­
ber of processors utilized for parallelization in these studies is clearly limited by
the number of inherent blocks of the constraint matrix. Hence, these approaches
suffer from unscalabiJity and load imbalance.

CHAPTER 1. INTRODUCTION

This work focuses on the problem of permuting rows and columns of an irreg­
ularly sparse rectangular matrix to obtain block angular structure with specified
number of blocks for scalable parallelization. The objective in the decomposition
is to minimize the number of coupling rows, while maintaining a balance criterion
among the sizes of the blocks. Minimizing the number of coupling rows corre­
sponds to minimizing the sequential component of the overall parallel scheme.
Maintaining a balance criterion among the sizes of the blocks corresponds to
minimizing processors’ idle time during each subproblem phase.

The literature that addresses this problem is extremely rare and very recent.
Ferris and Horn [21] model the constraint matrix as a bipartite graph. In this
graph, each row and each column is represented by a vertex, and one set of ver­
tices representing rows and the other set of vertices representing columns form a
bipartition. There exists an edge between a row vertex and a column vertex if
and only if the respective entry in the constraint matrix is nonzero. Ferris and
Horn partition this graph using the Kernighan-Lin heuristic [36]. They obtain
a node separator from this graph by repeatedly adding the vertex with highest
degree to the separator. This enables permutation of the graph into a doubly
bordered block angular form. Out of the vertices in the separator, ones repre­
senting the columns constitute the row-coupling columns, and ones representing
the rows constitute the column-coupling rows. This doubly bordered matrix can
be transformed into a block angular matrix by column splitting, a technique sim­
ilar to the one used in stochastic programming to treat non-anticipativity [44].
This model naturally leads to a doubly bordered block angular matrix, and does
not reduce the problem to any well-studied combinatorial optimization problem.

In this work, we propose three different models for representing sparse ma­
trices for decomposition. Each model reduces the problem to a well-studied
combinatorial optimization problem. In the first two models, we exploit hyper­
graphs to model matrices for decomposition. A hypergraph is defined as a set of
vertices (nodes) and a set of nets (hyperedges) between those vertices. Each net
is a subset of the vertices of the hypergraph. A graph is a special instance of a
hypergraph, where each net contains exactly two vertices.

In the first model— referred to here as the row-net model—each row is rep­
resented by a net, whereas each column is represented by a vertex. The set

CHAPTER 1. INTRODUCTION

of vertices connected to a net corresponds to the set of columns which have a
nonzero entry in the row represented by this net [48]. In this case, the decomposi­
tion problem reduces to the well-known bvpergraph partitioning problem which
is known to be NP-Hard [24]. Hypergraph partitioning tries to minimize the
number of nets on the cut, while maintaining balance between the parts. Main­
taining balance corresponds to balance between sizes of the blocks in the block
angular matrix, and minimizing the number of nets on the cut corresponds to
minimizing the number of coupling rows in the block angular matrix.

The second model— referred to here as the column-net model—is very similar
to the row-net model, only the roles of columns and rows are exchanged. Each
column is represented by a net, whereas each row is represented by a vertex. The
set of vertices connected to a net corresponds to the set of rows which have a
nonzero entry in the column represented by this net [48]. Applying partitioning
on this hypergraph can be considered as permuting the rows and columns of this
matrix to dual block angular form. This dual block angular matrix achieved by
hypergraph partitioning can be transformed into a block angular form by using
column-splitting [44].

Hypergraph partitioning has been heavily studied in VLSI design automation,
and many heuristics have been proposed for this problem. In this study, we make
use of different heuristics originally proposed for VLSI partitioning, and adapt
these heuristics for decomposing matrices.

In our third model— referred to here as the Row Interaction Graph model—
each row is represented by a node, and there is an edge between two nodes if
there exists a column which has nonzeros in both respective rows [47]. This
model reduces the decomposition problem into the graph partitioning by node
separator problem. Nodes in part P{ of a partition correspond to the rows in
block Bi, and nodes in the separator correspond to the coupling rows. Hence,
minimizing the number of nodes in the separator corresponds to minimizing the
size of the master problem. By definition of the node separator, there are no
edges between nodes in different parts, hence there is no interaction among rows
of different blocks.

The problem of partitioning by node separators has applications in ordering

CHAPTER /. INTRODUCTION

matrices to preserve sparsity during factorization. Besides utilizing present meth­
ods for decomposition, this work includes contributions for finding better node
separators on graphs.

VVe have demonstrate the validity of the proposed graph model with various
linear program constraint matrices selected from NETLIB and other sources. We
were able to decompose a matrix with 10099 rows, 11098 columns, 39554 nonzeros
into 8 blocks with only 517 coupling rows in 1.9 seconds and a matrix with 34774
rows, 31728 columns, 165129 nonzeros into 8 blocks with only 1029 coupling rows
in 10.1 seconds. The solution times with LOQO are 907.6 seconds for the former
and 5970.3 seconds for the latter. These results are quite promising and our
decomposition techniques form feasible decompositions for parallel solution.

The organization of this thesis is as follows: Chapter 2 includes a definition
of block angular matrices and their applications. Chapter 3 presents a brief
description of hypergraphs and the hypergraph partitioning problem. We use the
terminology described in this section throughout the thesis. This chapter also
reviews different approaches proposed for hypergraph partitioning problem such
as local search methods, geometric embeddings, multi-level approaches and multi­
start techniques. Chapter 4 defines the graph partitioning by node separators
problem, and reviews the previous work. New methods that can help us to
find better separators are also presented in this chapter. Chapter 5 describes
the tour models for permuting matrices to block angular form. We review the
bipartite graph model of Ferris and Horn, and propose row-net, column-net, and
row interaction graph models. Chapter 6 presents our experimental results, and
comparisons of different models and methods, and comments on the experimental
results. Finally, we give directions for future work and conclude the thesis in
Chapter 7.

2. Block Angular Form of a Sparse Matrix

Block angular systems have been attractive for computer scientist due to their
inherent parallelism. The blocks of the system can be handled concurrently, since
they are independent. Below, we will define block angular systems, and we will
discuss some of the applications.

2.1 Preliminaries

In this section, we will define block angular matrices. Definitions 2.1-2.4 have
been taken from [21].

D efin ition 2.1 A matrix A € is said to be in block angular form if it

has the following structure:

A =

Bx \

B o

Bk

 ̂ R\ · · · Rk j

where Bi G . Each submatrix Bi is called a block, and
k k

M + q and A" = ^ n , .
1=1 1=1

D efinition 2.2 A matrix A € is said to be in dual block angular form if

it has the following structure:

4 “ — /ig —

Bx
Bo

Cx
C2

Bk Ck

\

CHAPTER 2. BLOCK ANGULAR FORM OF A SPARSE MATRIX

where G , , C,· G Each submatrix Bi is called a block, and

M = ^2 o,nd N = '^rii -\- P
1=1 1=1

I

D efin ition 2.3 A matrix A G is said to be in doubly bordered block
angular form if it has the following structure:

^DB =

B,
C l

C2

\

Bk Ck
Rl i?2 Rk D y

where Bi G C,· G Ri G and D G Each submatrix
Bi is called a block, and

k k
M = ^2m i + q and ^ + p .

1=1 1=1

D efin ition 2.4 Each row o f the q x N submatrix

{Rl i?2 · · · Rk D)

is called a column-linking or column-coupling row.

Generally, column-linking rows restrict the column spaces of the blocks, re­
sulting in the column space for the entire matrix. A column-linking row may
restrict the column space of one block Bi based on the column space of another
block B j. In this case, the blocks Bj and Bj are said to be linked or coupled by
this row.

D efin ition 2.5 Each column of the M x p submatrix

I Cl ^

C 2

Ck

\ ^ }

is called a row-linking or row-coupling column.

Generally, row-linking columns restrict the row spaces of the blocks, resulting in
the row space for the entire matrix. A row-linking column may restrict the row
space of one block Bi based on the row space of another block B j. In this case,
the blocks Bi and Bj a,r'e said to be ¡inked or coupled by this column.

CHAPTER 2. BLOCK ANGULAR FORM OF A SPARSE MATRIX 8

2.2 Block Angular Systems in Linear Programming

Linear Programming (LP) is concerned with the optimization (maximization or
minimization) of a linear function, while satisfying a set of linear equality and/or
inequality constraints. The linear programming problem was first conceived by
George B. Dantzig around 1947.

A linear program has the canonical form

M inim ize
Subject to

cixi + C2X2 + . . . + CnXfi

O i i X i + 0 12X 2 + . . . + ^In^n > bx

021X 1 + 022^2 + . . . + (̂ 2n^n > f>2

O m l ^ J l + dm2X2 + · · · + dmn^n > bm

X l X2 7 Xn > 0

Here ciX\ + C2X2 + . . . + c„x„ is the objective function, Ci,C2, . . . , c „ are
objective coefficients, and Xi,X2 , . . . ,Xn are decision variables to be determined.
The inequality Yjj=iUijXj > bj denotes the fth constraint. The coefficients a,j
for i = 1,2, . . . , m , and j = 1,2, . . . , n are called the technological coefficients,
and they form the constraint matrix A.

/

A =

an

«21
ai2
U22

Uln

U2n

\

 ̂ ^m2 ·· · ^mn y

The column vector whose eth component is 6, , which is referred to as the right-
hand side vector represents the minimal requirements to be satisfied. Hence,
u.sing this matrix notation an LP problem can be represented as:

CHAPTER 2. BLOCK ANGULAR FORM OF A SPARSE MATRIX

Minimize cTx
Subject to A^x > b

X > 0

Every LP problem has an associated dual pi'oblem. The dual problem for the
foregoing problem can be stated as :

Maximize b^y
Subject to AJy < c

y > 0
A set of variables x\^X2 i . . . iXn satisfying all the constraints is called a feasible
point. The set of all such points constitutes the feasible region. Using these
definitions, the linear programming problem can be stated as follows: Among all
feasible points, find one that minimizes (or maximizes) the objective function [4].

The most popular solution method for linear programming problems is the
“Simplex Algorithm” , which was proposed by Dantzig in 1949. It has been widely
accepted for its simplicity to understand and implement, and its speed in small
sized problems. It is a local search algorithm, and moves from one extreme point
to another, and it finds the optimal solution, since the set of feasible points is
a convex set. The asymptotic complexity of the algorithm is exponential in the

worst-case.
Another popular method for solving linear programming problems is the in­

terior point methods, which started with the pioneering work of Karmarkar in
1984 [34]. As the name implies this method moves in the inner space of the fea­
sible region, and finds an optimal solution. The important point in Karmarkar’s
method is its polynomial asymptotic complexity.

The performance of both methods decreases as the problem size increaises.
Also memory becomes restrictive for large problems. This leads to the idea of
solving linear programs by decomposition. The first decomposition scheme was
proposed by Dantzig and Wolfe in 1960 [18]. In this scheme, the problem is
decomposed into subproblems. Each time a subproblem is solved, and the results
are used in the solution of the forecoming subproblems.

If the systems is block angular, each block corresponds to a subproblem, and

CHAPTER 2. BLOCK ANGULAR FORM OF A SPARSE MATRIX 10

these subproblems can be solved concurrently, since they are independent. Multi­
commodity flow, multi-item production scheduling, economic development prob­
lems and multi-stage stochastic problems has block angular constraint matrices

Starting with the pioneering work of Dantzig and Wolfe in 1960 [18], solution
of block angular problems (either in parallel or in serial) has been an active
area of study, and lead to several studies. Bender decomposition [5], Bundle-
based decomposition [43], Alternating Directions Method [38] are examples of
such work.

However, the literature addressing how to obtain a block angular structure of
a sparse matrix is very rare and recent. Solution methods for this problem will
be discussed in Chapter 5.

3. Graph and Hypergraph Partitioning

The importance and popularity of the graph partitioning problem is mostly due to
its connection to the problems whose solution depend on the divide-and-conquer
paradigm. A partitioning algorithm partitions a problem into semi-independent
subproblems, and tries to reduce the interaction between these subproblems. This
division of a problem into simpler subproblems results in a substantial reduction
in the search space. Graph Partitioning is the basis of hypergraph partitioning,
which is more general and more difficult. Graph partitioning has a number of
important applications. An exhaustive list of these applications combined with
the relevant references is given below.

• VLSI placement [41]

• VLSI routing [57]

• VLSI circuit simulation [1]

• memory segmentation to minimize paging [.36]

• mapping of tasks to processors to minimize communication [10]

• efficient sparse Gaussian elimination [26]

• laying out of machines in advanced manufacturing systems [56]

Some applications of the hypergraph partitioning problem are listed below:

• VLSI placement [22]

• VLSI routing [53]

11

CHAPTER 3. GRAPH AND HYPERGRAPH PARTITIONING 13

VVe can extend the adjacency definition of a vertex to adjacency definition of a
set of vertices K C V as follows:

Adj(V) = U Adj{v) - V .
vev

We use Adj{v,U) to denote the set of vertices adjacent to v in t/.

Adj{v,U) = A d j {v)n U .

Extending this definition to sets, we can say

Adj{V,U) = A d j {V)n U .

We will use Adjsiv) to denote the set of edges adjacent to vertex v.

Adjs{v) = {e|e € € and (e = (u,u) or e = (u,u))} .

For hypergraphs 7i = (V,W) (also for graphs), a weight function can be defined
to map each vertex to a positive number. A similar function can be defined
to map nets to positive numbers. We will call the former function the weight
function, the latter function as the cost function. We can extend the definition
of cost and weight functions for sets as follows:

weight{V') = ^ weight{v) fo r all C V
u€V'

cost{J\f) = ^ cost{n) fo r all f f ' C A f
n€V'

Below we will discuss the definition of partitioning for hypergraphs.

Definition 3.1 P = {Pi, P2 , ■ ■ · ■, Pk} is a k-way partition of hypergraph H =
(V,A^) if and only if the following three conditions hold:

• Pi C V and Pi ̂ fo r i < i < k

• UL, c. = V
• F,f\P, = <b for I < i < j < k

CHAPTER 3. GRAPH AND HYPERGRAPH PARTITIONING 14

When k = 2 this partition is called as a bisection or a bipartition.

For a partition F , a net n is said to be internal in partition F , if and only if
Vy G n, V Ç. Pi or n f] Pi = n

The set of internal nets A*/ is defined as

Ai[= {n|ri. is an internal net in a part}

or
Ail = {n|n n F = n fo r n e Ai and Pi G F }

and the set of external nets A/e is defined as

Afs — {n\n n F 7̂ 0 and nO Pi ^ n fo r n ^ Af and Pi G F }.

There are different functions for the cost of a cut. Two of these are widely used.
I'he first one is the number of nets on the cut. In this metric cutsize C{P) can
be defined as:

C{P) = ^ cost{n) = cost{AfE) = cost{Af) — cost{Aii)

The second metric is the connectivity metric. The connectivity of a net is
equal to the number of parts it connects. Formally, connectivity of net con(n) is

con{n) = |{F : 1 < i and F, D n 7̂ 0}|

With this metric, cutsize C[P) is defined as:

~ con(n)
n€AT

A partition is balanced if all parts have about the same weight. When all parts
have exactly the same weight, we call this partitioning as perfectly balanced. A
formal definition for the balance criterion can be expressed as :

W - Wmax aavg

wrr
< e

where Wmax is the weight of the part with maximum weight, Wavg is the average
weight of parts (i.e., W a v g and e is a predetermined imbalance
ratio.

In the light of the definitions above we can define the hypergraph partitioning
problem as finding a balanced partition F which minimizes the cost function

C { P) .

CHAPTER 3. GRAPH AND HYPERGRAPH PARTITIONING 15

3.2 Local Search Heuristics

Local search heuristics are very popular for solving combinatorial optimization
problems, since they can be easily implemented apd they can be very fast. A
general overview of a local search heuristic is given in Figure 3.1. A local search
heuristic starts with a random feasible solution, then iteratively improves this
solution by moving to solutions in the neighborhood space. This leads to two
critical points for local search methods: definition of a neighborhood space and
how to choose the neighbor to move within this space. This section discusses
neighborhood structures and various methods proposed for the solution of the
graph and hypergraph partitioning problems.

Input : A combinatorial optimization problem
O utput : A local optimum solution

1. generate an initial feasible solution s for the problem
2. repeat
2.1 Find a neighbor s' of s with cost(s) > cost(s')
2.2 s s'

until no improvement on s is possible.

Figure 3.1. A general view of a local search heuristic

3.2.1 Neighborhood Structures for the Hypergraph Par­

titioning Problem

The most critical part of a local search heuristic is the neighborhood definition.
.After the definition of the neighborhood structure second critical choice is how
to choose a neighbor s' for a solution s from the neighborhood N{s). Generally

there are three ways:

• First descent method chooses the first neighbor in N (s) that has a better
cost than s.

CHAPTER 3. GRAPH AND HYPERGRAPH PARTITIONING 16

• Steepest descent method chooses the neighbor st which gives the best cost
among all solutions in N(s).

• Random descent method chooses a neighbor randomly among solutions in
N{3).

First descent method is faster than the steepest descent method, however steepest
descent has a higher chance to produce better results.

There are two popular neighborhood structures for the graph partitioning
problem. The first is the Swap-Neighborhood and the second is the Move-
Neighborhood. Below, we will discuss these two neighborhood structures.

• Swap-Neighborhood:

In this neighborhood structure, two partitions are neighbors if one partition
can be obtained from another by swapping two vertices between different
parts in one of the partitions. Formally,

Definition 3.2 Let H = (V,A^) be a n-vertex hypergraph and P , P' two
k-way partitions o fH . Then, the partition P = (P i , . . . , P , , . . . , P , , . . . , P)̂
and the partition P' = (P i , . . . , (P, —{u })U {u } , . . . , (Pj —{u})U {y } , . . . , Pt)
are neighbors for some vertices v ^ Pi, u E P j .

The partition P has {k{k — l) /2) (n/t)^ neighbors if each part has n/k
vertices.

• Move-Neighborhood:
A partition P = (P i , . . . , Pfc,. . . , P/, . . . , Pk) has a move-neighbor partition
P ' if P' can be obtained from P by moving a vertex from one part to
another in P . Formally,

Definition 3.3 Let Ti = {V,Af) be a n-vertex graph and P , P' two k-
way partitions of 7i. Then, the partition P' = (P i , . . . , P, — {u } , . . . , Pj U

{ u } , . . . , Pit) is a move-neighbor of the partition P = (Pi , . . . , P,, . . . , Pj, . . . , Pj·)
for some P,, Pj G P and for some vertex v € Pi ■

The partition P has at most k{k — l){n/k) = n{k — 1) neighbors if each
part has n/k vertices.

CHAPTER 3. GRAPH AND HYPERGRAPH PARTITIONING 17

The Swap-Neighborhood space of a partition is larger than its Move-Neighborhood,
which enables a better search in neighborhood of a solution. However, search­
ing the swap-neighborhood takes more time compared to searching the move-
neighborhood. Different algorithms using these two neighborhood spaces will be
described in Section 3.2.4.

3.2.2 Hill-climbing

Local search heuristics can be supported with a hill-climbing feature. Suppose the
problem is a minimization problem, and cost{s) denotes the cost of the solution
s. If we choose sf with cost{s/) < cost{s), this will be a downhill step. On the
other hand, if we choose s/ with cost(sf) > cost{s), this will be an uphill step.
.Mlowing uphill moves enables the heuristic to escape from being trapped in a
local optima. In hypergraph partitioning, generally all possible moves (swaps)
are examined and only a prefix of the moves (a consecutive subset of the moves
starting with the first move) giving the best solution are realized. This enables us
to escape from local óptimas and find better partitions. A local search heuristic
with hill-climbing is given in Figure 3.2.

3.2.3 Tie-breaking Strategies

A critical decision in the iterative improvement methods is the choice of the
vertex to move (vertex pair to swap). Most of the time, there is more than
one vertex, which gives the same improvement. Hagen et. al. [28], observe
that 15 to 30 vertices typically share the highest gain value at any time during
an FM pass on a VLSI circuit with 833 modules (Primaryl). This shows that
an intelligent tie-breaking mechanism can make significant improvements on the
overall performance of the partitioning algorithm.

One simple decision is to use LIFO, FIFO or random strategy to choose the
vertex to move, out of the highest gain moves. Hagen et. ah, experimented with
these three strategies and showed that LIFO strategy significantly overperforms
the other two [28]. One explanation for this success will be that LIFO enforces
'‘locality” for choosing vertices to move. That is, vertices that form a natural
cluster will probably move sequentially.

CHAPTER 3. GRAPH AND HYPERGRAPH PARTITIONING 18

Input: A combinatorial optimization problem
O utput: A local optimum solution

1 generate an initial feasible solution s for the problem
2 repeat
2.1 for a limited number of iterations do
2.1.1 select the best neighbor sf of in N {s).
2.1.2 s ^ s'
2.3 find the prefix of steps from the loop above, which leads

to the best solution in this pass.
2.4 if the prefix is non-empty, then
2.4.1 realize the steps in this prefix.
2.5 else a local optimum has been found,

until a local optimum has been found.

Figure 3.2. A generalized local search algorithm with hill-climbing

Another method for tie-breaking is to consider not only the gain for that move,
but also some possible gains for the future moves. Krishnamurthy introduced a
gain vector, which is a sequence of potential gain values corresponding to gains
of possible moves in the future. The rth entry in the gain vector considers the
gain r moves ahead. Ties are broken by first considering first level gain, then the
second level gain, etc.

Hagen et. al.[28], introduces a similar look-ahead ability by improving Krish-
namurthy’s gain computation with the basic idea behind the success of LIFO

structure.
All these studies show the importance of tie-breaking strategies for iterative

improvement methods. This is still a hot topic for hypergraph partitioning prob­

lem.

3.2.4 Hypergraph Partitioning Heuristics

In this section, we will overview different hypergraph partitioning heuristics,
which use a local search strategy.

CHAPTER 3. GRAPH AND HYPERGRAPH PARTITIONING 19

3.2.4.1 Kernighan-Lin’s Approach

Kernighan-Lin (KL) heuristic was originally proposed for the graph partitioning
problem. This heuristic is a local search algorithm and has become the basis
of many graph and hypergraph partitioning heuristics [36]. KL heuristic uses a
Swap-Neighborhood structure (described in Section 3.2.1). In this neighborhood
structure, two partitions are neighbors if one partition can be obtained from
another by swapping two vertices between different parts in one of the partitions.

This heuristic assumes that every vertex heis the same weight. It works as
follows: first, an initial partition is generated. We then determine the vertex
pair whose swap results in the largest swap gain, i.e., the largest decrease in the
cutsize or the smallest increase (if no decrease is possible). This pair is tentatively
interchanged and locked. The locking prohibits them from taking part in future
swaps in this pass. Then, we look for a second pair of vertices whose interchange
improves the cutsize the most, and do the same for this pair also. We continue in
this way, but we keep a record of all tentative swaps and their gains. We finish
when all the vertices are locked. At this time, we have interchanged both parts
and are back to the original (initial) cutsize. Starting with the first swap in the
record, we perform the subsequence of swaps which result in the smallest cutsize.
The following pass begins with unlocking all vertices and proceeds in the same
maimer. These passes are repeated until there is no improvement in the cutsize
which corresponds to a locally minimum partition.

KL heuristic allows uphill moves to reduce the danger of being trapped in
a poor local minimum. This feature of the heuristic enables it to produce bet­
ter partitions than the heuristics that employ only downhill moves. Also, this
algorithm is quite robust. We can accommodate additional constraints such as
partitioning into unequal-sized parts, required parts for certain vertices. However,
it has some disadvantages. The algorithm handles only identical vertex weights.
This restricts the applicability of this heuristic. The algorithm has a complexity
of O(ii'^lgn) per pass for a graph with n vertices. It has been observed that
the algorithm performs poorly on sparse graphs. Furthermore, the quality of the
solution generated by this heuristic strongly depends on the initial partition, just
like any other local .search partitioning method.

This heuristic has been initially proposed for graphs. The first studies on

CHAPTER 3. GRAPH AND HYPERGRAPH PARTITIONING 20

In'pergraph partitioning with this heuristic was done by transforming the hyper­
graph to a graph. Later, Schweikert and Kernighan improved this method to
handle hypergraphs [55]. A recent study by Dutt decreased the worst-case com­
plexity of the KL algorithm to 6(^max[\£\d, \£\ Ig |V|)) and average complexity to
0{\E\ Ig |V|), where d is the maximum vertex degree in Q.

3.2.4.2 Fiduccia-Mattheyses’ Approach

Fiduccia-Mattheyses (FM) heuristic [22] was originally proposed for the hyper­
graph partitioning problem, but it can be applied to the graph partitioning prob­
lem as well. This algorithm introduces the Move-Neighborhood structure instead
of the swap-neighborhood structure.

In addition, an efficient data structure called the bucket list data structure
is proposed. This data structure helps to sort the vertices with respect to their
move gains, in time linear in the number of the vertices and keep the vertices in
a sorted order according to their move gains, during the partitioning iterations.
Moreover, it reduces the time complexity of the KL heuristic to 0 (]F] + |£̂ |)·
These features of FM heuristic, made it the basis for many of the heuristics that

followed.

3.2.4.3 Krishnamurthy’s Approach

This heuristic [39] is an extension of FM’s method. Look-ahead ability is added
to the cell gain concept by considering the number of pins of a net in a part. Each
node has a gain vector with size /, where I is the number of levels. First level
gain is the same as that in FM’s method. Second level gain shows the possible
cutsize reduction in the next move which follows the current cell move. If a net
has 2 cells in part P i , and at least one cell in other part P-2 , moving one of the
two cells from Pi to /2 does not reduce the cut. Therefore effect of this net on
first level gain of those cells are 0 and effect on the second level gains is the cost

of this net.

CHAPTER 3. GRAPH AND HYPERGRAPH PARTITIONING 2 1

3.2.4.4 Sanchis’ Approach

Sarichis [54] generalized Krishnamurthy’s algorithm to a multi-way hypergraph
partitioning algorithm so that it could directly handle the partitioning of a hy­
pergraph into more than two parts. All the previous approaches before Sanchis’
algorithm (SN algorithm) are originally bipartitioning algorithms. Level 1 SN
algorithm is briefly described here for the sake of simplicity of presentation. De­
tails of SN algorithm which adopts multi-level gain concept can be found in [54].
In SN algorithm, each vertex of the hypergraph is associated with { k - l) possible
moves. Each move is associated with a gain. The move ga,in of a vertex u, in
part s with respect to part t i.e., the gain of the move of u,· from the
home (source) part s to the destination part i, denotes the amount of decrease
in the number of cut nets (cutsize) to be obtained by making that move. Positive
gain refers to a decrease, whereas negative gain refers to an increase in the cut-
size. Figure 3.3 illustrates the pseudo-code of the SN based ¿-way hypergraph
partitioning heuristic. In this figure, nets{v) denotes the set of nets incident
to vertex v. The algorithm starts from a randomly chosen feasible partition
(Step 1), and iterates a number of passes over the vertices of the hypergraph
until a locally optimum partition is found (repeat-loop at Step 2). At the be­
ginning of each pass, all vertices are unlocked (Step 2.1), and initial ¿ — 1 move
gains for each vertex are computed (Step 2.2). At each iteration (while-loop at
Step 2.4) in a pass, a feasible move with the maximum gain is selected, tentatively
performed, and the vertex associated with the move is locked (Steps 2.4.1-2.4.6).
The locking mechanism enforces each vertex to be moved at most once per pass.
That is, a locked vertex is not selected any more for a move until the end of
the pass. After the move, the move gains affected by the selected move should
be updated so that they indicate the effect of the move correctly. Move gains
of only those unlocked vertices which share nets with the vertex moved should
be updated. Gain re-computation scheme is given here instead of gain update
mechanism for the sake of simplicity in the presentation (Step 2.4.7). At the end
of each pass, we have a sequence of tentative vertex moves and their respective
gains. We then construct from this sequence the maximum prefix subsequence of
moves with the maximum prefix sum (Steps 2.5 and 2.6). That is, the gains of
the moves in the maximum prefix subsequence give the maximum decrease in the

CHAPTER 3. GRAPH AND HYPERGRAPH PARTITIONING •22

outsize among all prefix subsequences of the moves tentatively performed. Then,
vve permanently realize the moves in the maximum prefix subsequence and start
the next pass if the maximum prefix sum is positive. The partitioning process
terminates if the maximum prefix sum is not positive, i.e., no further decrease in
the outsize is possible, and we then have found a locally optimum partitioning.
Note that moves with negative gains, i.e., moves which increase the outsize, might
be selected during the iterations in a pass. These moves are tentatively realized
in the hope that they will lead to moves with positive gains in the following it­
erations. This feature together with the maximum prefix subsequence selection
brings the hill-climbing capability to the KL-based algorithms.

Figure 3.4 illustrates the pseudo-code of the move gain computation algorithm
for a vertex и in the hypergraph. In this algorithm, part{y) for a vertex u € V
denotes the part which the vertex belongs to, and <t„ (î) counts the number of
pins of net n in part t . Move of vertex и from part s to part t will decrease the
cutsize if and only if one or more nets become internal net(s) of part t by moving
vertex и to part t. Therefore, all other pins (|n| — 1 pins) of net n should be in
part t. This check is done in Step 3.3.1.

In this heuristic, each part contains k — l bucket lists; one for each other part,
a vertex can move. The time complexity of one pass is 0{l.p.k{lgk -(- Gmax-l)),
where / is the number of levels and Gmax is the size of buckets.

3.2.4.5 Simulated Annealing

Simulated Annealing (SA) was proposed by Kirkpatrick [37] as an optimization
method, which heis the capability to escape from local minima. To solve a com­
binatorial optimization problem with SA, a neighborhood structure should be
defined for the solution space. Then SA starts with an initial solution, picks a
random neighbor of the current solution and moves to this neighbor if it repre­
sents a downhill move. Even if the new solution represents an uphill move, SA
will move to it with probability , and stay in the current solution otherwise.
Here 6 is the improvement in the cost function of the problem, and T is the
current value of the Temperature parameter. To control the rate of convergence
and the way of searching the solution space, typically temperature schedule is

CHAPTER 3. GRAPH AND HYPERGRAPH PARTITIONING 23

1 construct a random, initial, feasible partition;
2 repeat
2.1 unlock all vertices;
2.2 compute A: — 1 move gains of each vertex v

by invoking computegain(H,v);
2.3 merit = 0;
2.4 while there exists a feasible move of an unlocked vertex do
2.4.1 select a feasible move with max gain Qmax of an unlocked vertex v

from part s to part t ;
2.4.2 ment — merit + 1;
2.4.3 G[mcnt] = gmax]
2.4.4 Moves[mcnt] = {v,s,t}'·,
2.4.5 tentatively realize the move of vertex u;
2.4.6 /ocA: vertex u ;
2.4.7 update the move gains of unlocked vertices и € net${v)

by invoking computegain{H,u);
2.5 perform prefix sum on the array (?[1.. . ment];
2.6 select i* such that Gmax = niaxi<,-.<mcni (?[**];
2.7 if Gmax > 0 then
2.7.1 permanently realize the moves in M oves[l. . . ¿*];

until Gmax — H j

Figure 3.3. Level 1 SN hypergraph partitioning heuristic

established, which modifies T as a function of current status of the search pro­
cess (e.g., the number of moves). It has been shown that SA will converge to a
globally optimum solution given an infinite number of moves and a temperature
schedule that cools to zero sufficiently slowly. The terms “cooling” and “tem­
perature schedule” are due to SA’s analogy to physical annealing of a material
into a ground-state energy configuration. One problem with SA is, at low tem­
peratures, many candidate moves might be generated and rejected before one is
finally accepted, significantly increasing the run-time.

SA overperforms, in the quality of cutsize, all the previous explained KL-based
approaches. However, its run-time is too large, which makes it impractical.

CHAPTER 3. GRAPH AND HYPERGRAPH PARTITIONING 24

computegain{ H, u)
1 if <— part{u);
2 for each part t ^ s do
2.1 g u {t)^ 0 ·,
3 for each net n G nets{u) do
3.1 for each part i = 1 , . . . , ̂ do
3.1.1 <Tn(0^0;
3.2 for each vertex n G n do
3.2.1 p<—part{v);
3.2.2 cr„(p) <- cr„(p) + 1;
3.3 for each part < ^ 5 do
3.3.1 if o-n(t) = |n| — 1 then
3.3.1.1 9u{t) ^ gu(t) + 1]

Figure 3.4. Gain computation for a vertex u

3.2.4.6 Mean Field Annealing

Mean Field Annealing (MFA) is a technique similar to SA which also has a
physical analogy to systems of particles in thermal equilibrium. It was first
applied to graph partitioning by Van den Bout and Miller [19]. They use an
indicator vector of size |V| to denote a bipartitioning solution, where xi = 0
corresponds to placing u, in the first part, and = 1 corresponds to placing v,
in the second part. However, the value of x, varies between 0 and 1. Initially,
each X, is set to a value slightly greater than 0.5. Next, a random vertex u, is
selected iteratively, and two solutions x(0) which places x,· in the first part, and
x (l) which places x, in the second part are considered. Then the value of x, is
updated as:

a;. = (1 + g(F(f(D)-F(i(0)))/r)-i

The intuition behind this calculation is x, approaches its natural value after
each update (i.e., x,· approaches to 1 iff F (x (l)) < < F(x(0)), and to 0 iff
F(.r(0)) « F (x (l))) .

The process of computing a new x, for randomly chosen v, is repeated until
a stable solution is reached. The temperature T is then lowered and the process

CHAPTER 3. GRAPH AND HYPERGRAPH PARTITIONING 25

is repeated, moving x, values further to 0 or 1. Finally, a graph bipartitioning
solution can be obtained by rounding each x, to its nearest discrete value. Bultan
and Aykanat have extended this basic approach to multi-way partitioning of
hypergraphs [9, 10].

The quality of MFA solutions are competitive with those of SA, but usually
takes less time than SA, but MFA is still slower than KL-based approaches.

3.2.5 Alternative Strategies

A possible weakness of the KL and FM strategies lies in the locking mechanism,
e.g., a module v may be moved from Pi to Pj early in a pass, but its neighbors in
P2 start moving to P i, which causes v to be in the wrong cluster. To prevent such
cases, Hoffman [32] proposed a dynamic locking mechanism which behaves like
FM, except that when v is moved out of P, every module in Adj{v, Pi) becomes
unlocked. This allows the neighbors of v in P, to also migrate out of P, . The
algorithm permits a maximum of ten moves per module per pass. Da§dan and
Aykanat proposed a multi-way FM variant that allows a small constant number
vertex moves per pass [17].

3.2.6 Multi-start Techniques

As discussed in previous sections, iterative improvement heuristics are usually
very fast, however they have a high tendency to be trapped in local minima.
On the other hand. Simulated Annealing (SA) is very slow, but it is guaranteed
to find a global optimum (given infinite time), and in practice SA overperforms
other heuristics in quality of the solution at the expense of large amounts of CPU
time.

One alternative to SA is a multi-start technique, running iterative improve­
ment heuristics several times, each time starting from a different initial solution,
and return the best result. This technique makes a significant improvement on
the performance of iterative methods. Also, multi-start technique has a trivial
parallelism, which gives an important advantage if the problem is a preprocessing

step for a parallel application.
Nevertheless, the performance of multi-start technique becomes limited as

CHA PTER 3. ORAPH AND HYPERGRAPH PARTITIONING 26

the problem size increases. Boese et. al. [6], proposed an adaptive multi-start
technique. The technique depends on using the knowledge obtained from previous
solutions. One way is to group vertices, that have been placed in the same part,
on previous runs for the initial partition. An alternative way is to form clusters of
vertices that have been placed in the same part in all previous runs. Studies with
adaptive multi-start techniques report improvements compared to pure multi­
start techniques, especially for the average Ccise performance.

3.3 Geometric Embeddings

A geometric representation of the hypergraph can provide a useful basis for a
partitioning heuristic, since speedups and special “geometric” heuristics become
possible. For example computing a minimum spanning tree of a weighted undi­
rected graph requires 0{n^) time, but the complexity reduces to 0 {n Ig n) for
points in a 2-dimensional space [51]. In this section, we will discuss partitioning
graphs with the help of embedding the vertices into geometric space [3][12][23j.
The three important representations are :

• One-dimensional Representation:

One dimensional representation is a sequential list of the vertices. Generally,
modules that are closely connected should lie close to each other in the
ordering, so that the ordering can reveal the structure of the hypergraph.

• Multi-dimensional Representation:

Multi-dimensional Representation is a set of n points in d-dimensional
space with d > 1, where each point represents a single vertex. This repre­
sentation implicitly defines a distance relation between every pair of mod­
ules. Geometric clustering algorithms can be applied to these points for the
partitioning solution.

• Multi-dimensional Vector Space Representation:

Using the multi dimensional vector space model, the vector space consists
of indicator n-vectors (corresponding to bipartitioning solutions), and the
problem becomes finding the direction of the best indicator vector.

CHAPTER 3. GRAPH AND HYPERGRAPH PARTITIONING 27

Spectral methods have crucial importance for embedding graphs into geomet­
ric space. Assume that the hypergraph is represented as a weighted undirected
graph Q = (V ,£ ‘) with adjacency matrix A(ap) (e.g., by replacing each net by a
clique). The'n x n degree matrix D{dij) is given by da = dtg[vi) and = 0
if i ^ j · The n X n Laplacian matrix of Q is defined as Q = D — A. An
n-dimensional vector /7 is an eigenvector of Q with eigenvalue A if and only
if Q¡1 = X¡I. We denote the set of eigenvectors of Q by fTi, 1T2 ,■··■,¡Tn with
eigenvalues Ai < A2 < . . . < A„.

The eigenvectors can be used to embed vertices into geometric space. Hall
[29] uses the second small eigenvector fj.2 to order vertices. He simply sorts the
values in the eigenvector fj.2 ·, then divides the vertices into two with respect to
this order. Vertices can be mapped to n-dimensional space, by using the other
eigenvectors, other geometric clustering methods can be applied on these points.
The survey paper by Alpert and Kahng [2] provides a good review of spectral
methods.

3.4 Multi-level Approaches

.An important improvement to FM has been to integrate clustering into a “two-
phase” methodology. A A:-way clustering of 77 = (V,A/*) is a set of disjoint
clusters P*" = {6'i, (72,..., 6'/t} such that Ci U C2 U . . . U Ck = V. where k is
sufficiently large(usually k = 0{n)). For ease of notation we will write the input
hypergraph H = {V,Af) as Ho{Vo,AÍq). A clustering P'' = {Ci ,C 2 , . .. ,Ck} of
Hq induces the coarser hypergraph with Vi = {(7i, (72,..., Ck] ■ For
every n e A/q, the net n' is a member of where n' — {C, |3u € n and u G (7, } ,
unless |n'| = 1, i.e., each cluster in n' contains at least one vertex in n. In two-
[diase FM, a clustering first induces the hypergraph Hi from Hq, and then FM
is run on 'Hi{Vi,J\ii) to yield a partitioning P\ = {A^i,y'i}. This solution then
projects to a new partitioning Pq = {A'o,Vó} of 77o, where v G A'o(V()) if and
only if for some Ch € Vi, v G Ch and Ck G A^i(Vj). Next, FM is run again on
77o(Vo, A'"o) using Po as its initial solution. This second run can be classified as a
refinement step, which refers to the idea that an initially good solution is further
improved via local moves and swaps.

CHAPTER 3. GRAPH AND HYPERGRAPH PARTITIONING 28

Many clustering algorithms for two-phase FM have appeared in the literature.
F3ui et al. [8] find a random maximal matching in the hypergraph and compact
the matched pairs of modules into | clusters: the matching can then be repeated
to generate clusterings of size |,etc. Hagen and Kahng proposed a random-
walk method in which cycles in the walk form the clusters [2]; Cong and Smith
[15] compress cliques of modules into clusters; and Alpert and Kahng [2] cluster
via graph traversals. All of these methods when used within two-phase FM
significantly improve performance over standard FM. Further, two-phase FM is
frequently faster than a single FM because the second phase starts with a good
initial partition, and hence converges to a local minimum quickly.

The two-phase methods have been recently generalized to a multilevel ap­
proach leading to very successful graph partitioning tools Metis [.35] and Chaco
[31]. The general view of the multilevel approach is depicted in Figure 3.5. Re­
cently, Borriello worked on applying the multilevel approach to hypergraphs [30].
Currently, PaToH (Partitioning Tool for Hypergraphs), a multi-level hypergraph
partitioning tool, is being implemented at Bilkent University.

In a multilevel algorithm, a clustering of the initial hypergraph Hq induces
the coarsened hypergraph Tii, then a clustering of Hi induces H 21 etc. until
the most coarsened hypergraph Hm is constructed. A partitioning solution Pm =
{ AT,, 1 m} is found for „1 and this solution is projected to P,„_i = ·
P,n-\ is then refined, e.g.,by using it as a starting solution for FM. This phase is
called uncoarsening phase, and is continued until a refined partitioning of Ho is

derived.
PaToH coarsens the graph by matching a vertex to the vertex that it shares

most nets. Each vertex is matched for at most once in each coarsening level.
The coarsened graph is partitioned and in the uncoarsening phase, the projected
solutions are improved by an FM pass. This FM pass works only on the vertices
adjacent to a net on the cut. Currently, PaToH makes multi-way partitions
recursively. That is to partition a hypergraph into 4 parts, the hypergraph is
partitioned into 2, and then each part is partitioned in to 2 once more.

CHAPTER 3. GRAPH AND HYPERGRAPH PARTITIONING 29

Improved
Solution

Projected
Solution

Uncoarsening

Phase

Figure 3.5. An overview of Multi-level Hypergraph Partitioning

4. Graph Partitioning by Node Separators

In this chapter, the problem of graph partitioning by node separators will be
discussed. The problem is similar to graph partitioning by edge separators—
discussed in the previous chapter— in the sense that it tries to identify logical
clusters of nodes on the graph. However, this time it is a subset of vertices not
the edges which separates the clusters of nodes. The problem has important
applications in sparse matrix ordering, which aims at preserving sparsity during
factorization.

The organization of this chapter is as follows: the first section defines the
problem, the next section discusses some of its applications. Then we review
previous work in the next section. The final section includes new ideas to find
b('tter separators.

4.1 Problem Definition

Let Q — (V, £) be an undirected graph. Without loss of generality, we can assume
the graph Q to be connected. A vertex subset S is said to be a node separator
if the subgraph induced by the vertices in V — 5 has more than one connected
components. If the resulting graph has at least k connected components, then
the set S is said to be a k-way node separator of Q. Formally, k-way node
separation of Q can be defined as follows:

Definition 4.1 {Pi, Pi , . . . , Pk, S} is a k-way node separation of Q =

(V.i^) iff the following conditions are satisfied:

• V/ : L < t < k P, ^ 0.

• Vi, j : 1 < i < j < A: Pi n Pj = 0 and Vi : 1 < i < k Pi 0 5 = 0

30

CHAPTER 4. GRAPH PARTITIONING BY NODE SEPARATORS 31

U P. U 5 = V
¿=1

• y3e = {u, v) Ç. S 3 u Ç: Pi and v G Pj and i = j

A balance criterion can also be defined for the sizes of the parts. This balance
criterion can be formalized as:

W - W“ ' max rvravg

wrr
< e

where W^ax is the weight of the part with maximum weight, Wavg is the average
weight of parts (i.e., Wayg = —£_Li e is a predetermined imbalance
ratio.

Using these definitions, the problem of partitioning by node separators can
be stated as: '^Finding a balanced node partition with specified number of parts
which minimizes the cardinality of the set 5 ” .

4.2 Applications

An important application of finding node separators arises in sparse matrix order­
ing. Sparse matrix ordering aims at preserving sparsity in Gaussian elimination
or Cholesky factorization. The basic step in this process is to partition the graph
representing sparse symmetric matrix with node separators. The nodes are or­
dered as: nodes in the first block, nodes in the second block and the nodes in the
separator. The process is repeated recursively for ordering the nodes within the
blocks. This process is called Nested Dissection, which was proposed by George

[26].
The problem of partitioning by node separators has also been successfully

applied to hypergraph partitioning problems arising in VLSI design automation.
Kahng et.al. [13] represents the hypergraph by a graph where each vertex corre­
sponds to a net in the hypergraph. Then they try to find a partitioning of the
hypergraph by finding a node separator on this graph.

4.3 Previous Work for Finding Node Separators

Piv.r<‘Vions work on finding node separations is limited to only two-way separations.
The problem remains untouched for finding multi-way node separators. So, in

CHAPTER 4. GRAPH PARTITIONING BY NODE SEPARATORS 32

this section we will review previous work for two-way separators. Two basic
approaches have been proposed for finding a node separator in a graph. The
first one consists of starting with an initial node separator, and then iteratively
improving this separator. The second one is finding a good wide separator in
the graph, and passing to a node separator using this wide separator. Pothen
et.al. [50] present a good comparison of different methods proposed for the graph
partitioning by node separators problem. We will review these two approaches
in the following two sections.

4.3.1 Improving an Initial Separator

Liu proposed a method with two phases [42]. The first phase determines an
initial separator based on the minimum degree algorithm, a popular reordering
method in sparse matrix computation to reduce fillins during elimination. The
next phase is an iterative process which improves the initial separator based on
finding matchings on bipartite graphs.

Input: Graph Q = {U O V 0 S^£) where P = {U, V^S) is a node separation of
Q.
Output: A new separator S' with |5'] < |5[

1. Improved := true;
2. while Improved do
2.1

2.2
2.2.1
2.2.2
2.2.3
2.3

if \U\ < |V| then /*make U the larger portion */
interchange U and V ;

if a subset F of 5 is found with \Adj{Y^U) < \Y\ then
V : = V U Y ;
S : = { S - Y) O A d j { Y , U) · ,
U := U - Adj{Y,U)·,

else
Improved := false;

Figure 4.1. Algorithm for Improving an initial separator

The algorithm for the second phase of Liu’s method is given in Figure 4.1. It

CHAPTER 4. GRAPH PARTITIONING BY NODE SEPARATORS 3.3

depends on finding a subset Y of 5 , whose adjacency on one part, say U , contains
fewer vertices than the set itself. Also Step 2.1 in Figure 4.1 prefers the larger part
for matching to improve the balance between U and V . The critical point in this
method is how to find the subset Y of the separator S , with \Adj{Y,

This set can be computed during searching for an augmenting path, which is the
key point in finding a maximum matching on a bipartite graph. Below we will
review the problem of finding maximum matchings on bipartite graphs. Then we
will discuss how we can adopt this idea for improving an initial node separator.

4.3.1.1 Finding a Maximum Matching on a Bipartite Graph

VVe will start with the definition of a bipartite graph. A graph is bipartite if
we can divide the set of vertices into two groups such that each edge is between
vertices in different parts. Formal definition follows:

Definition 4.2 A graph G = (V , S) is bipartite iff there exists U C V such that

Y (u , v) E £ .,u E U and v ^ V — U

Then we will call sets U and V — U a bipartition o f Q .

Usually, we use G — {EJ^V — U , £) to denote that ^ is a bipartite graph with U

and V — H being a bipartition.
A m atching on a graph Q = (V ,5) is a subset of its edges with no common

endpoints. -A vertex is matched if it is adjacent to an edge in the matching, and
unm atched otherwise. The cardinality of a matching is the number of edges in
it. A m axim um m atching is a matching of maximum cardinality.

A path is a sequence of vertices (uq, · · ·, u„) such that («¿, u,+i) is an
edge for i = 0 ,1 , . . . , n — 1, and there are no repeated vertices. An alternating

path is a path, with one edge in the matching .4/, and the next edge not in M .
An augm enting path is an alternating path that begins and ends with unmatched
vertices.

The asymptotically fastest algorithm known for finding a maximum matching
on a bipartite graph is 0 (\ / V £) [3.3]. However, the algorithm described in Fig­
ure 4.2 usually has a better running time performance, although its asymptotic
complexity is 0 { V S) [49].

CHAPTER 4. GRAPH PARTITIONING BY NODE SEPARATORS 34

Input: A Bipartite Graph Q = {U,S,€)
Output: A maximum Matching M on
Step 1 /* Initialize */
1.
2.

A/ = 0; /* Initialize matching */
A' = 0;

Step 2 /* initial matching */
3. for each vertex n G 5 do
3.1 if there exists an unmatched vertex u e U, adjacent to v then
3.1.1 M = M u {(u,u)};
3.1.2 else

a: = A' U {u } ;
Step 3 /* Augment matching */
4 Xnew = 0 ; /* The set of unmatched vertices in S */
o repeat /* perform one pass of the augmenting procedure */
•5.1 Initialize all vertices as unvisited :
0.2 for each vertex v G AT do
0 .2 . 1 search for an augmenting path from u,visiting only

vertices not visited in this pass;
5.2.2 mark all vertices reached as visited;
5.2.3 if an augmenting path is found then

Augment { M , augmenting path)
5.2.4

5.3
5.4

else
Xnew — Xnew G { u } ,

X — X n ew)

Xnew ~ 0)

until no augmenting path is found in a pass;

Figure 4.2. Algorithm for finding a maximum matching on a bipartite graph

The algorithm in Figure 4.2 depends on finding augmenting paths on a bipar­
tite graph. The initial matching step finds a maximal matching on the graph
(there are no edges that can be added to the current matching without violating
the matching property). In the next step, we repeatedly search for augmenting
paths, which help us to augment the size of the matching by one. The process of
augmenting the matching via an augmenting path is depicted in Figure 4.4, and
the algorithm is given in Figure 4.3.

Each pass of the augmenting procedure takes 0{£) time, and since each pass
increases the size of the matching by 1, the number of passes is limited by

CHAPTER 4. GRAPH PARTITIONING BY NODE SEPARATORS 35

Input; A matching M and
Pt — (CQi C l , . . . ,'^21 —15 ^2i 1 · · · ? ^ '2n^2n+l)
O utput: Matching AI augmented by path Pt

an augmenting path

1. for i=0 to n
1.1 M = M U {(c2t,V2,+l)}
2. for i= l to n
2.2 M = M - {(C2.-1,C2.·)}

Figure 4.3. Algorithm for Augmenting a matching with an augmenting path

;n.rn(|6'|, |V̂ |), which is an upper bound for the size of the matching. Hence the
overall complexity of the algorithm is 0{min{\U\, |F|)5). Proof for the correct­
ness of the algorithm can be found in [45]. Note that this asymptotic complexity,
may not give a realistic view of the run-time behavior, because the number of
cuigrnenting paths is quite far away from min{\U\, |F|), either because the size of
the matching is fewer, and/or because it is possible to find a good initial matching
with help of fast heuristics in the initial matching phase.

4.3.1.2 Using m axim um m atching to im prove the separator

Liu’s method is based on finding a subset Y of the separator S with \Adj{Y\ U)\ <
|V’|. Liu adopts the idea of augmenting paths, and alternating level structures^
which form the basis for finding maximum matchings on bipartite graphs. Liu’s
algorithm [42] does not necessarily find the maximum matching, but the algo­
rithm terminates as soon as a set Y Ç S with \Adj{Y,U)\ < 1̂ 1 is found. The
search for set Y terminates, when a non-augmenting path is found from a vertex
r. Alternating level structures rooted at v is formed and Y is chosen as the
union of even levels in this alternating level structure. The set V' fulfills the
requirements as we will discuss soon.

A formal definition for alternating level structures is given in [42] as follows:

Definition 4.3 Lo, Li, . . . , L-zj-i, L-zj, · ■ ■ N an alternating level structure rooted
at vertex v with respect to a matching M iff

CHAPTER 4. GRAPH PARTITIONING BY NODE SEPARATORS 36

Dark edges represent the current matching.

Figure 4.4. Improving matchings via augmenting paths

• Lq = {v }

• L ij-i = Adj{Lo U . . . U Z/2j-2) /o r j = 1 ,...

• s {u ; 3 u) e L2j- i and [û w] G M for j = I , . . .

If there is no augmenting path starting with vertex v, then there cannot be
any unmatched vertex in the odd levels. This implies that each vertex in the odd
level ¿ 2j - i is matched to a vertex in L^j. So we can say

\Lv\ = ¡1-2,-,\

CHAPTER 4. GRAPH PARTITIONING BY NODE SEPARATORS 37

Moreover, the level structure should end in an even level, because each vertex
in the odd level ¿ 2j - i is matched to a vertex. So ¿ 2] is non-empty, if Z/2j- i is
non-empty. Let Y be the union of even levels,

V" = lo U L2 U . . . U L2j U .. .

It can be verified that Adj{Y\ U) is the union of the odd levels. So we can conclude
that

\Y\-\Adj(Y.U)\ = l

So the set V, computed via alternating level structures fulfill the requirement for
r C 5 and |F| < \Adj{Y,U)\.

4.3.2 Finding a Node Separator from an Edge Separator

.A.n edge .separator can give us a good estimate of a node separator, since it finds
logical clusters on the graph. We can exploit this fact and first find an edge
separator and form a node separator by picking up vertices incident to an edge
in the edge separator. Leiserson and Lewis defines the set of vertices incident to
an edge on the cut as a wide separator [40]. This set forms a separator for the
graph, because there are no edges between vertices in different parts after the
r<>moval of the vertices in the wide separator. The definition of a wide separator
follows:

Definition 4.4 Given a partition P — {P\̂ P2 ·, ■ ■. Pi·, ■ ■ ■ ■, Pk) o f graph Q =
[V,£) , define Si = {u|u € Pi and (3(u,u) ^ S w ^ Pj and i ^ j) .

The set ^

W S = \ J 5’.
¿=1

is called a wide-separator for graph Q with respect to partition P .

This wide separator forms disconnected components of the graph, but it is not
optimal in the sense that it is always possible to form separators with smaller
size, which we will call a narrow separator.

There are two key points in this approach: (i) How to find a good wide
sei)arator {ii) How to find a good narrow separator from the wide separator. The
coming two sections discuss these points.

CHAPTER 4. GRAPH PARTITIONIAG BY NODE SEPARATORS 38

4.3.2.1 Finding Wide Separators

Finding a good wide separator is an important and difficult step for this approach.
In fact the real difficulty is in the definition of the goodness for the wide-separator.
We cannot state an objective which can give wide separators which always lead
to better narrow separators. Minimizing the number of edges on the cut, may
be a desirable criterion, since minimizing the number of edges may mean finding
better logical clusters. But edge cuts with smaller cardinality can give worse wide
separators.

Minimizing the number of vertices in the wide separator may be a good idea.
Leiserson and Lewis [40] try to minimize the size of the wide separator by mod­
eling the graph by a hypergraph. In their hypergraph model, each vertex in the
graph is represented by a net in the hypergraph, and the respective net connects
its representative and its adjacency. Formally, 7i = (C,Ai) for representing the
graph Q = (V, E) is defined as:

• V = C

• Ui = {u,} U Adj{vi) for i = 1 ,2 , . . . , |V|.

The important characteristic of the hypergraph model is that vertices in the
wide separator are exactly the representatives of the nets on the cut. Hence,
minimizing the number of nets on the cut directly minimizes the size of the wide
separator.

Minimizing the number of nodes in wide-separator is reasonable, but a wide
separator with minimum number of nodes does not necessarily lead to a narrow
separator of smaller cardinality, as we will discuss in Section 4.3.3.1.

4.3.2.2 From Wide Separators to Narrow Separators

As we have denoted above, it is always possible to find a subset of nodes in
II S' which forms a separator. Finding a narrow separator from a wide separator
is equivalent to finding a vertex cover [16] on the graph induced by the wide
separator. Since all edges are incident to a vertex in the vertex cover, the resulting
s(4 will be a good narrow separator for the whole graph, since there will be no
edges among different parts (other than the separator).

CHAPTER 4. GRAPH PARTITIONING BY NODE SEPARATORS 39

Liiiserson and Lewis [40] proposes three greedy heuristics for finding a narrow
separator from a wide separator. The first one depends on repeatedly including
the vertex with maximum number of edges on cut in the separator, and continuing
until all edges in the cut are adjacent to a node in the node separator; The second
heuristic depends on removing the vertex with minimum degree from the wide
separator, and including all vertices adjacent to it in the narrow separator. Again
this process continues until all edges on the cut are adjacent to a node in the
node separator. Their third heuristic finds a trivial separator. If P = (Pi ,P 2) is
a partition for a graph Q, they take the set P\f\WS or P^OW S as the narrow
separator, the cardinality of whichever is smaller.

However, Pothen ?? shows that we do not need to resort to heuristics, since
the problem of obtaining a narrow separator form a wide separator can be solved
optimally in polynomial time for bisections, by finding matching on the bipartite
graph induced by vertices in the wide separator [50]. We start with vertices
S' = Pi O W S (P2 n W 5 if its cardinality is smaller) the initial separator and
recompute the separator by finding a maximum matching on the bipartite graph
BG = iS' ,p2 n WS^Scut- After finding the matching we decrease the size of
the separator via alternating level structures rooted at unmatched vertices in the
current separator, as discussed in Section 4.3.1.2. Note that unlike Liu’s method
we find the maximum matching only once. The iteration in Liu’s method is not
used.

4.3.2.3 Multi-way Node Separators

The problem of finding multi-way node separators remains untouched. Existing
studies use recursive partitioning for multi-way separators. However, direct k-
way partitions are usually faster, and give better results.

Trying to find a separator from a wide separator obtained by an edge-based
partitioning seems reasonable. However, it is not possible to find a narrow separa­
tor optimally in polynomial time from a wide separator for multi-way separation.
So, we need to resort to heuristics for this. The first two heuristics proposed by
Leiserson and Lewis can be safely applied to this problem.

The first heuristic depends on moving the vertex with highest degree in the
wide separator to the narrow separator. The process continues until all edges on

CHAPTER 4. GRAPH PARTiriONING BY NODE SEPARATORS 40

the cut are adjacent to a vertex in the narrow separator. This heuristic, namely
the maximum removal heuristic is presented in Figure 4.5.

Input: A Graph Q = graph.
O utput: S = A vertex cover of Q.

5 ^ 0 ;
repeat

1 V <— vertex with maximum degree ;
2 S' <— 5" U {u };
4 £ <r-S - Adjs{v);

until (S = 0)

Figure 4.5. Algorithm for the Maximum Inclusion Heuristic proposed by Leiser-
son and Lewis

The second heuristic depends on removing the vertex with minimum degree
from the wide separator, and including all vertices adjacent to it in the narrow
separator. Again the process is repeated until all edges on the cut are adjacent to
a node in the separator. This heuristic, namely the minimum, removal heuristic
is presented in Figure 4.6.

Both heuristics can be implemented with 6{£) asymptotic complexity by using
a bucket-list data structure.

A similar problem arises in VLSI design automation , and is stated as Module
.Allocation Problem [14]. Our problem can be converted to this problem simply by
replacing each edge on the cut by a module, and each vertex in the wide separator
by a net. Cong et. ah, proposed a solution for this problem by changing the
l)ioblein to a maximum flow problem [14]. The fastest algorithm for this problem
has f (̂|V])̂ asymptotic time complexity, where [V] is the number vertices in the
graph.

CHAPTER 4. GRAPH PARTITIONING BY NODE SEPARATORS 4 1

Input: A Graph Q — graph.
O utput: S = A vertex Cover of 0 ■

1.
2.
2.1
2.2
2.2.1
■? ·? 2

5 ^ 0 ;
repeat

V <— vertex with minimum degree ;
for each u 6 Adj{v) do

S <r- S U { 'u };
£<— £ - Adjs{u)·,

until 5 = 0

Figure 4.6. Algorithm for the Minimum Recover Heuristic proposed by Leiserson
and Lewis

4.3.3 New Greedy Heuristics for Finding Separators

In this section, we will propose new methods for finding node separators.The first
section, proposes a weightening scheme for finding better separators. The second
section presents a new greedy heuristic for finding a narrow separator from a wide
separator.

4.3.3.1 F inding W id e Separators

The difficulty in finding a good node separator has been discussed in Section 4.3.2.1.
Neither minimizing the edges in the cut, nor minimizing the vertices in the wide
separator are the right targets for us although they are valuable assets. We will
propose a new method for finding a good separator in this section. This new
method is based on the following two observations:

• A node with high degree is more likely to be on the separator.

• A node with a small degree is less likely to be on the separator.

As a corollary of this observation we can say that ''edges adjacent to a node
with high degree are preferable to other edges to be in the c u f . Assume that half
of the edges of a vertex are in the cut, then there is no merit in trying to recover

CHAPTER 4. GRAPH PARTITiONING BY NODE SEPARATORS 42

0— 0
0— 0

0— 0
(a) (b) (c)

Figure 4.7. Three Different Wide separators

the rest of the edges of this node from the cut. On the other hand, recovering
the onh' cut edge of a node is definitely a good step for a better separator.

Another point is that we want not only a small number of edges to be in
cut, but also all edges in the cut to be adjacent to a small group of vertices.
Three different wide separators are presented in Figure 4.7. The first one has
minimum number of edges, and the second one has minimum number of vertices
on the wide separator. The third one has neither minimum number of edges nor
minimum number of edges, but it gives the best narrow separator, which is of
size 1, since there is one vertex, which is adjacent to all edges on the cut. This
('xample validates our argument that edges adjacent to a node with high degree
ani preferable to other edges to be on the cut.

For this purpose we propose a weightening scheme for the edges. In this
scheme, each edge is assigned a weight disproportional to the degrees of its nodes.
Let e = (u, u) be an edge, the weight of this edge will be

• , , ̂ 1weight{e) = ------ ■. . . ■■ ■
max[deg[u), dtg[v))

Minimizing the sum of weights of edges in the cut is expected to yield a better
wide separator, since it favors cut edges adjacent to vertices with high degree.

4.3.3.2 From Wide Separators to Narrow Separators

In this section, we will propose a new greedy heuristic for finding a narrow separa­
tor from a wide separator. The heuristic is a hybrid of the maximum removal and
save minimum heuristics, and is based on the observation stated in Lemma 4.1.

CHAPTER 4. GRAPH PARTITIONING BY NODE SEPARATORS 43

Lem m a 4.1 Let Q = [V,E) be a graph and led v € V and deg{v) = 1. There is
always a minimum vertex cover C G V of Q, where v ^ C .

P roof: Assume the contrary. Let v G C with deg{v) = 1, where C is an
optimal vertex cover of Q, and let u be the only neighbor of v. There are two
cases:

(i) ii e C .

C — {u} is still a vertex cover, and has a smaller cardinality, making a contradic­
tion. Hence, u ^ C .

(ii) u ^ C
C' = C — {u} U {ti} has the same cardinality as C, and is still a vertex cover.

So, there is always minimum vertex cover C G V of where v ^ C . g

Corollary 1 Let Q = (V, £’) he a graph, and let v be a vertex with degree
1, and let u be its only neighbor. Let Q' = (V', be the graph after the removal
o f u and V and edges adjacent to them and C' be a minimum vertex cover for
Q'. Then C' U {u } is a minimum vertex cover for Q .

As a result of this corollary, we can say that the first step to find a vertex
cover will be to include a vertex adjacent to a vertex of degree 1 in the vertex
cover, and repeat this step cis long as there exists a vertex with degree 1. By
this way, we have the chance to obtain an optimal solution to the vertex cover
problem, if we can find vertices with degree 1, until all edges are adjacent to a
node in the node cover. However, we need to give a greedy decision when there
are no vertices with degree 1. Actually, the minimum recover heuristic works
in the same manner and it gives the greedy decision as saving the vertex with
minimum degree, and moving all vertices adjacent to it to the separator. However,
moving the node with highest degree to the separator seems to be a better greedy
lieuristic. Using this idea, we propose a new greedy heuristic namely One-Max,
presented in Figure 4.8. This heuristic is a hybrid of the minimum recover and
maximum inclusion heuristics, since it starts the same as the minimum recover
heuristic and uses the same greedy decision as the maximum inclusion heuristic.

niA PT ER 4. GRAPH PARTITIONING BY NODE SEPARATORS 44

Input: A Graph Q = graph.
Output: S = A vertex Cover of Q.

1.
2.
2.1
2.2
2.3
3.
3.1
3.2
3.2.1
3.2.2

repeat
for each t; G V deg{v) = 1 do

u <— only neighbor o f v
S <— S U {г¿};
£ <r- S — Adjs{u) ;

if {£ / 0)
V <— vertex with maximum degree ;
for each u G Adjv{v) do

S <— S 0 { u } ;
£ ^ £ - Adje{u)·,

until £” = 0

Figure 4.8. Algorithm for a new greedy heuristic, One-Max

Other greedy heuristics may be subject to future research, but the first step
in our heuristic, decreasing the problem size by making use of nodes with degree
1. should stay as it is.

5. Permuting a Sparse Matrix to Block
Angular Form

The parallel solution of block angular Linear Programming (LP) problems has
been a very active area of research in both operations research and computer sci­
ence societies. One of the most popular approaches to solve block angular LP’s
is the Dantzig-Wolfe decomposition [18]. In this scheme, the block structure of
the constraint matrix is exploited for parallel solution in the subproblem phase,
where each processor solves a smaller LP corresponding to a distinct block. A
sequential coordination phase (the master) follows. This cycle is repeated, until
a suitable termination criteria are satisfied. Coarse grain parallelism inherent
in these approaches has been exploited in recent research works. However, the
success of these approaches depends only on the existing block angular structure
of the given constraint matrix. The number of processors utilized for paralleliza­
tion is clearly limited by the number of inherent blocks of the constraint matrix.
Hence, these approaches suffer from unscalability and load imbalance.

This work focuses on the problem of decomposing irregularly sparse constraint
matrices of large LP problems to obtain block angular form (BAF) with specified
number of blocks for scalable parallelization. The objective in the decomposition
is to minimize the size of the master problem while maintaining computational
load balance among subproblem solutions. Minimizing the size of the master
problem corresponds to minimizing the sequential component of the overall par­
allel scheme. Maintaining computational load balance corresponds to minimizing
processors’ idle time during each subproblem phase. So we can state our problem,
computing the block angular form of a sparse matrix as: Finding a permutation
of rows and columns of the matrix, to obtain a block angular form, with equal
sized blocks, which minimizes the number of coupling rows.

45

CHAPTER 5. PERMUTING A SPARSE MATRIX TO BLOCK ANGULAR EORM-16

This chapter proposes different methods for permuting a sparse matrix to
block angular form. In each section, the graph model for representing the matrix
will be presented first and will be followed by a discussion of algorithms to apply,
and advantages and disadvantages of the model. The first subsection de'scribes
the work by Ferris and Horn [21], and the following subsections describe the
models and solution methods we propose for computing the block angular form
of a sparse matrix. We will make use of the following matrix in our examples
throughout this chapter.

A =

1 2 3 4 5 6 7

X X \ 1
X X 2

X X X X 3
X X X 4

X X 5
X X X 6

X X X 7
V X X) 8

Figure 5.1. The nonzero structure of the matrix A

5.1 Bipartite Graph Model

In this section, we will review the work by Ferris and Horn, which is based on
a bipartite graph representation of the matrix. The first section explains the
bipartite graph model, and the next section discusses the applicability of the
model.

5.1.1 The Graph Model

In the bipartite graph Model (BG), a sparse matrix A is represented with a
bipartite graph BG = (ii, C, 5). Each row is represented by a vertex in R, and
each column is represented by a vertex in C . For each nonzero Oij in the matrix
.1, an edge is defined between the row vertex r, and column vertex cj. Clearly,

the resulting graph is a bipartite graph with R and C forming the bipartition.
.'\ lormal definition for the bipartite graph model is presented in Definition .5.1.

CHAPTER 5. PERMUTING A SPARSE MATRIX TO BLOCK ANGELA R FORM47

c.

c ,

c.

c,

Figure 5.2. Bipartite Graph Representation of the matrix A in Figure 5.1

D efin ition 5.1 A bipartite graph BG = {R,C,S) is a BG representation of a
sparse matrix AmxN = (otj) iff the following conditions are satisfied.

• V = R O C and R = {r i ,r 2, . . . , r , · , . . . , tm } and C = {ci,C2, . . . ,c^,. . . ,cyv},
where ri and cj represent the ith row and j th column of matrix A , respec­

tively.

• e = {ri,Cj) 6 £ i f f ri G R and cj € C and aij 0

5.1.2 BAF with Bipartite Graph Model

Ferris and Horn partition this graph using the KL heuristic. They obtain a
node separator from this graph using the maximal removal heuristic. This en­
ables permutation of the graph into a doubly bordered block angular form. Out
of the vertices in the separator, those representing the columns constitute the

row-coupling constraints, and those representing the rows constitute the column
coupling rows. This doubly bordered matrix can be transformed into a block
angular matrix by column splitting^ which will be discussed in Section 5.3.

Applying graph partitioning to the bipartite graph described above, natu­
rally leads to computing the doubly-bordered block angular form of the matrix,
because the vertices representing the columns and the vertices representing the
rows are treated equally. Minimizing the size of the node separator in this graph
corresponds to minimizing the sum of the number of rows and number of columns
on borders in the doubly-bordered block angular matrix. However, our purpose
is to find a block angular matrix, and the block angular matrix achieved by ap­
plying column-splitting on the dual block may be far away from the ideal block
angular matrix, even if the doubly-bordered matrix were very close to an ideal
case. So, decreasing the size of the node separator in the bipartite graph does
not guarantee to decrease, and it may even increase the number of coupling rows
in the resulting block angular matrix. This is basically because we are treating
vertices of the bipartite graph equally for the operations on the graphs, but we
have to treat columns and rows of the matrix separately.

So, we can not state a well-defined combinatorial optimization problem to
establish a one to one relationship with the problem of permuting a sparse matrix
into block angular form.

From the efficiency point of view, a major disadvantage of the bipartite graph
model is that, it treats both columns and rows of the matrix as decision variables.
This increase in the number of decision variables may be very costly, especially
when N » M . However it is possible to use either the rows or the columns of
the matrix as decision variables and the other as the control variables. We will
discuss such models in the following sections.

5.2 Row-Net Model

CHAPTER 5. PERMUTING A SPARSE MATRIX TO BLOCK ANGULAR F0RM4S

In this section, we will propose a new hypergraph model for representing a sparse
matrix. In this model, each column is represented by a vertex, and each row is
represented by a net in the hypergraph [48]. The first section describes our model,
and the next section discusses how to use this model to find a block angular form

сил PTER 5. PERMUTING A SPARSE MATRIX TO BLOCK ANGULAR FORM49

Figure 5.3. Hypergraph Representation of the matrix A in Figure 5.1 with
Row-Net Model

of the sparse matrix.

5.2.1 The Hypergraph Model

In the row-net model, the matrix A is represented as a hypergraph 'Hn{Vc-,Afn) ■
Filch row is represented by a net (hyperedge) and each column is represented by
a vertex in the hypergraph. There exist one vertex u, and one net Uj for each
column and row, respectively. Net Uj contains the vertices corresponding to the
columns which have a nonzero entry on row j . Formal definition follows:

D efin ition 5.2 A hypergraph Tin{Tc,Afn) is a row-net representation of a sparse
matrix /4,v/xyv = («ji) iff the following conditions are satisfied.

• V = { c j , C2, . . . , c,■,..., c/v}, where C{ represents the ith column of matrix
A.

• = { ti , r'2, . . . , r,· , . . . , Cm } , where 7-, represents the i th row of matrix A .

• Ve, € V and yrij £ J\f B V{ € iij if and only if aji 0.

CHAPTER 5. PERMUTING A SPARSE MATRIX TO BLOCK ANGULAR FORM50

X

3 4 6 2 5 7

X 1
X X 5
X X X 6

X X 2
X X X 4
X X 8

X X X 3
X X X / 7

Figure 5.4. Block angular form of Matrix A in Figure 5.1

5.2.2 BAF with Row-Net Model

A k-w&y partition of H r can be considered as inducing a row and column per­
mutation on matrix A converting it into a block angular formAg with k blocks
as shown in Figure 5.3. Part Pi of H r corresponds to block Bi of A g . The
set of external nets Me corresponds to the coupling rows. That is, each cut
net corresponds to a row of the submatrix (i?i, · · · > in Definition 2 .4.
Hence, minimizing the cutsize corresponds to minimizing the number of coupling
constraints.

The hypergraph representation of the matrix A (Figure 5.1) with row-net
model is illustrated in Figure 5.3. Let P = {Pi, P2) be a partition of the hyper­
graph with Pi = (C l,C 3,C 4,Ce} and P2 = {(72,(75, (77}. This means: in the
corresponding block angular matrix, columns 1, 3, 4, and 6 will be. in the first
block B i, and columns 2, 5, and 7 will in the second block, B2 . This mapping
of columns guides the mapping of rows. Nets Ri, P 5, and Rq are internal nets
in the first part, thus rows 1 ,5 , and 6 will be placed in the first part. Similarly,
nets R2 , R4 , and Rs are internal nets in the second part, thus rows 2 ,4 , and 8

will be placed in the second part. On the other hand, rows 3 and 7 constitute
the coupling rows, since nets P3 and Rj are in the cut in the partition. After
permuting rows and columns of the matrix A with respect to this partition we
can obtain the block angular matrix illustrated in Figure 5.4.

Hypergraph partitioning finds a grouping of vertices in the graph, hence a
grouping of the columns in the matrix. The grouping of rows is controlled by the

CHAPTER 5. PERMUTING A SPARSE MATRIX TO BLOCK ANGULAR FORMNl

grouping of columns. So, the decision variables in the hypergraph is limited by
the columns in the matrix.

The objective of the hypergraph partitioning is to minimize the number of
nets on the cut. while maintaining a certain balance criterion. Unlike, the bipar­
tite graph model, there is a one to one correspondence between the problem of
computing the block angular form of the matrix and the hypergraph partitioning
problem. Maintaining balance between the part sizes in the graph corresponds to
preserving the balance between the sizes of the blocks in the matrix. Minimizing
the number of hyperedges on the cut corresponds to minimizing the number of
coupling rows in the block angular matrix.

As discussed in Chapter 3, hypergraph partitioning problem has been studied
heavily in VLSI design automation society, so it is possible to adopt heuristics
from this domain. However, the performance of these heuristics directly depend
on the characteristics of the input hypergraph. The hypergraphs representing
sparse matrices might have significant deviations from hypergraphs representing
circuits as in the case of LP constraint matrices. Matrices usually lead to dense
hypergraphs compared to circuits, because there are physical limitations for the
electrical components, which make the respective hypergraphs quite sparse.

KL-based methods are suitable for this application for their speed. However,
these methods will suffer from the high net degrees, since it will be hard to save a
net in the cut by a sequence of moves if the degree of the net is high. This makes
KL-based methods heavily depend on the initial partition, since high degree nets
are cumbersome for the iterative improvement process.

To handle such high degree nets, a multi-level approach, which shows an
outstanding performance on graphs [35] might be useful. In the coarsening phase
vertices are repeatedly matched, decreasing the size of the problem. It becomes
easier to handle the partitioning in the small sized problem and an initial solution
is obtained by this reduced hypergraph. In the uncoarsening phase, the initial
solution is refined by unmatching the vertices step by step. This approach is
more powerful in the sense that its dependency on the initial solution is less, and
finds extremely better solutions compared to traditional approaches.

CHAPTER 5. PERMUTING A SPARSE MATRIX TO BLOCK ANGULAR F0RMN2

5.3 Column-Net Model

III this section, we will propose a second hypergraph model to find the block
angular form. This model can be considered as the dual of the row-net model
[48]. The first section describes the model, and the next section discusses how
we can use this model, for finding a block angular form of a sparse matrix.

5.3.1 The Hypergraph Model

In the column-net model, the matrix A is represented as a hypergraph 'Hc{V-jiiAfc) ■
Each column is represented by a net (hyperedge) and each row is represented by
a vertex in the hypergraph. There exist one vertex Vi and one net Uj for each
row and column of A, respectively. Net nj contains the vertices corresponding
to the rows which have a nonzero entry on column j .

D efinition 5.3 A hypergraph TtciVniAfc) is a column-net representation o f a
sparse matrix A mxN = (oij) iff the following conditions are satisfied.

• V = {ri, T2, . . . , r,·,. . . , TAf} , where ri represents the i th row of matrix A .

• Af = {ci, C2, . . . , Cj,. . . , c /v), where C{ represents the ith column of matrix
A.

• Nvi € V and '̂ Uj G B Vi € Uj if and only if aij 7̂ 0 .

5.3.2 BAF with Column-Net Model

A A;-way partition of Tic can be considered as converting A into a dual block
angular form Ag with k blocks as shown in Figure 5.1. Part P,· of Tic corresponds
to block Bi of Ag such that vertices and internal nets of part P, constitute the
rows and columns of block P ,, respectively. Each cut net corresponds to a column
of the submatrix (6’(, C2 , .. ·, in Definition 2.5.

The hypergraph representation of the matrix A with column-net model is
illustrated in Figure 5.5. Let P = {P i,P 2} be a partition of this hypergraph
with Pi = {P i, P 3, P 5, Pe} and P2 = {P 2, P 4, P 7, Ps} · Using this partition,
rows 1, 3, 5 and 6 will form the first block Bi , and rows 2, 4, 7, and 8 will
form the second block B 2 in the corresponding block angular matrix. Nets C\,

CHAPTER 5. PERMUTING A SPARSE MATRIX TO BLOCK ANGULAR EORMoi

Figure 5.5. Hypergraph Representation of the matrix A in Figure 5.1 with Col­
umn-Net Model

A% =

1 3 4 5 7 2 6

X X] 1
X X X X 3

X X 5
X X X 6

X X 2
X X X 4
X X X 7

1 X X / 8

Figure 5.6. Dual block angular form of matrix A in Figure 5.1

CHAPrER 5. PERMUTING A SPARSE MATRIX TO BLOCK ANGULAR FORMrA

C'a and C4 are internal nets in part P i, thus columns 1, 3 and 4 will form the
columns of the first block B i. Similarly, columns 5 and 7 will be in the second
block B2 , since nets C5 and Cj are internal nets in part P2 . Nets C2 and Ce are
external nets, thus they will form the coupling colhmns in the dual block angular
matrix.

Dual block angular form of Ag leads to two distinct solution schemes. In the
first scheme, we can apply special solution techniques for the dual block angular
matrices. For example, if the matrix is the constraint matrix of a linear pro­
gramming problem, we can exploit the fact that dual block angular constraint
matrix of the original LP problem is a primal block angular constraint matrix
of the dual LP problem. Hence, minimizing the cutsize corresponds to minimiz­
ing the number of constraints in the master problem of the dual LP. With this
scheme, each net in the cut corresponds to a coupling row of the dual problem,
hence minimizing the number of cut nets corresponds to minimizing the number
coupling rows in the dual problem.

In the second scheme, we can transform the dual block angular matrix Ag
into a primal block angular matrix by column-splitting as described in [21, 44].
This technique was originally proposed for multi-stage stochastic programs in
linear programming, but it may be applied to all matrices representing a set of
equalities or inequalities equally safely.

During the transformation process. For each column j of the submatrix
(C[, C2, . . . , ClY, we introduce multiple column copies for the corresponding vari­
able, one copy for each Ci that has at least one nonzero in column j . These
multiple copies are used to decouple the corresponding C j’s on the respective
variable such that the decoupled column copy of Ci is permuted to be a column
of B i. We then add column-linking row constraints that force these variables
all to be equal. The process is depicted in Figure 5.3.2 and Figure 5.3.2. The
column-linking constraints created during the overall process constitute the row-
coupling rows of the matrix. With this scheme. Each column in the coupling block
contributes “number of blocks it is connected - 1” rows to the coupling block af­
ter transformation. The number of blocks a column is connected is equal to the
connectivity of the respective net. Hence this time our objective in partitioning
should be to minimize the connectivity, not the cutsize during the partitioning

CHAPTER 5. PERMUTING A SPARSE MATRIX TO BLOCK ANGULAR FORMôô

/ X

X

B

X
X X

X X

x ' X

X X
X X X
X X
X X

1 - 1

\ 1 -1 /

Figure 5.7. Matrix A in Figure 5.6 after column-splitting

X X

X X X X
X X
X X X

X X

X X X
X X X
X X

1
1

- 1
- 1

\

Figure 5.8. Block angular matrix A in Figure 5.6 after column splitting and
permutation

process.

5.4 Row Interaction Graph

We will propose a third model in this section. In this model, each row is repre­
sented by a vertex in the graph, and edges in the graph represent the interaction
between the respective rows [47]. The first section describes the new graph model,
and the next section discusses solution methods with this new model.

CHAPTER 5. PERMUTING A SPARSE MATRIX TO BLOCK ANGULAR FORM06

F'igure 5.9. Row-Interaction Graph Representation of the matrix A in Figure 5.1

5.4.1 The Graph Model

In the Row Interaction Graph (RIG), each row is represented by a vertex, and
there exists an edge between two vertices if and only if the two rows have a
nonzero in the same column. So formally:

D efin ition 5.4 A graph Q = {V^S) is a RIG representation of a sparse matrix
Amx Î — (<̂ ij) iff following conditions are satisfied.

• V = {ri, T2, . . . , Ti,. . . , TAf} , where ri represent the i th row of the matrix

. e = (r „ r ,) e 5 i f f 3k 1 < A; < TV 9 aik ^ 0 and ajk 7̂ 0

5.4.2 BAF with Row-Interaction Graph

By finding a node separator in the row interaction graph, we can induce a per­
mutation of the rows and columns of the matrix into block angular form. After
finding a separation < Pi,P 2 ·, ■ · ■, Pi, ■ ■ ■ ■, Pk, S > for the row-interaction graph,
vertices in the separator S correspond to the coupling rows, and vertices in part
Pi correspond to the rows in block B i. The permutation of the columns is con­
trolled by the rows. Each column is placed in the same block as the rows it shares
a non-zero with. By definition of the node separator, there are no edges between

vertices in different parts, hence there is no interaction between rows in different
blocks, i.e., there are no columns which has nonzeros in two rows at different
parts.

The row interaction graph representation of the matrix A in Figure 5.1 is
illustrated in Figure 5.9. We can find 2-way node separator < Pi,P 2 ,S > of
this graph as Pi = {Ri, R5 , R e } , P2 = ^ 2,^ 4} and S - {/?3, / 27} . Based
on this separation rows 1,5 and 6 will form the first block, rows 8,2 and 4 will
form the second block, and rows 3 and 7 constitute the coupling rows. Columns
1,3,4 and 6 has nonzeros only in the first part, and in the separator, so we can
place these columns in the first block. Similarly columns 2,5 and 7 are placed
in the second block. The matrix permuted into block angular form with respect
to this permutation is illustrated in Figure 5.4.

.Just like row-net and column-net models, row interaction graph model enables
us to state the problem of computing the block angular form of a sparse matrix,
as a well-studied combinatorial optimization problem, finding node separators.
The problem of graph partitioning by node separator. This problem has two ob­
jectives: (¿) minimizing the number of vertices in the separator, (ii) maintaining
balance between number of vertices in parts other than the separator. The first
objective directly corresponds to minimizing the number of coupling rows, since
each vertex in the separator correspond to a row in the coupling block. The
second objective corresponds to load balance between the blocks.

5.5 Column-Interaction Graph

We can define a column interaction as a dual of the row interaction graph.

5.5.1 The Graph Model

In the Column Interaction Graph (CIG), each column is represented by a vertex.
And there exists an edge between two vertices if and only if the two columns have
a nonzero in the same row. So formally:

('ll AFTER .5. PERMUTING A SPARSE MATRIX TO BLOCK ANGULAR FORMbl

D efinition 5.5 A graph Q = {VyS) is a CIG representation of a sparse matrix
Amxn = {O'ij) iff the following conditions are satisfied.

CH A PTER 5. PERMUTING A SPARSE MATRIX TO BLOCK ANGULAR EORMbS

Figure 5.10. Column-Interaction Graph Representation of the matrix A

• V = {ci, C2, . . . ,c/v}, where c,· represents the ith column of the matrix A.

• e = (c,-,Cj) E £ i f f ̂ k I < k < N 3 «¿i / 0 and Okj ^ 0

5.5.2 BAF with Column-Interaction Graph

By finding a node separator in the column interaction graph, we can obtain
a. permutation for the dual block angular form of the matrix. In the resulting
¡partition nodes in the separator form the coupling columns, and the other columns
form the blocks. By definition of the node separator, there are no edges between
vertices in different parts, and hence there is no interaction between columns in
different blocks.

The resulting dual block angular matrix can be treated just in the same way
as the dual block angular matrices obtained by the column-net model (discussed
in Section 5..3).

A major drawback of this model is that the graphs representing the matrices
are usually very dense. This directly depends on the density of the rows. So, it
is both time-consuming and hard to find a good separator in CIG’s of matrices,
thus we have not included this model in our experiments.

6. Experimental Results

This chapter presents the results of various experiments we have performed to
observe the validity of the proposed models. The first section describes the data
sets we have used in our experiments. The next section describes our implementa­
tions. Then we present the results of our experiments with bipartite graph (BG)
model, Row-Net (RN) model, Column-Net (CN) model, and the Row Interaction
Graph (RIG) model, in turn, in separate sections. Each section presents the re­
sults of experiments of different methods we have used with these models. This
chapter ends with a comparison of the performances and overall effectiveness of
the models. The results presented in this chapter aims at giving an overview.
Exhaustive presentation of these results can be found in the Appendix.

6.1 Data Sets

We have validated our models and associated methods on various Linear Pro­
gramming Problems. Our first source for the data sets was Netlib. We have
selected rather large problems out of the whole collection, since smaller problems
do not need a parallel solution.

Our second source was Kennington problems again from Netlib. These prob­
lems are quite large, and form a good test bed for decomposition.

Our third source was the collection of Gondzioh These problems are very
large, and form a suitable test bed for us. The properties of all problems are
presented in Table 6.1.

 ̂These problems can be obtained by an anonymous ftp from IOWA Optimization Center
ftp col.biz.uiowa.edu
cd pub/testprob/lp/gondzio

59

CHAPTER 6. EXPERIMENTAL RESULTS 60

Table 6.1. Properties of the Problems used in the Experiments
R, C , and N z, represent the number rows, columns, and nonzeros respectively.
D% represents the density of the matrix, tsoi shows the solution time (in sec­
onds) of the problem by LOQO. C,nin { Rmi n) , Стах [Rmax] , and Cava {R'avg)
represent the minimum, maximum, and average number of nonzeros in a column
(row). Numbers in the parentheses show the absolute minimum and the other
represent the minimum greater than 1. Note that rows and columns of the matrix
correspond to nets (vertices) and vertices (nets) in the hypergraph with RN (CN)
model.

Netlib Problems
Problem R C Nz D% Cmin Стах Cavg Rmin Rmax Ravg Go/

2.5fv47 821 1571 10400 0.81 2(1) 21 6.62 2(0) 340 12.67 38.9
80bau3b 2262 9799 21002 0.09 2(0) 12 2.14 2(0) 112 9.28 90.8
bnl2 2324 3489 13999 0.17 2(1) 8 4.01 2(0) 82 6.02 188.6
cycle 1903 2857 20720 0.38 2(1) 28 7.25 2(0) 64 10.89 110.8
czprob 929 3523 10669 0.33 2(1) 4 3.03 2(0) 417 11.48 20.6
d2q06c 2171 5167 32417 0.29 2(1) 34 6.27 2(1) 144 14.93 400.0
ganges 1.309 1681 6912 0.31 2(1) 13 4.11 2(1) 84 5.28 21.9
greenbea 2392 5405 30877 0.24 2(1) 24 5.71 2(0) 275 12.91 166.3
greenbeb 2392 5405 30877 0.24 2(1) 24 5.71 2(0) 275 12.91 115.3
scfxrri3 990 1371 7777 0.57 2(1) 20 5.67 2(1) 57 7.86 13.8
sctap2 1090 1880 6714 0.33 2(1). 6 3.57 3(3) 24 6.16 9.8
sctap3 1480 2480 8874 0.24 2(1) 6 3.58 3(3) 31 6.00 12.2
.ship 121 11.51 .5-427 16170 0.26 3(1) 6 2.98 6(0) 75 14.05 20.5
shipl2s 11.51 2763 8178 0.26 3(1) 6 2.96 2(0) 49 7.11 10.4
sierra 1227 2036 7302 0.29 2(2) 4 3.59 2(2) 24 5.95 11.9
stocfor2 21.57 2031 8343 0.19 2(1) 10 4.11 2(1) 15 3.87 24.8
woodw 1098 8405 37474 0.41 2(1) 21 4.46 2(1) 1477 34.13 80.7

Kennington Problems
ere-a .3516 4067 14987 0.10 2(2) 14 3.69 2(0) 359 4.26 40.8
cre-c 3068 3678 13244 0.12 2(2) 13 3.60 2(0) 316 4.32 40.7
cre-d 8926 69980 242646 0.04 2(2) 13 3.47 2(0) 807 27.18 6719.9
osa-07 1118 23949 143694 0.54 6(6) 6 6.00 17(17) 17612 128..53 .398.7

Gondzio Collection
C09 10789 14851 101578 0.06 2(1) 28 6.84 2(0) 440 9.41 1827.6
CQ9 9278 13778 88897 0.07 2(1) 24 6.45 2(0) 390 9.58 1664.39
CE 10099 11098 39554 0.04 2(1) 36 3.56 2(1) 47 3.92 907.6
N1 7039 9718 41428 0.06 2(1) 15 4.26 2(0) 149 5.89 699.2
mod2 .34774 31728 165129 0.01 2(1) 16 5.20 2(0) 310 4.75 .5383.34
world 34506 .32734 164470 0.01 2(1) 16 5.02 2(0) 341 4.77 25819.68

CHAPTER 6. EXPERIMENTAL RESULTS 61

The i,5ci fields in Table 6.1 present the solution time with LOQO in seconds.
The numbers in parentheses display the exact minimum, and the other number
is the minimum greater than 1.

.Some of these problems might already have a block Angular structure, but
they still form a good test bed for checking the validity of our heuristics. Note
that even if these problems have a block angular structure, decomposition with
respect to this structure is not possible, unless additional information about how
to identify the the block structure (e.g., number of blocks, sizes of blocks) is
provided. Also note that, we can find block angular structures with any number
of blocks, not being restricted by the inherent number of blocks.

Note that columns and rows of the matrices correspond to the vertices (nets)
and nets (vertices) of the hypergraph in RN (CN) model. Hence Table 6.1 also
represent the characteristics of the hypergraphs we are working on. The charac­
teristics of Row Interaction graphs for these matrices are presented in Table 6.2.

6.2 Implementation of the Algorithms

All algorithms described has been implemented in C programming language us­
ing the public Gnu C compiler. We have used an implementation of the Sanchis’
algorithm. Metis (a graph partitioning tool implemented in University of Min­
nesota, which exploits the multilevel idea for graphs), and PaToH (a hypergraph
partitioning tool, being implemented at Bilkent University which also exploits
multilevel idea for hypergraphs).

We have used a SUN Sparc 5 workstation in all our experiments.

6.3 Experiments with the Bipartite Graph Model

Obtaining a block angular matrix with bipartite graph model has two phase.
In the first phase (the partitioning phase), the graph is partitioned, and in the
second phase (separator phase), a permutation is obtained by including rows and
columns to the set of linking rows and linking columns, respectively. We have
tried different alternatives for the two phases. Below, we will discuss our results.

CHAPTER 6. EXPERIMENTAL RESULTS 62

Table 6.2. Properties of the RIG’s of Matrices used in the E.x'perirnents

R, C , and Nz fields denote the number of rows, columns, and nonzeros in
the matrix, and Epua field denote the number of edges in the respective RIG.
Vmin,Vmax, and Vavg represent the minimum, maximum, and average number
of vertex degrees in the graph. Numbers in the parentheses show the absolute
minimum, and the other number shows minimum degree greater than 1.

Problem R C Nz Erig r̂nin ^max Vavg
25fv47 821 1571 10400 11074 1(0) 365 26.98
80bau3b 2262 9799 21002 10074 1(0) 61 8.91
bnl2 2324 3489 13999 13457 1(0) 64 11..58
cycle 1903 2857 20720 27714 1(0) 149 29.13
czprob 929 3523 10669 7072 2(0) 418 15.22
d2q06c 2171 5167 32417 26991 1(1) 118 24.87
ganges 1309 1681 6912 7656 1(1) 95 11.70
greenbea 2392 5405 30877 33841 1(0) 230 28.30
greenbeb 2392 5405 30877 33841 1(0) 230 28.30
scfxmS 990 1371 7777 8749 1(1) 75 17.67
sctap2 1090 1880 6714 5505 2(2) 39 10.10
sctap3 1480 2480 8874 7386 2(2) 50 9.98
shipl21 1151 5427 16170 10673 2(0) 77 18..55
shipl2s 1151 2763 8178 5345 2(0) 50 9.29
sierra 1227 2036 7302 4936 3(3) 27 8.05
stocfor2 2157 2031 8343 12738 2(2) 37 11.81
woodw 1098 8405 37474 20421 1(1) 417 37.20
ere-a 3516 4067 14987 20748 3(0) 903 11.80
cre-c 3068 3678 13244 18905 3(0) 766 12..32
cre-d 8926 69980 242646 181670 3(0) 844 40.71
osa-07 1118 23949 143694 52466 37(37) 1082 93.86
osa-14 2337 52460 314760 113843 37(37) 2.301 97.43
C09 10789 14851 101578 119208 1(0) 706 22.10
CQ9 9278 13778 88897 106156 1(0) 701 22.88
GE 10099 11098 39554 51015 1(1) 114 10.10
NL 7039 9718 41428 49025 1(0) 360 13.93
mod2 34774 31728 165129 285068 1(0) 940 16.40
world 34506 32734 164470 273779 1(0) 971 15.87

CHAPTER 6. EXPERIMENTAL RESULTS 63

6.3.1 Partitioning Phase

We have used two graph partitioning tools for the partitioning phase. First one
is an implementation of the Sanchis algorithm. The second tool we have used
was Metis, a multi level graph partitioning tool. VVe have used the maximum
removal heuristic to obtain a node separator after partitioning.

VVe have not experimented with the Sanchis method with all our data sets,
because it fails to find partitions, and because a subset of the data set is enough
to see the huge difference between the two tools. We have taken 20 runs for each
data. Figure 6.1 gives a comparison of the two tools both in terms of solution
quality and run time efficiency.

As you can see from this figure, the two tools are not even comparable both
in terms of solution quality and run time efficiency. The relative performance
of Metis decreases as the number of parts increases, since Metis uses recursive
partitioning for small graphs. A more detailed comparison can be found in Ta­
ble A.2. Metis is superior to Sanchis for all matrices, and in the three fields. The
difference in quality can be as high as 13 times (s to c f or2), and running time can
be 32 times faster (80bau3b). This is basically because Sanchis fails to identify
natural clusters of the graph, as the graph gets denser, and the degrees of vertices
vary in a large range. Metis overcomes this problem by coarsening the graph and
identifying natural clusters in the first few levels of the uncoarsening phase.

The running times with Metis seem reasonable for most problems, however
for problems with too many columns run time increases considerably, making
the model impractical for many large problems. The quality of the solutions are
feasible enough to favor a parallel solution for some of the problems, however
for many problems solution quality is not good enough for an efficient parallel
solution.

6.3.2 Separator Phase

We have experimented three greedy heuristics for the second phase. The three
heuristics, namely maximum inclusion (MI), minimum removal (MR), and One-
Max (OM) which have been described in Chapter 4. We have also used another
method for finding a separator, which we will call Trivial separator. The set of all

CHAPTER 6. EXPERIMENTAL RESULTS 64

M in im u m . . .LJ Metis

■ SN

[" j i ~ l
8 A vg

Figure 6.1. Comparison of Metis and Sanchis partitioning tools on BG model.
Figure display results of 2,4,6, and 8 block decompositions. Minimum and average
are results of experiments on 27 different matrices with 20 run for each, the
numbers have been normalized with respect to that of PaToH.

row vertices, which are adjacent to an edge on the cut will give a separator, since
vertices representing rows and vertices representing columns form a bipartition
in the underlying graph.

We have experimented with the greedy heuristics for decomposition with 8
blocks and taken 20 runs for each data. The performance of the three greedy
heuristics and the trivial separator method are presented in Figure 6.2.

The quality of the solutions, obtained by the three greedy heuristics are quite
close to each other. The objective in this step is not finding a separator of mini­
mum size, but finding a separator that is going to result in minimum number of

CHAPTER 6. EXPERIMENTAL RESULTS 65

1.1

1.08

1.06

1.04

1.02

1

0.98

0.96

0.94

0.92

* Ml MR • O M --------- Triv

 ̂ /

CN 0
 ̂ E ^

S
S

I $ S -O) 25 O g
R $ a 5

8 8o o o
e

Figure 6.2. Comparison of Greedy Heuristics with BG Model
MI, MR, OM and Triv stand for maximal inclusion, minimum removal, One-Max,
and trivial separator heuristics, respectively. The results are average number of
coupling row's with 8 block decomposition after 20 runs. All numbers have been
normalized with respect to that of MI.

coupling rows after transforming the coupling columns with column splitting. We
have observed that although minimum removal and One-Max heuristics find sep­
arators of slightly smaller cardinality compared to maximum inclusion heuristic,
the number of coupling rows in the resulting matrices may be more than those
of maximum inclusion heuristic. Since linking columns can contribute more than
one rows to the set of coupling rows, we can give priority to rows to be on the
separator. Exploiting this, we have preferred to include rows to the separator as
a tie-breaking scheme in all the greedy heuristics.

After all, the quality of the solutions, obtained by the three greedy heuristics
are quite close to each other. This shows that the first part is the determinant
for the performance of this model. Hence, real achievements on this model can
be obtained by finding better partitions.

A remarkable point in Figure 6.2 is the performance of the trivial separator.
Most of the time, this simple method w'as competitive with the greedy heuris­
tics. It is 3% worse than greedy heuristics on the average, and the difference
rises to 10% in the worst case. This shows that the rows of the matrix should
have primary importance for decomposition. However, this model does not favor
concentrating on rows, since a row and a column is represented equivalently by

CHAPTER 6. EXPERIMENTAL RESULTS 6 6

a vertex. Detailed results about this experiment can be found in Table A.3.

6.4 Experiments with the Row-Net Model

VVe have adopted two different hypergraph partitioning tools for our experiments
with the row-net model, a Sanchis implementation and PaToH, a multi-level hy­
pergraph partitioning tool. Our results show that partitioning tool is as important
as the models we have proposed for the overall performance.

The quality of the solutions with Sanchis algorithm are not feasible for efficient
parallelization. Most of the time, a significant part of the rows are placed in
the coupling block making the parallel solution impractical. We can state the
following observations for our experiments with the Sanchis’ algorithm:

• For most matrices, there is a huge difference between the average case
and best case performances. The difference between the average case and
best case performances is quite typical for iterative improvement methods,
because each run starts from a different initial partition. But the huge gap
in our experiments means the performance of the Sanchis algorithm directly
depends on the initial solution, and it fails to make good improvement on
the initial solution for most of the cases.

• For many of the problems we have observed that the run-time of the heuris­
tic decreases as the number parts increases, although not only the asymp­
totic complexity , but also run time for most practical applications increases
with the number of blocks. The reason for this unexpected case is that San­
chis easily gets trapped in local optima, and performs very few passes, since
the problem becomes harder as the number of parts increases.

• The quality of the solutions is expected to be better as we increase the
number of levels in Sanchis’ algorithm, since we increase the look-ahead
ability of the algorithm. In our experiments increasing the number of lev­
els slightly improved the solution quality, however the running time and
especially the memory requirement increases enormously. The memory re-
(piirement increased to the order of G-Bytes for moderate sized problems,
which make the algorithm impractical. Also, the achievements of increasing

CHAPTER 6. EXPERIMENTAL RESULTS 67

the look-ahead ability is not worth the increase in running time for most of
the cases.

The results we have obtained with PaToH are definitely superior to those of
Sanchis. A brief comparison of solution qualities and running times for Sanchis
Level i, Sanchis Level 2, and PaToH as a result of 20 runs is given in Figure 6.3.
Details can be found in Tables A.4- A.6.

PaToH and Sanchis (Avg)

I PaToH

I SN-Ll

I SN-L2

Avg

PaToH and Sanchis (time)

I PaToH

I SN-Ll

I SN-L2

Avg

Figure 6.3. Comparison of PaToH and Sanchis (SN) for RN model
SNl and SN2 represent the Level 1 and Level 2 of Sanchis’ algorithm. The
results show average difference on 27 different matrices with 2,4,6, and 8 block
decompositions. Minimum and Average show the minimum and average number
of coupling rows after 20 runs. Time is the average running time of 20 runs on
27 matrices. All numbers have been normalized with respect to that of PaToH.

Moreover, these results are quite feasible for decomposing matrices for parallel

CHAPTER 6. EXPERIMENTAL RESULTS 6 8

solution both in terms solution quality and the running times. We were able to
decompose a matrix with 10099 rows, 11098 columns, 39554 nonzeros into 8
blocks with only 596 coupling rows in 14.34 seconds and a matrix with 34774
rows, 31728 columns, 165129 nonzeros into 8 blocks with only 1310 coupling
rows in 15.12 seconds. The solution times with LOQO are 907.6 seconds for the
former and 5970.3 seconds for the latter.

The main reason for the huge difference between the performance of Sanchis
and PaToH is high net degrees. When a net with a high degree is on the cut,
Sanchis’ algorithm can not formulate the sequence of moves that will recover this
net form the cut. The look-ahead ability in Sanchis’ algorithm was proposed for
sxich cases, however, that algorithm has been originally proposed for partitioning
VLSI circuits, where the average net degrees are around 5. To handle high degree
nets in the hypergraphs (the dense rows in the matrices) we need to use Level 10
or so in our experiments, but this is not possible since the memory requirement
increases exponentially with the number of levels, and it reaches to the order of
C l -Bytes even with level 3 on moderate size problems.

PaToII repeatedly matches vertices, until the number of vertices drop down
to order of hundreds, this decreases the size of the nets, and at this level we can
identify natural clusters of the hypergraph (and the matrix), as we go up in the
uncoarsening phase, the number of vertices and the sizes of nets increase, however
what we need to do at these levels is just to slightly improve the solutions inherited
from the previous level. The coarsening and uncoarsening process enables PaToH
to escape from being blocked by dense nets.

6.5 Experiments with the Column-Net Model

The results of our experiments with the column-net model are quite parallel to
t hose of row-net model, as we expected. The quality of the solutions of PaToH can
be 10 times better than those of Sanchis (S tocfor2 and 8 parts). The difference
In'tween run times is also very significant. In the few experiments where running
time of Sanchis algorithm is competitive with PaToH, the differences between the
((ualities of solutions becomes drcistic. Another drawback of Sanchis algorithm is
its high m.cmory requirement, we failed to partition the large matrices to 8 parts

CHAPTER 6. EXPERIMENTAL RESULTS 69

Minimum

Avg

Average

8 Avg

I PaToH
I SN-Ll
I SN-L2

Figure 6.4. Comparison of PaToH and Sanchis (SN) for CN model
SNl and SN2 represent the Level 1 and Level 2 of Sanchis’ algorithm. The
results show average difference on 23 different matrices with 2,4,6, and 8 block
decompositions. Minimum and Average show the minimum and average number
of coupling columns after 20 runs. Time is the average running time of 20 runs on
23 matrices. All numbers have been normalized with respect to that of PaToH.

with Level 2 of Sanchis’ algorithm.
A brief comparison is given in Figure 6.4, while details are presented in Ta­

bles A.8 and A.9.
Column-net produced very poor results for some problems even with Pa­

ToH. (% 80 of columns has been left on the cut for osa-07, for 8 blocks).
13ut it found fairly good decompositions for some problems, such as shipOSs,
sh ip l2s, s toc for2 , 80bau3b, cy c le , gauges and scfxm3. The performance of
the Column-net model is relatively bad for large problems, such as cre-d , osa-07,
C09, and world.

Parallel to the results of Column-Net model, Column-Net with transformation
produces poor results for some problems. The results with PaToH after 20 runs

(’HAPTER 6. EXPERIMENTAL RESULTS 70

are presented in Tables A.10-A.12. Number of coupling rows can be twice the
original number of rows in the given matrix (osa-07, cre-d). However, the
results are very promising for some of the problems, such as s to c f or2, shipOSs,
shipOSl and mod2. Solution of the primal problem may be feasible for these
problems.

The running time with PaToH is feasible enough to be considered as a pre­
processing step for parallel solutions for targe problems.

As a result, it might be useful to use the CN model, especially when other
models do not work. Column-net with transformation might be useful if it is
impractical to solve the dual problem, because of large number of columns.

6.6 Experiments with the Row Interaction Graph Model

VV'e have only used Metis in our experiments, since our previous experiments show
that multi-level approaches are definitely superior for our graphs.

The results with RIG model are quite promising. We were able to decompose
a matrix with 10099 rows, 11098 columns, 39554 nonzeros into 8 blocks with only
517 coupling rows in 1.9 seconds and a matrix with 34774 rows, 31728 columns,
165129 nonzeros into 8 blocks with only 1029 coupling rows in 10.1 seconds. The
solution times with LOQO are 907.6 seconds for the former and 5970.3 seconds
for the latter.

Solutions with RIG model has two major steps: computing a wide-separator,
and finding a good separator from the wide separator. We have applied different
methods for the two parts of the problem. In the following two sections we discuss
the experimental results of methods for the two parts of the problem.

6.6.1 Validity of Greedy Heuristics

We applied three greedy heuristics, maximum inclusion, minimum removal, and
One-Max heuristics described in Section 4.3.2.3. We have also applied the maxi­
mum flow solution proposed by Cong et. al. [14]. We have modified the attraction
function of a net stated in their study to where Cm denotes the number of
modules on the cut this net is incident to, because the original function proposed
in their paper produced extremely poor results.

CHAPTER 6. EXPERIMENTAL RESULTS 71

Figure 6.5 gives a comparison of the performances of greedy heuristics and
the maximum flow solution for this problem.

1.08

1.06

1.04

1.02

1

0.98

0.96

0.94

Comparison of Greedy Heur. on RIG

■OM M l --------- MR MF

s
0 4 (DC Oa >.Ü

o
s o

Si
2a« i

od> ■O
o 92o

8 8o o 0

Figure 6.5. Comparisons of Greedy Heuristics for RIG
MI, MR, OM and MF denote the maximum inclusion, minimum removal , one-
max and maximum flow solutions. Figure shows average number of coupling rows
after 20 runs for 8-way partitions. All values have been normalized with respect
to OM.

The table shows that the greedy heuristics find better separators than the
maximum flow method. Among the three heuristics One-Max finds better re­
sults compared to the other two, but the difference is not that significant. Also
the running time of the maximum flow solution is several times larger than the
partitioning time, which makes it definitely useless for practical purposes.

In a second set of experiments, we have compared the performance of the
heuristics with the optimal ones. Note that there is an optimal solution for finding
a narrow separator from a wide separator for two way separators. This method
is based on finding maximum matchings on bipartite graphs and is explained in
.Section 4.-3.1.2. The results of our experiments are presented in F’igure 6.6. The
results show that greedy heuristics are very effective. The average improvement
of optimal solutions is 0.12 percent, and it reaches a maximum of 0.58 percent
in cre-d . These results show that we should concentrate on the first part of the
method, finding good wide-separators for significant improvements with the RIG
model. Detailed results for this set of experiments are presented in Tables A. 13,

CHAPTER 6. EXPERIMENTAL RESULTS T2

Comp, with Matching

• Match --------- Ml MR --------- OM

1.15

1.1
A

1.05 ' / A

1 ^

0.95 ‘

0.9

C p
ss

no
&o

a 2o a <i) d) ^ 8 8 0 zo o

Figure 6.6. Comparison of Greedy heuristics with Optimal solutions

Match represent the optimal solution with matching, MI, MR, and OM represent
the maximum inclusion, minimum recover, and One-Max heuristics, respectively.
P'igure shows average number of coupling rows after 20 runs for 8-way partitions.
j\ll values have been normalized with respect to that of Match.

and A. 14.

6.6.2 Finding Wide Separators

VVe have used three different methods for finding wide separators. The first one
is using direct graph partitioning and minimizing the number of edges on the
cut. The second one minimizes the number of vertices in the wide separator
by hypergraph partitioning as discussed in Section 4.3.2.1. The third method
methods uses the weightening scheme discussed in Section 4.3.3.1. This method
gives weights to edges and partitions the edge weighted graph. In our experiments
we have discretized the weightening function, since Metis can only handle integer
edge weights. An edge e = {u,v) takes the weight value i if max{deg{u)^ deg{v))
falls into the ith segment, starting with the segment which contains the largest
values. We have used six different weightening functions. They are :

• W l: - 30 -

• W2: - 25 - 50 -

• W3: - 20 - 40 - 60 -

CHAPTER 6. EXPERIMENTAL RESULTS 73

• VV4: - 15 - 30 - 45 - 60 -

• VV5; - 10 - 20 - 30 - 40 - 50 - 60 -

• VV6: - 20 - 40 - 60 - 80 -

Comparing different weightening schemes W5 produced the best results. So we
take W6 as the representative of the weighteiiing method. The results for these
experiments can be found in Tables A .15- A .19.

Comparison of the three methods in terms of size of the minimum separator
obtained in 20 runs, the average separator sizes and the run times are presented
in Figures 6.7, 6.8 and 6.9, respectively. A more detailed comparison is given
in Tables A. 15- A. 19. As expected, minimum number of edges in the cut

Minimum

‘ uw ----- W5 Hy

Figure 6.7. Comparison of Minimum Separator Sizes for different methods

UVV represents finding wide separator by minimizing the edges on the cut. W5 is
the weightening scheme explained in Section 6.6.2. Hy is the hypergraph model
of Leiserson. Figure shows a comparison of minimum separator sizes with 8 block
|)artitioris after 20 runs. All values have been normalized with respect to UW.

is obtained by direct graph partitioning and minimum number of vertices on
the wide separator is obtained by the hypergraph model. However, weightening
method gives better results for finding better separators, which is our primary
objective. The differences in size of the resulting separators are quite significant
for the three methods. We were able to find separators of 3 times smaller (NL
and W5) with weightening compared to separator direct graph partitioning.

CHAPTER 6. EXPERIMENTAL RESULTS 74

Averages

• uw W5 ■ Hy

2.5

jQ Di

S
n

S §at

■ao
1 1

S I 8 Cfc LUO O u u

Figure 6.8. Comparison of Average Separator Sizes for different methods

UW represents finding wide separator by minimizing the edges on the cut. W5 is
the weightening scheme explained in Section 6.6.2. Hy is the hypergraph model
of Leiserson. Figure shows a comparison of average separator sizes with 8 block
partitions after 20 runs. All values have been normalized with respect to UW.

Comparing the difference between weighted and unweighted models. The
quality of the solutions generated by the weighted model model are %14 better
than the unweighted model. The run time of the weighted model is slightly better
than the unweighted model. The results are presented in Tables A.22 and A.23

4’liese results show that the quality of the wide separator has crucial impor­
tance in the performance of the RIG model, and there is much to be done for
finding better separators.

6.7 Comparison of the Models

In this section, we will compare the performances of methods we have proposed.
In our comparison, we have used the results of Metis and maximum inclusion
heuristic for representing the bipartite graph model. Results of RN model are
based on PaToH, and for RIG we have used weightening scheme 5 and One-Max
heuristic. We did not include the CN model, in our comparison since it computes
the dual block angular matrix, and we did not include CN with transfer, since it
produces bad results for many of the problems. However, once again we want to
point that CN with transfer finds very good results for some problems.

CHAPTER 6. EXPERIMENTAL RESULTS (0

Run Times

’ uw w Hy

Figure 6.9. Comparison of Running Times for different methods

(JW represents finding wide separator by minimizing the edges on the cut. W5 is
the weightening scheme explained in Section 6.6.2. Hy is the hypergraph model
of Leiserson. Figure shows a comparison of running times with 8 block partitions
after 20 runs. All values have been normalized with respect to UW.

We present the comparison of different models in Figures 6.10-6.13. Ta­
bles A.26-A.27 present a more detailed comparison.

Comparing RIG model with BG, we see that RIG overperforms BG for a great
majority of the experiments in the quality of the solutions. In the four exceptions
s c f xm3, s h ip l2 s , shipl21 and s to c f or2, the BG performs slightly better than
RIG, especially for decomposing into small number of blocks. The relative success
of BG model increases for decomposition with two blocks. This is simply because
minimizing the size of the node separator in this graph is equivalent to minimizing
the number of coupling blocks, since columns can not contribute more than one
row to the set of coupling rows.

The difference between the performances of RIG and BG models becomes
more significant for large sized problems. RIG is about twice as good as BG for
the large problems (c re -d , c r e -c , c re -a , osa-07, NL, CQ9), where decom­
position is more necessary due to the increased problem size.

The quality of the solutions generated by RN model are competitive with those
of RIG. In few exceptional cases differences become significant. RIG performs
substantially better than RN on czprob, osa-07 and woodw. On the other hand

CHAPTER 6. EXPERIMENTAL RESULTS 76

A -

Minimum with 8 Blocks □ RIG ■ BG E l RN

Figure 6.10. Comparison of best solutions of different models

Figure shows the minimum number of coupling rows with 8 block decomposition
after 20 runs. All values have been normalized with respect to that of RIG.

RN defeats RIG on gauges, sctap2, sh ip l2 s , shipl21 and sctap3. The dif­
ferences are in the order of %10 for the rest of the results.

The results show that RN and RIG models defeat BG model. However, we
can not say neither RN nor RIG outperforms the other, although the results
of RIG is usually better than RN. The implementations used together with the
models is as determinant as the models, as we have discussed all through the
chcipter, and it is hard to say the difference between RN and RIG origins from
the model itself or the implementations used.

A remarkable point in the experiments is RIG performs significantly better
than RN, when the number of columns increases. This is because RIG works with
more compact information. However, RN has to deal with a lot of vertices. Most
of these vertices give the same information for partitioning, but this information
is very loose. This loose information is compacted in the RIG model, and the
problem becomes much simpler. What we can conclude is that RN and RIG
models successfully model the matrices for decomposition and reduce to a well-
studied combinatorial optimization problem. These models enable an efficient
parallel solution, based on decomposition.

Comparing the running times, RIG is the clear winner. It overperforms RN

CHAPTER 6. EXPERIMENTAL RESULTS 77

Averages with 8 Blocks □ RIG ■ BG E l RN

Figure 6.11. Comparison of averages of different models
F’igure shows the average number of coupling rows with 8 block decomposition
after 20 runs. All values have been normalized with respect to that of RIG.

and BG in all data sets. The only exception is on the BG model and NL problem.
However, the quality of the solutions with BG model are quite poor compared to
solutions with RIG model.

.A remarkable point in running times is the enormous increase in the running
times with BG model, with great number of columns. Running time of BG model
is 22 times greater than running time of RIG model on cre-d . This makes use of
BG model impractical for decomposing matrices with great number of columns,
which is a common case for large matrices rising in Linear programming.

Finally, we want to show how effective the models are for decomposition. In
Table 6.3, the number of coupling rows and the percent ratio of the number of
coupling rows to the total number of rows, the actual partitioning times and
percent ratio of partitioning times to solution times of the problems with LOQO
[?] are presented. On the overall average, only 5.48% and 8.06% of the rows
are on the coupling block for 4 and 8 block decompositions, respectively. The
partitioning times are negligible compared to LOQO solution times (0.9% for 4
blocks, and 1.1% for 8 blocks). Another remarkable point in this table is that
partitioning times grow slowly with the problem size, although solution times
rapidly increase. This makes decomposition very practical for large problems.

CHAPTER 6. EXPERIMENTAL RESULTS 78

Tim© for 8 Blocks El RIG ■ BG [1 RN

Figure 6.12. Comparison of running times for different models
Figure shows the minimum number of coupling rows with 8 block decomposition
after 20 runs. All values have been normalized with respect to that o f RIG.

CHAPTER 6. EXPERIMENTAL RESULTS 79

Average I RIG ■ BG ^ RN

Avg

Time I RIG ■ BG RN

Avg

F'igure 6.13. Figure gives a general comparison of different models for 2,4,6 and
8 block decomposition of 27 different matrices. The results after due to average
of 20 runs. Values have been normalized with respect to RIG.

CHAPTER 6. EXPERIMENTAL RESULTS 80

Problem k # Coup. Rows p̂art

Name Rows
LOQO

t soli secs)
abs. rel.

%
abs.
secs.

rel.
%

cycle 1903 110.8 4 64 3..36 0.87 0.79
8 100 5.25 1.05 0.95

d‘2q06c 2171 400.0 4 223 10.27 0.96 0.24
8 293 13..50 1.17 0.29

gauges 1309 21.9 4 68 5.19 0.32 1.46
8 128 9.78 0.41 1.87

greenbea 2392 166.3 4 125 5.23 1.34 0.81
8 231 9.66 1.63 0.98

ship 121 1151 20.5 4 49 4.26 0.43 2.10
8 78 6.78 0.54 2.63

stocfor2 2157 24.8 4 44 2.04 0.53 2.14
8 120 5.56 0.66 2.66

woodw 1098 80.7 4 68 6.19 0.74 0.92
8 160 14.57 0.86 1.07

cre-a 3516 40.8 4 112 3.19 1.03 2.52
8 141 4.01 1.27 3.11

cre-c 3068 40.7 4 102 3.32 0.89 2.19
8 127 4.14 1.08 2.65

cre-d 8926 6719.9 4 913 10.23 6.12 0.09
8 1117 12.51 6.73 0.10

osa-07 1118 398.7 4 80 7.16 3.39 0.85
8 80 7.16 4.05 1.02

C09 10789 1827.6 4 1099 10.19 4.30 0.24
8 1363 12.63 4.72 0.26

CQ9 9278 1664.4 4 751 8.09 4.00 0.24
8 1061 11.44 4.36 0.26

GE 10099 907.6 4 331 3.28 1.71 0.19
8 517 5.12 1.93 0.21

NL 7039 699.2 4 .547 7.77 2.82 0.40
8 633 8.99 3.22 0.46

mod2 34774 5383.3 4 559 1.61 9.44 0.18
8 1029 2.96 10.07 0.19

world 34506 2.5819.7 4 615 L78 9.24 0.04
8 1074 3.11 10.02 0.04

Average 4 5.48 0.90
8 8.06 1.1

7. Conclusion

In this chapter, we will discuss the results of our work, and give some directions
for the future work.

7.1 Conclusions

This work focuses on the problem of permuting rows and columns of a sparse ma­
trix into a block angular form, with specified number of equal sized blocks while
minimizing the number of coupling rows. One major application of permutation
into block angular form will.be decomposing linear programs for parallel solution.
However, note that the proposed solutions are valid for any sparse matrix, not
only for constraint matrices of linear programs.

.Vlany methods have been proposed for the parallel solution of block angular
LP’s. The general approach in these methods is exploiting the block structure of
the constraint matrix for parallel solution in the subproblem phase where each
processor solves a smaller LP corresponding to a distinct block. - A sequential
coordination phase (the master) follows. This cycle is repeated until suitable ter­
mination criteria are satisfied. However, the success of these approaches depends
only on the existing block angular structure of the given constraint matrix. The
number of processors utilized for parallelization in these studies is clearly lim­
ited by the number of inherent blocks of the constraint matrix. Hence, these
approaches suffer from unscalability and load imbalance.

This work enables us to apply all methods proposed for problems with block
angular problems, on any sparse problem, because we can permute the matrix
into l)lock angular form in a preprocess phase. .Also this work enables us to work
witli any number of blocks, not being restricted by the inherent number of blocks.

81

CHAPTER 7. CONCLUSION 82

In this study, we have proposed two hypergraph models, and a graph model to
decompose matrices for parallel solution. We have experimented the validity of
our models on various LP matrices, and compared our results with the bipartite
graph model proposed by Ferris and Horn.

Our first model, namely the row-net model reduces the permutation problem
to the well known hypergraph partitioning problem. We have experimented the
validity of the model with various LP constraint matrices. We have used the
algorithm of Sanchis and PaToH, a multi-level hypergraph partitioning tool being
developed in our department, in our experiments. Our results show that the
partitioning algorithm has a major importance in the validity of our model. We
have observed that the quality of the solutions with Sanchis directly depend on the
initial partition, and Sanchis’ algorithm directly gets trapped in a local optima.
We have obtained quite promising results with PaToH. The run times are quite
fast and negligible compared to solution times. The quality of the solutions favor
a solution by decomposition. The superiority of PaToH over Sanchis is basically
because PaToH does not suffer from dense nets because of the coarsening process.

Our results with column-net are quite parallel to those of the row-net model.
The difference between the performances of Sanchis and PaToH are quite sim­
ilar to that of row-net model. Column-net usually leaves a great proportion of
columns in the coupling block, however, the results for a subset of the problems
are outstanding and favor parallel solution of the dual problem.

Column-net model with transformation usually produces large number of cou­
pling rows, and sometimes twice the number of rows of the original problem.
However, the results are very good for some of the problems, and it might be
a good idea to solve the primal problem after transformation. The results show
that, it is worth experimenting with the column-net model, especially when other
methods do not produce good solutions.

The results of the RIG model are quite promising. The solution method has
two phases. The first phase is finding a good wide separator, and the second
phase is finding a narrow separator from the wide separator obtained in the first
|)ha.se. Our experimental results show that the greedy heuristics we have proposed
ai(' good enough, and there can not be much more improvement for this phase.
However, there is much to be done for finding a good node separator. There can

CHAPTER 7. CONCLUSION S3

be important deviations on the size of the separator by applying different methods
on the first part of the problem. We have proposed a weightening scheme to find
better wide separators. This method gives weights to edges of the graph, and
partitions this edge weighted graph to find the separator.' The results with this
method is about 13 % better than classical methods, and give important key
points for future work.

Comparing the quality performances of different models, RN and RIG models
defeat the BG model. The difference becomes very significant for some problems.
It is hard to compare RN and RIG models, since their performance is quite
close to each other for all problems with a few exceptions. So, it is hard to say
whether this difference originates from the models, or the implementations we
have used in our experiments. The performance of RIG becomes superior to RN,
as the number of columns in the matrix increases. Because RIG works on a more
compact information, where as RN has to deal with lots of vertices.

RIG model is the clear winner in comparison of the running times. The
running times of RN and RIG models are negligible compared to the solution
times with LOQO. The running times with BG model can be high for problems
with too many columns, which make the model impractical for such problems.

,4s a results, our models successfully model the matrices for decomposition and
reduce the problem, to well-known combinatorial optimization problems. These
models can be used to decompose matrices with very high quality (few coupling
rows) on negligible time.

7.2 Future Work

This work gives many good spirits for future work. In this section we will briefly
discuss some ideas which seem promising for future work.

7.2.1 Hypergraph Partitioning with Vertex Replication

.\s we have discussed above, hypergraph models we proposed reduce the problem
t(.) the hypergraph partitioning problem. Hypergraph partitioning tries to identify
minimum subset of nets whose removal forms k disconnected equal sized parts.

CHAPTER 7. CONCLUSION 84

Tliat is it concentrates on only the nets to form disconnected components. Sym-
nietriccilly, our RN model tries to identify a subset of rows whose removal forms
independent blocks in the matrix. This model produces good decomposition if
it is only rows to cause the interaction between the blocks. However, for some
cases there are some columns (variables), making a lot of interaction between
blocks causing a lot of rows to be on the coupling block. However, we can save
many rows by splitting these columns. Column-splitting produces extra rows,
increasing the overall problem size, however, the number of these extra rows may
be less than the rows we will save by column-splitting. Bipartite graph model
partially allows this, but it will be better to say it does not disallow, since there
is no clever mechanism inside to handle this process.

A similar problem arises in FPGA partitioning in VLSI, and this problem
has been stated as hypergraph partitioning with module replication in this society.
The literature which addresses this problem is quite recent. It will be a good
idea to exploit this idea for our problem, then we can say that our problem
reduces to hypergraph partitioning with vertex (variable) replication problem,
after modeling the matrices with the RN model.

7.2.2 Iterative Improvement Methods for Multi-way Sep­
arations

Our current work, for finding node separators includes only the two stage ap­
proach: finding a wide-separator, and moving to a narrow separator from this
wide separator, an iterative improvement method, which takes an initial separa­
tor and then tries to decrease the size of this separator may increase the quality of
our results. Liu proposed an iterative method for two way partitions. However,
there is no multi-way generalization of this method. In Figure 7.1 we propose
an iterative improvement algorithm for multi-way separation, which generalizes
Liu’s 2-way method.

In this algorithm, the subset V' can be computed by finding maximum match­
ings on the bipartite graph formed by S and V — (i' U P j} , as explained in
Section 4.3.1.2.

This algorithm not only decreases the size of the separator, but also helps us

CHAPTER 7. CONCLUSION 85

Input: Graph G = (V,£) where P = (P ,, /̂ 2, · ■ ·, Pk, S) is a node separation of
CG.
O utput: A new’ separator S' with |5'| < |5'

1. improved := true;
2. while Improved do
2.1 Let Pj be the part of minimum size

if a subset Y of Pj is found with \Adj[Y,V — {5 U Pj}) < |F| then
P := P U F;
P := (5 - F)’ u Adj{Y, V - { S O P , }) · ,
Pi := Pi — Adj{Y, Pi) ioT 1 < i < k and i ^ j·,

else
Improved := false;

2.2
2.2.1
2 .2.2
2.2.3
2.3

Figure 7.1. Multi-way Separator Improvement Algorithm

to tune the balance among different parts.

7.2.3 Finding Coupling Rows after Partitioning on BG
Model

In this section we will propose different methods for finding the set of coupling
rows after the partitioning step in the bipartite graph model.

7.2.3.1 Finding a Separator o f M inim um Size

.Although Ferris and Horn finds a separator of minimum size after partitioning
by a greedy heuristic, there is an optimal solution in polynomial time for this
problem. This algorithm is based on finding maximum matchings on a bipartite
graph. As we have discussed in Section 4.3.2.2 this problem has an optimal
solution in polynomial time for bipartitions for general graphs. However, it is
possible to find an optimal solution for multi-way partitions for this case by
('xploiting the fact that underlying graph is bipartite. We can start with an
initial separator as all row vertices adjacent to an edge on the cut. Then we find
a maximum matching on the bipartite graph formed by vertices adjacent to an

CHAPTER 7. CONCLUSION 8 6

edge on the cut. We can augment the separator using the method described in
.Section 4.3.1.2.

Please note that we will obtain minimum separators by this method, but these
se]:>arators do not necessarily lead to minimum number of coupling rows.

7.2.3.2 Finding a Separator with Minimum Number of Coupling Rows

In this section, we will propose a new method to find a good separator in the
bipartite graph model, which is going to result in minimum number of coupling
rows. The problem can be stated as finding a vertex cover on the bipartite graph
with minimizing the sum of weights of vertices, where weight of each row vertex
is one, and weight of a column vertex is equal to its connectivity. The problem
of finding a vertex cover on a bipartite graph with minimum sum of weights
of vertices covered, can be solved by reducing the problem to Maximum Flow
problem [16] by adding a source and destination vertex to the bipartite graph.

In this graph,

• The set of vertices formed by vertices adjacent to an edge in the partition
and a source vertex s , and a terminal vertex t .

• There is an edge from the source s to all row vertices.

• There is an edge from all column vertices and the terminal t.

• The edges between row and column vertices are exactly those edges on the
cut.

• All edges have unit cost.

• The capacity of all edges between the source vertex and row vertices, and
edges between row and column vertices is equal to 1.

• The capacity of an edge between a column vertex and the terminal vertex
t is equal to the connectivity of the column.

After computing the maximum flow on this graph, we can find the augmenting
level structures on the bipartite graph (column and row vertices) as described in
.Section 4.3.1.2, starting from each unsaturated row vertex. .After computing the

CHAPTER 7. CONCLUSION 87

level structures, the vertices in the even levels are replaced by vertices in the odd
levels just like we do with maximum matchings.

This algorithm finds the optimal combination to produce minimum number
of coupling rows, except for one point. It is not possible to compute the con­
nectivity of a column safely. If all rows adjacent to a column in one block are
moved to the separator, we will overcount the connectivity of this column. If we
ignore this point, the algorithm described above optimally finds the solution for
separators with minimum number of coupling rows.

Bibliography

[1] D. Adler. Switch-level simulation using dynamic graph algorithms. IEEE Trans­
actions on Computer-Aided Design, 10(3):346-355, March 1991.

[2] C. J. Alpert and A. B. Kahng. Recent directions in netlist partitioning: A survey.
Integration: the VLSI Journal, 19(1-2):1-81, 1995.

[3] C. J. Alpert and S. Z. Yao. Spectral partitioning: The more eigenvectors, the
better. Ill Proc, ACM/IEEE Design Automation Conference, 1995.

[4] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali. Linear Programming and Network
Flows. John VViley & Sons,Inc., 1990.

[5] J. F. Benders. Partitioning procedures for solving mixed variables programming
problems. Numerische Methamatik, 4:238-252, 1962.

[6] K. D. Boese, A. B. Kahng, and S. Muddu. A new adaptive multi-start technique
for combinatorial optimization. Operations Research Letters, 16:101-113, 1994.

[7] S. P. Bradley, A. C. Hax, and T. L. Magnanti. Applied Mathematical Programming.
Addison Wesley, 1977.

[8] T. N. Bui, S. Chaudhuri, F. T. Leighton, and M. Sipser. Graph bisection algo­
rithms with good average case behavior. Cornbinatorica, 7(2):171-191, 1987.

[9] T. Bultan and C. Aykanat. Circuit partitioning using parallel mean field anneal­
ing algorithms. In Proceedings of the Third IEEE Symposium on Parallel and
Distributed Processing, pages 534-541, December 2-5 1991.

[10] T. Bultan and C. Aykanat. A new mapping heuristic based on mean field anneal­
ing. Journal of Parallel and Distributed Computing, 16:292-305, 1992.

[11] U. V. Qatalyurek and C. Aykanat. Decomposing irregularly sparse matrices for
parallel matrix-vector multiplication. In Proceedings of Irregular 96, 1996. to
appear.

[12] P. K. Chan, M. D. F. Schlag, and J. Y. Zien. Spectral K-way ratio-cut partitioning
and clustering. IEEE Transactions on Computer-Aided Design, 13(8):1088-1096,
1994.

[13] J. Cong, L. Hagen, and A. B. Kahng. Net partitions yield better module partitions.
Ill Proc. ACM/IEEE Design Automation Conference, pages 47-52, 1992.

[11] J. Cong, W. Labio, and N. Shivakumar. Multi-way vlsi circuit partitioning based
on dual net representation. In Proceedings of IEEE Int. Conference Computer
Aided Design, pages 56-62, 1994.

8 8

BIBLIOGRAPHY 89

[io] J. Cong and M’L. Smith. A parallel bottom-up clustering algorithm with applica­
tions to circuit partitioning in vlsi design. In Proceedings of the 30th ACM/IEEE
Design Automation Conference, pages 755-760, 1993.

[16] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The
MIT Press, 1992.

[17] A. Da§dan and C. Aykanat. Improved multiple-way circuit partitioning algo­
rithms. In Proceedings of the ACM/SIGDA Second International Workshop on
Field Programmable Gate Arrays, pages 111-222, 1994.

[18] G. B. Dantzig and P. Wolfe. Decomposition principle for Rnear programs. Oper­
ations Research, 8:101-111, 1960.

[19] D. E. Van den Bout and T. K. Miller. Graph partitioning using annealed neural
networks. IEEE Transactions on Neural Networks, l(2):192-203, 1990.

[20] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Oxford Science Publications, 1990.

[21] M. C. Ferris and J. D. Horn. Partitioning mathematical programs for parallel
solution. Technical Report TR1232, Computer Sciences Department, University
of Wisconsin Madison, May 1994.

[22] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving
network partitions. In Proceedings of the 19th ACM/IEEE Design Automation
Conference, pages 175-181, 1982.

[23] J. Frankie and R. M. Karp. Circuit placement and cost bounds by eigenvector
decomposition. In Proc. IEEE Inti. Conf. Coputer-.Aided Design, pages 414-417,
1986.

[24] .M. R. Garey and D. S. Johnson. Computers and Intractability. W.H. Freeman
and Co., New York, New York, 1979.

[25] A. George and J. W. H. Liu. The evolution of the minimum degree ordering
algortihm. SIAM Review, 31(1):1-19, March 1989.

[26] J. A. George. Nested dissection of a regular finite element mesh. SIAM Journal
on Numerical Analysis, 10:345-363, 1973.

[27] S. K. Gnanendran and J. K. Ho. Load balancing in the paraUel optimization of
block-angular linear programs. Mathematical Programming, 62:41-67, 1993.

[28] L. W. Hagen, D. J. H. Huang, and A. B. Kahng. On implementation choices for
iterative improvement partitioning algorithms. IEEE Transactions on Computer-
.\ided Design, 1995. Submitted.

[29] K. M. Hall. .4n r-dimensional quadratic placement algorithm. Management Sci­
ence. 17:241-254,1970.

[30] S. Hauck and G. Borriello. An evaluation of bipartitioning techniques. In Proc.
Chapel Hill Conf. on .Adv. Research in VLSI. 1995.

[31] B. Hendrickson and R. Leland. .4 multilevel algorithm for partitioning graphs.
Technical Report SAND93-1301. Sandia National Laboratories, 1993.

BIBLIOGRAPHY 90

[32] A. G. Hoffman. The dynamic locking heuristic - a new graph partitioning algo­
rithm. In Proceedings of IEEE International Symp. Circuits and Systems, pages
173-176,1994.

[33] .J. E. Hopcroft and R. M. Karp. An n^|) algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2:22.5-231, 1973. :

[34] N. Karmarkar. A new polynomial-time algorithm for linear programming. Com-
binatorica, 4:37.3-395, 1984.

[35] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for parti­
tioning irregular graphs. Technical Report TR 95-035, Department of Computer
Science, University of Minnesota, 1995.

[36] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. The Bell System Technical Journal, 49(2):291-307, February 1970.

[37] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671-680, May 1983.

[38] S. A. Kontogiorgis. Alternating Directions Methods for the Parallel Solution of
Large-Scale Block-Structured Optimization Problems. PhD thesis. University of
Wisconsin - Madison, 1994.

[39] B. Krishnamurthy. An improved min-cut algorithm for partitioning VLSI net­
works. IEEE Transactions on Computers, 33(5):438-446, May 1984.

[40] C. E. Leisserson and J. G. Lewis. Orderings for parallel sparse symmetric factoriza­
tion. In Third SIAM Conference on Parallel Processing for Scientific Computing,
pages 27-31. SIAM, December 1987.

[41] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. John Wiley
and Sons, Inc.,, 1990.

[42] J. W. H. Liu. A graph partitioning algorithm by node separators. ACM Transac­
tions on Mathematical Software, 15(3): 198-219, September 1989.

[43] D. Medhi. Bundle-based decomposition for large-scale convex optimization: error
estimate and application to block-angular linear programs. Mathematical Pro­
gramming, 66:79-101,1994.

[44] S. S. Nielsen and S. A. Zenios. A massively parallel algorithm for nonlinear
stochastic network problems. Operations Research, 41(2):319-337, 1993.

[45] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization, Algorithms
and Complexity. Prentice Hall, 1982.

[46] A. Pmar. A new genetic algorithm for hypergraph partitioning. In Proceedings of
TMNN'96, pages 167-176, 1996.

[47] A. Pınar and C. Aykanat. A new graph model to decompose linear programs for
parallel solution. Lecture ¿Votes in Computer Science. To appear.

[48] .\. Pınar, U. V. Catalyurek, C. Aykanat, and M. Pınar. Decomposing linear
programs for parallel solution. Lecture ¡Votes in Computer Science, 1041:473-482,
1996.

BIBLIOGRAPHY 91

[49] A. Pothen and C. J. Fan. Computing the block triangular form of a sparse matrix.
ACM Transactions on Mathematical Software. 16(4):303-324, December 1990.

[50] A. Pothen, H. D. Simon, and K. P. Liou. Partitioning sparse matrices with eigen­
vectors of graphs. SIAM Journal on Matrix Analysis and Applications, 11(3):430-
452, July 1990.

[51] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, 1985.

[52] V. B. Rao and T. N. Trich. Network partitioning and ordering for mos vlsi circuits.
IEEE Transactions on Computers., 6(1): 128-144, January 1987.

[53] R. L. Rivest. The ‘‘pi” (placement and interconnect) system. In Proceedings of
the 19th Design Automation Conference., pages 475-481. IEEE, 1982.

[54] L. A. Sanchis. Multiple-way network partitioning. IEEE Transactions on Com­
puters., 38(1):62-81, Jan 1989.

[55] D. G. Schweikert and B. W. Kernighan. A proper model for the partitioning
of electrical circuits. In Proceedings of the 9th ACM/IEEE Design Automation
Conference, pages 57-62, 1972.

[56] A. Vanelli and K. R. Kumar. A method for finding minimal bottleneck cells for
grouping part-machine families. International Journal of Production Research,
24:387-400,1986.

[57] G. Vijayan. Partitioning logic on graph structures to minimize routing cost. IEEE
Transactions on Computer-Aided Design, 9(12):1326-1334, December 1990.

A. Experimental Results in Detail

Table A .l. General Comparison of Sanchis (SN) and Metis
All values have been normalized with respect to Metis.

k Min Average Time
Metis SN Metis SN Metis SN

2 1.00 4.74 1.00 5.48 1.00 4.84
4 1.00 4.02 1.00 3.64 1.00 9.17
6 1.00 3.10 1.00 2.91 1.00 12.84
8 1.00 2.31 1.00 2.26 1.00 18.47

Avg 1.00 3.54 1.00 3.57 1.00 11.33

92

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 93

Table A.2. Comparison of Sanchis (SN) and Metis

Miiiirimm and Average show the minimum and average number of coupling rows
after ,20 runs. Time is the average run time of 20 runs in seconds. Entries in the
columns of Metis give the actual results and entries in the columns of SN have
been normalized with respect to Metis.

Problem k Min Average Time
Metis SNl Metis SNl Metis SNl

2 92 1.17 123.15 1.75 0.42 3.90
25fv47 4 152 1.53 190.25 1.64 0.65 5.02

6 213 1..39 244.60 1.41 0.79 6.44
8 277 1.05 304.20 1.13 0.87 8.49
2 134 1.40 244.15 1.-36 1.42 6.92

80bau3b 4 437 1..30 -536.8-5 1.36 2.25 15.23
6 565 1.20 645.75 1.-30 2.74 19.83
8 699 1.07 7.33.90 1.16 2.96 32.89
2 111 1.44 135.15 3.36 0.85 5.28

bnl2 4 277 1.59 310.60 2.04 1.11 11.77
6 365 1.78 416.25 1.80 1.29 17.-58
8 509 1.35 -542.70 1.47 1.39 21.32
2 58 4.98 69.90 6.38 0.75 4.51

cycle 4 no 4.65 1-51.5-5 3.73 0.92 8.46
6 141 3.77 1-56.1-5 3.82 1.01 10.78
8 224 2.-58 2-59.6-5 2.35 1.10 15.99
2 163 1.-52 229.20 1.78 1.43 4.43

d2q06c 4 311 1.62 352.35 1.68 1.63 10.34
6 370 1.-53 414..30 1.-55 1.75 16.06
8 424 1..37 466.05 1.42 1.85 22.67
2 27 2.59 -36.00 5.99 0.30 4.70

gauges 4 92 2.88 116.65 2.76 0.42 10.71
6 134 2.22 1-59.80 2.21 0.51 14.73
8 157 1.94 181.80 2.12 0.55 22.64
2 94 9.14 1.30..55 8.10 1.58 4.73

greenbea 4 171 8.06 212.90 6.99 1.91 8.08
6 212 7.04 302.3-5 5.28 2.08 11.-53
8 310 4.85 3-59.30 4.50 2.18 16.41
2 11 7.27 15.05 8.88 0.32 3.25

scfxm3 4 28 6.61 35.8-5 6.13 0.47 -5.23
6 40 4.72 46.-50 4.94 0.56 7.82
8 87 2.29 102.00 2.32 0.64 10.48
2 14 13.14 20.40 11.74 0.47 5.87

stocfor2 4 42 7.90 .56.65 6.47 0.63 7.68
6 95 4.26 112.45 3.87 0.72 10.83
8 95 4.33 117.00 3.86 0.79 15.33

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 94

Table A.3. Comparison of Greedy Heuristics with BG Model
MI, MR. OM and Triv stand for maximal inclusion, minimum removal. One-Max,
and trivial separator heuristics, respectively. Minimum and Average are the min­
imum and average number of coupling rows with 8 blocks after 20 runs. Columns
of MI present the actual values and other columns have beeen normalized with
respect to these columns.

Problem Min Average
MI MR OM Triv MI MR OM Triv

25fv47 277 0.99 0.99 1.03 304.20 1.00 1.00 1.04
SObauSb 699 1.00 1.00 1.01 733.90 1.00 1.00 1.00
bnl2 509 0.98 0.98 1.07 542.70 0.99 0.99 1.07
cycle 224 1.00 1.00 1.02 259.65 1.00 1.00 1.05
czprob 455 1.00 1.00 1.00 455.50 1.00 1.00 1.00
d2q06c 424 1.00 1.00 1.05 466.05 1.00 1.00 1.03
ganges 157 1.00 1.00 1.00 181.80 1.00 1.00 1.00
greenbea 310 l.Ol 1.01 1.04 359.30 1.00 1.00 1.06
greenbeb 321 0.98 0.98 1.06 367.45 1.00 1.00 1.06
scfxm3 87 1.00 1.00 1.02 102.00 1.00 1.00 1.03
sctap2 204 1.01 1.01 1.00 225.05 1.00 1.00 1.02
sctap3 247 1.00 1.00 1.02 263.05 1.00 1.00 1.03
shipl21 252 1.00 1.00 1.02 254.00 1.00 1.00 1.04
shipl2s 162 1.00 1.00 1.07 173.00 1.00 1.00 1.06
sierra 166 1.00 1.00 1.00 179.65 1.00 1.00 1.00
stocfor2 95 1.00 1.00 1.12 117.00 1.00 1.00 1.06
woodw 810 0.99 0.99 1.00 935.45 1.00 0.99 1.00
cre-a 344 1.00 1.00 1.01 399.40 1.00 1.00- 1.02
cre-c 438 1.00 1.00 1.03 553.90 1.00 1.00 1.03
cre-d 4258 1.00 1.00 1.00 4597.55 1.00 1.00 1.00
osa-07 929 1.01 1.01 1.00 1025.60 1.01 1.01 1.00
C09 2901 1.01 1.01 1.02 2987.40 1.01 1.01 1.02
CQ9 2678 1.00 1.00 1.03 2774.60 1.01 1.01 1.03
GE 757 1.00 1.00 1.01 864.30 1.00 1.00 1.02
NL 2221 1.00 1.00 1.03 2345.80 1.00 1.00 1.03
rnod2 1874 0.99 0.99 1.09 2283.90 0.99 0.99 1.10
world 1921 1.00 1.00 1.10 2455.50 0.99 0.99 1.10
Average 1.00 1.00 1.00 1.03 1.00 1.00 1.00 1.03

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 95

Table A.4. Comparison of PaToH and Sanchis (SN) for RN model
SNl and SN2 represent the Level 1 and Level 2 of Sanchis’ algorithm. Minimum
and Average show the minimum and average number of coupling rows after 20
runs. Time is the average running time of 20 runs in seconds. Columns of PaToH
display the actual results, and other columns have been normalized with respect
to PaToH.

Problem k Minimum Average Time
PaToH SN-1 SN-2 PaToH SN-1 SN-2 PaToH SN-1 SN-2

2 83 2.37 1.94 90.24 2.84 2..30 0.37 2.65 2.38
25fv47 4 116 3.11 3.33 139.81 3.82 3.38 0.67 2.04 1.87

6 155 3.92 3.36 180.48 3.54 3.04 0.84 1.13 1.94
8 189 3.46 2.97 220.76 3.02 2.62 0.94 1.37 2.20
2 74 4.20 3.65 91.52 4.06 3.55 1.19 16.32 13.09

80bau3b 4 251 2.27 2.12 314.10 2.59 2.74 2.32 14.33 9.91
6 343 4.07 3.58 390.14 3.89 3.28 3.03 2.88 3.81
8 394 3.99 3.43 428.62 3.72 3.21 3.36 2.71 4.54
2 121 2.69 2.26 143.71 2.56 2.35 0.60 4.50 3.83

bnl2 4 279 1.80 1.73 319.00 1.83 1.63 1.18 4.02 4.01
6 350 1.98 1.52 395.62 2.01 1.56 1.52 3.24 3.99
8 411 1.94 1.38 476.29 1.80 1.39 1.69 3.86 5.76
2 34 11.76 5.09 47.33 14.22 9.37 0.63 2.98 3.46

cycle 4 94 8.26 8.20 135.86 7.26 6.30 1.24 2.26 3.10
6 56 20.29 16.84 78.48 15.04 12.51 1.60 1.55 2.66
8 193 6.25 5.12 225.43 5.48 4.53 1.82 1.77 3.20
2 176 0.28 0.19 221.81 0.34 0.18 0.80 1.91 1.30

czprob 4 161 0.21 0.40 225.81 0.77 0.48 1.33 1.74 1.83
6 152 2.22 1.86 230.71 1.62 1.31 1.68 1.52 1.14
8 133 2.93 2.34 220.05 1.92 1.50 1.67 2.00 1.92
2 147 4.56 3.67 185.05 4.10 3.38 1.07 5.37 4.51

d2q06c 4 251 4.29 3.82 282.24 5.02 3.99 2.23 3.00 4.65
6 277 6.00 4.95 328.95 5.18 4.31 2.88 1.55 2.70
8 315 5.55 4.67 369.52 4.81 4.03 3.31 1.56 3.03
2 28 3.79 3.29 37.71 3.46 3.46 0.28 2.21 2.29

gauges 4 66 4.18 2.48 82.62 3.96 2.49 0.58 3.24 2.98
6 85 5.56 2.46 105.90 5.03 2.34 0.74 3.03 3.97
8 111 5.10 1.88 132.24 4.70 2.03 0.85 3.01 5.39
2 91 6.16 5.43 108.24 6.00 5.50 1.13 4.18 3.01

greeiibea 4 145 5.53 5.15 182.95 4.96 4.34 2.19 5.43 4.62
6 192 6.86 4.76 245.81 5.68 3.89 2.90 2.64 4.44
8 213 6.63 4.80 276.86 5.67 3.81 3.22 2.46 4.11

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 96

'Fable A.5. Comparison of PaToH and Sanchis (SN) for RN model (cont.d)

Problem k 4̂in A\erage Time
PaToH SN-1 SN-2 PaToH SN-1 SN-2 PaToH SN-1 SN-2

2 82 7.27 6.56 106.19 6.06 5.69 1.15 3.98 3.39
greenbeb 4 147 5.46 5.08 194.48 4.86 4.07 2.24 4.31 4.34

6 174 7.06 5.24 233.86 5.96 4.07 2.99 2.82 4.09
8 236 6.13 4.33 276.33 5.68 3.78 3.26 2.38 4.51
2 10 12.70 5.40 13.19 15.91 11.65 0.24 2.46 2.58

scfxm3 4 23 14.61 11.91 33.48 12.59 10.26 0.49 2.82 2.82
6 42 13.29 9.45 51.05 12.14 8.80 0.66 1.61 2.64
8 76 8.66 5.89 84.48 8.04 5.81 0.74 1.53 2.80
2 41 2.12 1.34 46.14 2.55 2.28 0.23 3.78 3.78

sctap2 4 101 4.60 1.57 106.29 4.98 1.60 0.46 2.24 3.02
6 116 4.67 1.52 133.90 4.42 1.40 0.60 4.35 4.97
8 144 5.29 1.31 157.81 5.01 1.35 0.70 2.51 5.91
2 40 2.80 1.98 50.05 2.90 2.70 0.28 5.82 4.57

SCtcip3 4 81 8.25 2.47 119.19 6.15 1.86 0.58 2.59 3.67
6 135 5.41 1.72 152.38 5.24 1.69 0.79 5.11 5.46
8 163 6.17 1.50 179.81 5.93 1.64 0.88 3.49 6.35
2 10 19.00 19.00 10.29 19.43 18.74 0.62 4.27 2.42

ship 121 4 10 53.40 33.90 10.29 64.42 49.28 1.20 2.35 2.76
6 10 78.90 72.60 10.14 80.94 74.85 1.61 1.04 2.00
8 128 6.45 6.22 146.43 5.70 5.56 1.82 0.84 2.05
2 10 18.40 17.70 10.00 19.40 18.82 0.27 3.00 2.52

shipl2s 4 10 27.20 25.40 10.10 34.72 31.14 0.53 1.09 1.75
6 10 35.10 35.00 10.00 36.70 35.73 0.69 0.93 1..39
8 89 4.15 3.99 99.14 3.73 3.70 0.79 0.89 1.33
2 42 1.48 1.24 50.52 1.89 1.50 0.24 8.33 6.83

sierra 4 81 5.99 3.21 95.10 5.41 3.10 0.46 2.17 2.85
6 100 5.01 2.96 122.86 4.42 2.72 0.61 4..33 3.64
8 121 4.98 2.83 139.14 4.64 2.77 0.67 6.63 4.78
2 11 4.91 4.45 19.71 8.04 5.61 0.33 3.12 3.39

stocfor2 4 39 14.90 13.08 46.67 14.16 12.65 0.69 2.04 2.75
6 104 6.72 6.23 116.81 6.20 5.86 0.91 1.96 2.51
8 94 7.81 7.37 108.19 7.03 6.63 1.04 2.49 3.35
2 192 3.81 1.39 202.52 4.09 2.83 3.67 1.13 2.20

vvoodvv 1 432 2.49 2.43 465.81 2..33 2.28 6.70 0.21 0.41
6 388 2.81 2.79 449.33 2.43 2.42 7.59 0.16 0.31
8 447 2.44 2.44 491.14 2.23 2.22 7.74 0.26 0.44

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 97

Table A.6. Comparison of PaToh and Sanchis (SN) for RN model (cont.d)

Problem k M in Average Time
PaToH SN-1 SN-2 PaToH SN-1 SN-2 PaToH SN-1 SN-2

2 91 4.20 3.30 109.33 3.67 3.00 0.83 1.52 2.14
ere-a 4 124 3.90 3.48 142.62 3.52 3.13 1.38 2.57 2.03

6 142 3.84 3.15 159.48 3.82 2.92 1.73 3.38 2.24
8 145 4.50 3.17 165.57 4.32 2.86 1.88 4.30 3.11
2 75 4.99 3.87 103.81 3.93 3.20 0.79 1.67 2.15

cre-c 4 109 4.45 3.92 129.05 3.99 3.50 1.27 2.75 2.03
6 122 5.31 3.71 146.76 4.67 3.20 1.60 2.16 2.11
8 127 5.50 3.63 150.76 4.86 3.20 1.75 4.07 3.19
2 971 1.61 1.17 1238.14 1.89 1.86 21.57 40.94 56.95

cre-d 4 1204 4.78 4.56 1456.62 4.01 3.81 33.43 1.27 1.33
6 1514 3.92 3.70 1682.81 3.57 3.39 39.90 1.90 2.82
8 1511 4.04 3.88 1803.62 3.41 3.27 43.79 2.66 3.34
2 1021 1.09 1.03 1036.71 1.07 1.05 10.43 0.26 0.77

osa-07 4 1013 1.10 1.10 1033.19 1.08 1.08 14.35 0.12 0.13
6 1020 1.10 1.10 1039.52 1.08 1.08 16.78 0.12 0.14
8 998 1.12 1.12 1034.26 1.08 1.08 16.49 0.19 0.23
2 782 0.96 0.82 1073.10 1.20 1.05 5.49 5.61 4.07

C09 4 912 2.56 1.78 1493.48 1.74 1.29 9.55 8.31 6.85
6 1107 3.50 1.81 1601.05 2.50 1.38 11.74 5.47 7.52
8 1216 3.55 1.75 1634.33 2.79 1.47 12.36 7.47 11.16
2 668 1.52 1.34 988.19 1.24 1.10 4.99 5 .00 4.04

CQ9 4 848 2.49 1.91 1243.71 1.85 1.43 8.61 7.68 5.81
6 1005 3.47 1.88 1386.29 2.60 1.46 10.42 6.76 7.39
8 854 4.87 2.37 1454.81 2.91 1.57 10.96 7.61 10.73
2 208 6.26 5.69 236.52 6.17 5.53 T.93 7.84 7.72

GE 4 332 6.69 5.71 409.67 6.09 5.16 3.71 10.76 11.06
6 527 6.18 4.58 577.29 6.06 4.34 4.86 12.54 10.91
8 596 6.72 4.51 643.67 6.55 4.30 5.34 11.38 14.34
2 360 1.49 1.33 456.62 1.46 1.32 2.23 5.30 4.72

NL 4 467 3.10 1.96 607.29 2.57 1.67 3.75 8.33 7.26
6 633 3.94 1.65 703.38 3.66 1.60 4.64 9.07 6.69
8 644 4.65 1.63 749.05 4.22 1.57 4.96 9.80 9.34
2 354 7.62 5.44 393.00 9.27 7.62 8.24 13.16 9.39

mod'2 4 678 10.85 9.23 786.90 9.61 8.24 15.20 8.80 10.74
6 891 10.68 7.71 1067.19 9.08 6.59 19.86 9.79 11.70
8 1310 8.13 5.48 1461.76 7.45 4.99 21.67 11.83 15.12
2 370 7.30 6.58 407.05 8.43 7.65 8.47 13.73 9.68

world 4 707 9.56 8.61 797.05 8.96 7.87 15.62 12.68 12.95
6 927 8.67 7.05 1091.76 7.66 6.29 20.49 11.61 12.57
8 1316 7.21 5.33 1487.43 6.56 4.85 20.49 15.07 18.58

_________________L

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 98

Table A.7. General Comparison of PaToH and Sanchis on RN Model
All values have been normalized with respect to PaToH.

k Min Average Time
PaToH SNl SN2 PaToH SNl SN2 PaToH SNl SN2

2 1.00 5.38 4.26 1.00 5.78 4.94 1.00 6.36 6.19
4 1.00 8.00 6.24 1.00 8.27 6.62 1.00 4.41 4.35
6 1.00 9.65 7.90 1.00 9.08 7.48 1.00 3.80 4.29
8 1.00 5.12 3.53 1.00 4..57 3.18 1.00 4.23 5.59

Avg 1.00 7.04 5.48 1.00 6.92 5.55 1.00 4.70 5.10

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 99

Table A.8. Comparison of PaToH and Sanchis (SN) for CN model
SNi and SiN2 represent the Level 1 and Level 2 of Sanchis’ algorithm. Columns
ot PaToH display the actual results, and other columns have been normalized
with respect to PaToH.

Problem k Min Average Time
PaToH SN-1 SN-2 PaToH SN-1 SN-2 PaToH SN-1 SN-2

2 155 1.16 1.04 192.71 1.41 1.28 0.39 1.67 4.62
2.5fv47 4 310 1.87 1.52 341.05 2.08 1.82 0.73 2.03 7.49

6 338 2.73 2.05 367.00 2.87 2.38 0.92 1.41 52.57
8 475 2.23 1.79 520.19 2.24 1.80 1.06 1.43 138.56
2 195 2.11 2.46 217.14 3.75 3.77 1.06 1.35 1.48

80baii3b 4 612 1.98 1.72 704.67 2.02 1.93 2.15 1.31 2.01
6 853 1.77 1.76 984.57 1.85 1.67 2.86 1.50 2.53
8 1068 1.76 1.57 1179.14 1.76 1.56 3.04 2.26 4.06
2 108 2.53 2.06 130.38 3.17 3.08 0.78 1.51 1.94

bnl2 4 272 2.71 1.76 339.71 2.86 2.06 1.46 1.68 2.34
6 369 3.25 1.39 430.86 3.06 1.89 1.96 2.37 3.69
8 448 3.07 1.63 526.90 3.07 1.74 2.05 3.04 5.06
2 no 3.55 2.43 130.14 4.36 4.35 0.63 2.60 2.98

cycle 4 195 4.82 4.73 218.48 6.17 4.96 1.27 2.13 3.26
6 217 6.79 6.14 256.90 6.88 5.81 1.72 1.53 2.-52
8 239 6.92 5.74 316.67 6.02 5.10 1.92 1.46 2.89
2 339 2.63 2.59 418.33 2.85 2.76 1.10 1.76 1.93

d2q06c 4 662 2.54 2.76 712.81 3.02 2.64 2.09 2.01 2.57
6 753 3.34 2.65 848.90 3.10 2.63 2.79 1.65 3.21
8 875 3.01 2.70 937.57 2.97 2.67 3.05 1.79 3.62
2 40 2.17 1.65 55.19 4.18 2.73 0.24 2.33 2.96

gauges 4 103 4.72 4.64 125.95 4.17 4.17 0.50 1.74 2.44
6 124 4.25 4.36 170.10 3.38 3.42 0.67 2.01 2.90
8 196 2.98 2.98 223.62 2.75 2.74 0.73 2.36 4.27
2 279 2.63 2.11 337.43 2.88 3.26 1.45 1.68 2.47

greenbea 4 483 5.68 4.35 580.95 5.36 4.10 2.69 0.91 2.79
6 632 5.12 4.10 719.05 4.92 3.79 3.47 1.31 3.51
8 805 4.70 3.56 947.48 4.28 3.22 3.85 1.09 17.89
2 281 2.11 2.57 340.90 2.97 3.61 1.45 1.70 2.32

greenbeb 4 488 5.28 3.99 577.19 5.33 4.07 2.76 0.96 2.35
6 620 4.66 3.83 726.38 4.82 3.70 3.60 1.28 4.29
8 780 4.97 3.68 884.24 4.55 3.24 3.96 1.05 18.71
2 23 3.43 3.52 30.43 4.75 4.75 0.29 1.59 2.07

scfxm3 4 59 5.07 3.97 71.57 6.34 4.62 0.58 1.79 2.83
6 83 7.83 3.87 98.29 7.32 4.81 0.72 1.14 2.96
8 159 4.29 2.74 181.52 4.08 2.92 0.86 1.72 3.78
2 131 2.06 1.78 165.71 2.20 1.86 0.27 1.11 1.70

sctap2 4 279 2.14 1.95 294.76 2.30 2.09 0.55 1.27 1.69
6 363 2.24 1.75 398.10 2.21 1.79 0.70 1.77 2.34
8 446 2.07 1.56 463.76 2.19 1.68 0.77 2.22 3.34
2 186 1.54 1.53 205.86 2.13 2.01 0.40 1.25 1.70

sctap3 4 347 2.44 1.73 370.14 2.75 2.08 0.77 1.03 1.78
6 466 2.28 1.79 507.81 2.27 1.79 0.99 1.97 2.47
8 523 2.53 1.71 551.71 2.60 1.75 1.10 1.62 3.36

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 100

Table A.9. Comparison of PaToH and Sanchis (SN) for CN model (cont.d)

Problem k Min Average Time
PaToH SN-1 SN-2 PaToH SN-1 SNN2 PaToH SN-1 SN-2

2 59 1.29 1.03 67.67 3.22 3.29 0.51 0.84 1.37
ship 12s 4 117 2.09 2.13 154.38 3.08 3.08 1.04 0.80 1.48

6 127 2.22 2.25 205.76 2.67 2.68 1.41 0.96 1.55
8 232 1.60 1.29 268.86 2.25 2.12 1.59 1.15 2.22
2 58 1.07 1.03 68.90 1.87 1.81 0.37 1.27 1.70

sierra 4 188 1.48 1.22 201.76 2.48 1.60 0.75 1.71 2.84
6 254 2.47 1.53 288.86 3.27 1.82 0.99 2.16 2.98
8 290 3.75 1.52 340.71 3.61 1.99 1.07 2.52 3.93
2 13 8.08 8.31 29.24 7.96 4.76 0.35 2.57 2.91

stocfor2 4 39 14.69 9.08 65.33 9.97 6.56 0.68 3.94 3.87
6 91 8.98 5.48 106.62 8.46 5.88 0.91 2.25 4.89
8 90 9.96 7.17 118.90 7.98 6..34 1.00 2.87 6.04
2 610 1.18 1.12 658.10 1.25 1.24 1.06 1.65 2.62

cre-a 4 983 1.39 1.22 1043.10 1.44 1.25 2.03 1.48 4.33
6 1158 1.53 1.19 1192.24 1.57 1.23 2.53 1.88 10.23
8 1231 1.56 1.20 1268.95 1.62 1.25 2.87 3.00 28.42
2 542 1.25 1.16 596.71 1.23 1.22 0.90 1.41 2.69

cre-c 4 890 1.27 1.15 932.67 1.36 1.20 1.78 1.37 4.02
6 1012 1.34 1.15 1056.00 1.40 1.19 2.23 2.00 8.90
8 1087 1.43 1.16 1126.71 1.49 1.18 2.63 2.26 13.14
2 6828 0;78 1.04 7302.81 0.92 0.97 40.40 0.41 0.72

cre-d 4 22113 1.11 — 22923.29 1.27 — 57.92 0.58 —

6 28851 1.17 — .30265.47 1.20 69.64 0.77
8 33045 1.11 — 34141.43 1.18 — 70.93 1.02 —

2 1087 2.17 1.61 1432.76 2.34 1.88 5.71 2.64 2.76
C09 4 2247 2.27 2.17 2426.05 2.49 2.24 10.52 4.04 4..36

6 2712 2.61 2.10 2976.05 2.59 2.11 13.33 3.16 10.16
8 2870 2.82 — 3164.33 2.75 — 14.44 2.74 —

2 1064 2.22 2.14 1427.43 2.01 1.91 4.96 2.71 2.20
CQ9 4 2065 2.38 1.99 2191.33 2.54 2.15 9.33 3.22 3.45

6 2473 2.76 2.19 2665.52 2.56 2.14 11.53 3.73 12.84
8 2516 — — 2815.62 — — 12.58 — —

2 313 3.78 3.12 368.38 3.75 3.88 1.95 7.14 6.60
GE 4 588 4.99 4.15 663.38 4.61 4.00 3.79 11.08 8.72

6 791 4.60 3.56 900.95 4.23 3.44 5.05 10.46 19.06
8 1003 4.22 — 1076.67 4.08 — 5.50 11.77 —

2 1019 1.26 1.25 1127.71 1.48 1.43 2.43 2.96 3.14
NL 4 1657 1.71 1.43 1812.71 1.67 1.41 4.28 5.03 4.59

() 1857 1.84 1.43 2013.81 1.85 1.41 5.35 5.12 9.85
8 1969 2.05 — 2207.48 1.92 — 5.76 5.44 —

2 2011 2.16 2.28 2097.33 2.48 2.53 10.31 11.96 12.33
mod2 4 2990 3.22 2.65 3224.14 3.61 2.78 20.92 21.26 23.95

6 3391 5.19 3.23 3635.29 5.23 3.27 27.47 11.92 42.91
8 3926 5.32 — 4093.71 5.32 — 30.56 10.41 —

2 2389 1.40 2.06 2463.14 2.21 2.23 10.82 12.05 11.59
world 4 3645 2.45 2.27 3775.24 3.04 2.42 21.98 21.93 22.30

6 4094 5.14 2.87 4248.00 5.03 2.97 28.62 4.47 29.52
8 4583 4.63 — 4723.71 4.69 — 31.75 9.38

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 101

Table A. 10. Results of Column-Net with transfer model with PaToh
.Vlin , Ma.x and Avg fields denote the minimum, maximum , arid average number
of coupling rows in the block angular matrix after 20 runs. Columns 4 and o
display percentage of coupling of to the original matrix. Column 6 display the
difference between the average and minimum results. Time field display the
partitioning time in seconds.

Problem k Min Max Avg ^ * 1 0 0 ^ * 1 0 0 avg—mxn
min time

2 158 239 186.67 19.24 22.74 18.14 0.40
25fv47 4 321 434 387.52 39.10 47.20 20.72 0.78

6 379 473 422.14 46.16 51.42 11.38 1.00
8 589 685 629.57 71.74 76.68 6.89 1.15
2 200 233 215.52 8.84 9.53 7.76 1.06

80bau3b 4 606 928 746.52 26.79 33.00 23.19 2.16
6 855 1181 1038.10 37.80 45.89 21.41 2.86
8 1153 1309 1231.62 50.97 54.45 6.82 3.15
2 109 275 141.33 4.69 6.08 29.66 0.77

bnl2 4 271 396 333.05 11.66 14.33 22.90 1.50
6 385 499 432.81 16.57 18.62 12.42 2.00
8 598 728 643.76 25.73 27.70 7.65 2.12
2 115 173 130.76 6.04 6.87 13.71 0.65

cycle 4 178 273 227.95 9.35 11.98 28.06 1.33
6 217 362 260.57 11.40 13.69 20.08 1.75
8 239 348 307.14 12.56 16.14 28.51 1.99
2 744 1037 849.10 80.09 91.40 14.13 ^2.83

czprob 4 1619 1892 1715.29 174.27 184.64 5.95 4.87
6 1936 2208 2056.29 208.40 221.34 6.21 6.23
8 2182 2431 2272.52 234.88 244.62 4.15 6.47
2 326 497 409.52 15.02 18.86 25.62 1.12

d2q06c 4 601 801 711.57 27.68 32.78 18.40 2.22
6 798 991 895.00 36.76 41.23 12.16 2.89
8 927 1143 987.90 42.70 45.50 6.57 3.27
2 36 93 53.52 2.75 4.09 48.68 0.25

gauges 4 104 161 125.43 7.94 9.58 20.60 0.51
6 145 235 185.43 11.08 14.17 27.88 0.71
8 190 250 229.10 14.51 17.50 20.58 0.75
2 274 387 322.52 11.45 13.48 17.71 1.45

greenbea 4 531 763 624.52 22.20 26.11 17.61 2.77
6 699 973 803.33 29.22 33.58 14.93 3.67
8 901 1354 1042.52 37.67 43.58 15.71 4.06

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 102

Table A. 11. Results of Column-Net with transfer model with PaToh (cont.d)

Problem k Min Max Avg nuA ^ 100
n e t s _________ ^ * 100 avR — m i n

m.in. time
2 274 392 328.05 11.45 13.71 19.73 1.44

greenbeb 4 521 698 627.67 21.78 26.24 20.47 2.75
6 675 950 798.33 28.22 33.38 18.27 3.67
8 867 1224 1056.29 .36.25 44.16 21.83 4.10
2 24 47 31.33 2.42 3.16 30.56 0.28

scfxmS 4 59 107 78.67 5.96 7.95 33.33 0.59
6 84 131 100.19 8.48 10.12 19.27 0.72
8 167 219 189.81 16.87 19.17 13.66 0.88
2 131 195 166.19 12.02 15.25 26.86 0.27

sctap2 4 291 373 328.71 26.70 .30.16 12.96 0.54
6 382 444 411.81 35.05 37.78 7.80 0.73
8 478 568 512.48 43.85 47.02 7.21 0.80
2 185 227 203.00 12.50 13.72 9.73 0.39

sctap3 4 362 460 400.76 24.46 27.08 10.71 0.79
6 490 596 522.95 33.11 35.33 6.72 1.01
8 560 631 599.57 37.84 40.51 7.07 1.17
2 14 208 72.29 1.22 6.28 416.33 0.97

shipl21 4 19 346 96.33 1.65 8.37 407.02 1.89
6 21 664 251.38 1.82 21.84 1097.05 2.49
8 459 860 602.71 39.88 52..36 31.31 2.88
2 59 72 66.43 5.13 5.77 12.59 0.50

ship 12s 4 118 218 144.33 10.25 12..54 22.32 1.07
6 127 325 210.38 11.03 18.28 65.65 1.43
8 233 313 268.10 20.24 23.29 15.06 1.61
2 51 93 65.38 4.16 5.33 28.20 0.38

sierra 4 192 235 202.67 15.65 16.52 5.56 0.74
6 236 328 295.95 19.23 24.12 25.40 0.95
8 331 407 346.67 26.98 28.25 4.73 1.07
2 13 51 27.33 0.60 1.27 110.26 0.34

stocfor2 4 43 103 67.86 1.99 3.15 57.81 0.69
6 89 126 103.05 4.13 4.78 15.78 0.92
8 103 181 1.36.24 4.78 6.32 32.27 1.01
2 935 1305 1052.95 85.15 95.90 12.62 1.73

vvoodw 4 2493 3525 3248.05 227.05 295.81 30.29 3.28
6 3303 5980 4508.81 300.82 410.64 36.51 4.29
8 4676 6022 5261.52 425.87 479.19 12.52 4.59

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 103

Table A. 12. Results of Column-Net with transfer model with PaToh (cont’d)

Problem k Min Max Avg BiiR + 100
nits___________

^ * 1 0 0 av(] — min
m. i n time

2 587 716 644.62 16.70 18.33 9.82 1.05
ere-a 4 1033 1201 1107.90 29.38 31.51 7.25 2.02

6 1277 1379 1324.86 36.32 37.68 3.75 2.64
8 1404 1537 1463.24 39.93 41.62 4.22 2.93
2 548 647 591.29 17.86 19.27 7.90 0.88

cre-c 4 970 1065 1023.33 31.62 33.36 5.50 1.70
6 1160 1304 1222.86 37.81 39.86 5.42 2.26
8 1261 1408 1314.24 41.10 42.84 4.22 2.47
2 6620 7566 7262.53 74.17 81.36 9.71 41.93

cre-d 4 22899 24811 23856.40 256.54 267.27 4.18 59.42
6 30945 32966 31772.93 346.68 355.96 2.68 79.24
8 36857 39738 38417.93 412.92 430.40 4.24 76.79
2 10353 15764 13817.24 926.03 1235.89 33.46 26.69

osa-07 4 19630 29096 24215.95 1755.81 2166.01 23.36 41.15
6 23275 32177 28791.05 2081.84 2575.23 23.70 49.00
8 27933 39518 33724.33 2498.48 3016.49 20.73 49.80
2 1093 1781 1501.62 10.13 13.92 37.39 5.72

C09 4 2460 2921 2609.95 22.80 24.19 6.10 11.10
6 2959 3496 3173.81 27.43 29.42 7.26 14.27
8 3197 3843 3540.62 29.63 32.82 10.75 15.70
2 1025 1549 1322.37 11.05 14.25 29.01 4.79

CQ9 4 2037 2496 2250.21 21.96 24.25 10.17 9.09
6 2448 3085 2619.32 26.38 28.23 7.00 12.20
8 2625 3349 2921.26 28.29 31.49 11.29 12.73
2 318 456 372.33 3.15 3.69 17.09 1.96

GE 4 556 783 650.29 5.51 6.44 16.96 3.82
6 816 1008 922.48 8.08 9.13 13.05 5.12
8 1035 1230 1117.81 10.25 11.07 8.00 5.51
2 1023 1267 1110.05 14.53 15.77 8.51 2.45

NL 4 1798 2141 1984.29 25.54 28.19 10.36 4.63
6 2180 2662 2362.00 30.97 33.56 8.35 6.06
8 2410 2838. 2613.38 34.24 37.13 8.44 6.50
2 2014 2256 2086.67 5.79 6.00 3.61 10.33

mod2 4 3266 3440 3348.57 9.39 9.63 2.53 19.59
6 3756 4091 3877.67 10.80 11.15 3.24 25.73
8 4385 4893 4548.05 12.61 13.08 3.72 27.87
2 2357 2551 2440.19 6.83 7.07 3.53 10.77

world 4 3733 4060 3912.43 10.82 11.34 4.81 20.34
6 4361 4681 4508.24 12.64 13.07 3.38 27.12
8 5197 5394 5293.19 15.06 15.34 1.85 29.22

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 104

Table A. 13. Comparisons of Greedy Heuristics for RIG
.\II. MR, OM and MF denote the ma.ximurn inclusion, minimum removal , one-
ma.x and maximum flow solutions. Minimum and Average are minimum and
average number of coupling rows after 20 runs for 8-way partitions. All values
liave been normalized with respect to OM. Fume shows the run time of maximum
flow soltuion in seconds.

Problem Minimum Average F time
OM MI MR MF OM MI MR MF

25fv47 1.000 1.011 1.022 1.017 1.000 1.015 1.026 1.024 11.81
80bau3b 1.000 1.045 1.018 1.050 1.000 1.037 1.016 1.038 59.05
bnl2 1.000 1.034 1.005 1.007 1.000 1.036 0.997 0.999 10.17
cycle 1.000 1.000 1.000 1.000 1.000 1.002 0.999 1.001 2.05
czprob 1.000 1.000 1.000 3.103 1.000 1.000 1.000 3.508 141.53
d2q06c 1.000 1.000 0.997 1.007 1.000 1.006 1.001 1.015 37.49
ganges 1.000 1.000 1.000 1.000 1.000 1.004 1.000 1.001 1.68
greenbea 1.000 1.008 1.004 1.000 1.000 1.038 1.011 1.021 24.40
greenbeb 1.000 1.017 1.000 1.009 1.000 1.044 1.005 1.013 24.25
scfxm3 1.000 1.039 1.000 1.000 1.000 1.038 1.011 1.014 1.14
sctap2 1.000 1.006 1.023 1.000 1.000 1.006 1.031 1.001 7.15
sctap3 1.000 1.000 1.018 0.991 1.000 1.005 1.018 0.994 9.95
ship 121 l.OOO l.OOO 1.013 1.063 1.000 1.000 1.014 1.058 3.40
ship12s 1.000 1.000 1.014 1.081 1.000 1.001 1.007 1.290 4.97
sierra 1.000 1.000 1.014 1.029 1.000 1.012 0.999 1.021 3.79
woodw 1.000 1.008 1.004 1.078 1.000 1.010 1.013 1.076 1059.82
ere-a 1.000 1.014 1.014 — 1.000 1.009 1.002 — —

cre-c 1.000 1.004 1.000 — 1.000 1.007 1.001 — —

cre-d 1.000 1.028 1.030 — 1.000 1.026 1.021 — —

osa-07 1.000 1.000 1.000 — 1.000 1.000 1.009 — —

COO 1.000 1.015 1.006 — 1.000 1.018 1.008 — —

CQ9 1.000 1.024 1.020 — 1.000 1.020 1.020 — —

GE l.OOO 1.012 1.000 — 1.000 1.009 1.000 — —

.NL 1.000 1.017 1.008 — 1.000 1.020 1.009 — —

inod2 1.000 1.048 1.000 — 1.000 1.048 1.003 — —

world 1.000 1.065 0.989 — 1.000 1.040 0.999 — —

Avg 1.000 1.011 1.008 1.152 1.000 1.023 1.010 1.187

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 105

Table A. 14. Comparison of Greedy heuristics with Optimal solutions

M represent the optimal solution with matching, MI, MR, and OM represent
the maximum inclusion, minimum recover, and One-Max heuristics, respectively.
Minimum and Average columns represent the minimum and average seperator
sizes for different methods when they start from the same wide separator. Imp%
is the average of { (Min{MI, M R , O M) - Match) 11X1)1 Match values for 20
runs.

Problem Minimum Average Imp%
M MI MR OM M MI MR OM

25fv47 1.00 1.00 1.01 1.00 1.00 1.01 1.01 1.00 0.10
80bau3b 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 0.00
bnl2 1.00 1.08 1.00 1.00 1.00 1.09 1.00 1.00 0.12
cycle 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
czprob 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 0.00
d2q06c 1.00 1.02 1.00 1.01 1.00 1.02 1.00 1.00 0.03
ganges 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
greenbea 1.00 1.02 1.00 1.00 1.00 1.01 1.00 1.00 0.04
greenbeb 1.00 1.02 1.01 1.00 1.00 1.02 1.00 1.00 0.00
scfxm3 1.00 1.00 1.00 1.00 1.00 1.02 1.00 1.00 0.00
sctap2 1.00 1.07 1.07 1.01 1.00 1.02 1.03 1.00 0.48
sctap3 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 0.31
sliipl21 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 0.00
ship 12s 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
sierra 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
stocfor2 1.00 1.06 1.00 1.00 1.00 1.05 1.00 1.00 0.00
woodw 1.00 1.00 1.16 1.00 1.00 1.01 1.14 1.00 0.32
cre-a 1.00 1.00 1.01 1.00 1.00 1.01 1.00 1.00 0.00
cre-c 1.00 1.00 ■ 1.00 1.00 1.00 1.01 1.00 1.00 0.00
cre-d 1.00 1.01 1.01 1.00 1.00 1.03 1.02 1.01 0.58
osa-07 1.00 1.00 1.07 1.00 1.00 1.00 1.15 1.00 0.00
C09 1.00 1.02 1.00 1.00 1.00 1.03 1.01 1.00 0.17
CQ9 1.00 1.03 1.00 1.01 1.00 1.02 1.03 1.00 0.22
GE 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 0.00
NL 1.00 1.01 1.00 1.01 1.00 1.02 1.01 1.00 0.18
mocl2 1.00 1.03 1.00 1.00 1.00 1.04 1.01 1.01 0.46
world 1.00 1.01 1.01 1.00 1.00 1.04 1.01 1.00 0.20
Avg 1.00 1.01 l.Ol 1.00 1.00 1.02 1.02 1.00 0.12

,-\ PPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 106

Table A. 15. Comparison of Wide Separators for different methods

RIG represents finding wide separator by minimizing the edges on the cut. W l-
W6 are vveightening schems explained in Section 6.6.2. Hy is the hypergraph
model of Leiserson. RIG column present the actual value of average wide sepa­
rator sizes after 20 runs. Other columns have been normalized with respect to
this one.

Problem RIG W1 W2 W3 W4 W5 W6 Hy
25fv47 623.43 0.993 1.003 0.996 1.000 1.009 1.009 0.958
80bau3b 1067.71 0.901 0.955 0.949 0.934 0.932 0.962 0.757
bnl2 1186.52 0.956 0.973 0.970 0.952 0.952 0.966 0.855
cycle 407.71 0.995 0.994 1.034 1.073 1.111 1.020 1..331
czprob 798.19 1.002 0.996 1.002 0.996 1.012 1.004 0.818
d2q06c 1033.76 1.038 1.011 1.056 1.030 1.044 1.036 0.945
gauges 416..38 0.994 0.979 1.003 1.000 0.911 0.923 0.767
greenbea 1079.10 1.017 1.016 1.034 1.026 1.044 1.019 0.866
greenbeb 1060.14 1.030 1.038 1.032 1.047 1.074 1.032 0.872
scfxmd 279.00 1.017 1.012 1.051 1.072 1.035 1.033 0.933
sctap2 623.29 0.999 1.001 1.004 1.003 1.013 0.998 0.967
sctap3 7.54.86 1.019 0.997 1.014 1.026 1.029 1.044 0.974
ship041 288.00 0.968 0.979 1.043 1.065 1.099 1.096 0.779
ship04s 229.43 0.995 1.087 1.151 1.188 1.134 1.090 0.960
shipOSl 164.71 0.947 0.943 0.956 0.949 0.875 0.936 0.642
shipOSs 251.10 0.9.59 0.912 0.899 0.906 0.999 0.918 0.291
shipl21 268.00 1.008 1.030 0.998 0.971 0.988 0.988 0.910
ship12s 476.48 0.994 1.031 1.051 1.006 1.056 0.997 0.401
sierra 424.67 1.012 1.019 1.0.34 1.026 1.013 1.005 0.990
stocfor2 373.71 0.976 1.009 0.957 1.008 0.979 1.018 0.694
woodw 1069..52 0.984 0.971 0.962 0.965 0.980 0.990 0.883
ere-a 3001.67 1.003 1.013 1.013 1.013 1.016 1.019 0.847
cre-c 2647.24 0.994 1.002 1.000 0.998 1.000 0.997 0.852
cre-d 5983.48 0.995 0.989 0.995 0.995 0.992 1.000 0.858
osa-07 1118.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(’09 .5695.81 0.981 0.981 1.021 1.060 1.071 1.067 0.798
CQ9 4662.14 0.952 0.949 0.965 1.029 1.112 1.042 0.817
GE 1881.05 0.983 0.992 0.985 0.994 0.969 1.012 0.863
NL 4735.05 0.9.38 0.891 0.882 0.881 0.894 0.884 0.733
motl2 11317.81 0.987 1.002 1.008 1.013 1.022 0.999 0.884
world 11686.71 1.000 1.010 1.013 1.017 1.035 1.013 0.892

Avg 1.000 0.991 0.995 1.001 1.005 1.011 1.003 0.869

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 107

Table A. 16. Comparison of Edge Cuts for different methods

RIG represents finding wide separator by minimizing the edges on; the cut. VVl -
W6 are vveightening schems explained in Section 6.6.2. Hy is the hypergraph
model of Leiserson. RIG column present the actual value of average number of
edges on cut sizes after 20 runs. Other columns have been normalized with re­
spect to this one.

Problem RIG W1 W2 W3 W4 W5 W6 Hy
25fv47 2179.19 1.025 1.032 1.029 1.052 1.057 1.037 1.846
80bau.3b 1440.62 1.089 1.046 1.018 1.060 1.051 1.006 1.669
bnl2 1665.24 1.027 1.022 1.012 1.014 1.027 0.994 2.241
cycle 461.86 0.997 1.093 1.236 1.390 1.551 1.222 6.704
czprob 4098.67 1.002 1.000 1.001 1.004 1.005 1.003 1.338
d2ci06c 1798.67 1.082 1.069 1.184 1.166 1.218 1.127 2.353
ganges 288.05 1.024 1.073 1.388 1.587 1.992 1.716 2.716
greenbea 4053.00 1.042 1.050 1.106 1.117 1.172 1.112 1.753
greenbeb 4017.76 1.048 1.087 1.105 1.133 1.176 1.112 1.708
scfxm3 .379.71 1.136 1.209 1.278 1.339 1.266 1.168 1.999
sctap2 1181.67 0.993 0.995 1.000 1.004 1.012 0.992 1.411
sctap3 1391.33 1.027 1.002 1.038 1.038 1.045 1.064 1.470
ship 121 812.19 1.008 1.111 1.118 1.068 1.104 1.125 2.456
ship 12s 918.48 1.000 1.027 1.051 1.009 1.069 0.995 1.119
sierra .542.71 1.019 1.060 1.036 1.039 1.034 1.004 1.509
stocfor2 379.38 1.004 1.058 1.008 1.041 1.000 1.063 2.293
woodw 8793.76 1.006 1.008 1.018 1.024 1.027 1.029 1.293
ere-a 6472.10 1.026 1.045 1.054 1.063 1.074 1.060 1.635
cre-c 6287.43 1.029 1.038 1.039 1.045 1.051 1.035 1.573
cre-d 67476.48 0.992 0.979 0.984 0.998 0.994 1.026 1.583
OS a-07 42845.90 1.000 1.000 1.000 1.008 1.008 1.008 0.979
C09 1.5078.52 1.003 1.078 1.298 1.439 1.573 1.485 1.5.33
CQ9 146.55.71 1.012 1.140 1.2.33 1.366 1.611 1.420 1.442
GE 1745.62 1.017 1.015 1.008 1.018 1.015 1.0.33 1.312
NL 8701.81 1.094 1.436 1.633 1.847 2.099 1.813 1.926
inod2 19607.48 0.998 1.042 1.075 1.090 1.112 1.060 1.951
world 20671.19 1.025 1.037 1.071 1.088 1.144 1.064 1.854

Avg 1.000 1.027 1.065 1.112 1.150 1.203 1.140 1.914

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 1 0 8

Table A. 17. Comparison of Minimum Separator Sizes for different methods

RIC represents finding wide separator by min'imizing the edges on the cut. VVT-
VV6 are weightening schemes explained in Section 6.6.2. Hy is the hypergraph
model of Leiserson. RIG column present the actual average value of minimum
number of coupling rows after 20 runs. Other columns have been normalized
with respect to this one.

Problem RIG W1 W2 W3 VV4 W5 W6 Hy
25fv47 181 0.994 0.923 0.956 0.945 0.906 0.923 1.309
80bau3b 337 0.843 0.908 0.935 0.887 0.944 0.979 0.653
bnl2 408 1.002 1.027 1.029 0.973 0.961 1.042 1.083
cycle 96 1.010 1.021 1.042 1.021 1.042 1.031 1.062
czprob 29 1.000 1.000 1.000 1.000 1.000 1.000 0.931
d2q06c 296 1.007 0.976 1.003 0.997 0.990 1.010 1.135
ganges 150 1.020 0.913 0.947 0.900 0.853 0.827 0.767
greenbea 237 0.966 0.983 1.013 0.958 0.975 1.000 1.063
greenbeb 232 0.927 0.987 1.009 1.009 1.026 0.996 1.073
scfxm3 77 0.948 0.961 0.935 0.974 0.935 0.870 0.974
sctap2 177 0.977 0.994 1.006 0.989 0.994 0.994 1.418
sctap3 217 0.903 0.945 0.917 0.912 0.871 0.963 1.336
ship 121 79 0.924 0.962 0.949 0.975 0.987 0.975 0.886
shipl2s 74 0.986 0.932 0.932 0.905 0.946 0.851 0.689
sierra 139 1.079 1.050 1.029 1.000 0.964 1.000 1.266
stocfor2 104 1.115 1.106 1.048 1.144 1.154 0.933 1.038
wooclw 245 0.959 0.686 0.784 0.751 0.653 0.629 1.196
ere-a 214 0.799 0.724 0.673 0.654 0.659 0.692 2.126
cre-c 238 0.761 0.634 0.576 0.492 0.534 0.546 2.008
cre-d 1293 0.964 0.927 0.863 0.802 0.864 0.776 1.295
osa-07 80 1.013 1.000 1.000 1.000 1.000 1.000 0.962
C09 2360 0.856 0.736 0.690 0.639 0.578 0.592 0.770
CQ9 1857 0.865 0.755 0.699 0.651 0.571 0.622 0.828
GE 563 0.950 0.968 0.977 0.989 0.918 0.966 0.897
NL 1914 0.706 0.546 0.479 0.413 0.331 0.451 0.624
mocl2 1314 0.888 0.799 0.801 0.785 0.783 0.783 2.002
world 1297 0.951 0.854 0.862 0.837 0.828 0.892 2.147
Avg 1.000 0.941 0.901 0.895 0.874 0.862 0.865 1.168

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 109

Table A .18. Comparison of Average Separator Sizes for different methods

RIC repre.sents finding wicje separator by minimizing the edges on the cut. VVl-
VV6 are weightening schems explained in Section 6.6.2. Hy is the hypergraph
model of Leiserson. RIG column present the actual value of average number of
coupling rows after 20 runs. Other columns have been normalized with respect
to this one.

Problem RIG W1 W2 W3 VV4 W5 W6 Hy
25fv47 188.52 1.023 1.000 0.984 0.994 1.002 0.987 1.399
80bau3b 357.90 0.856 0.950 0.973 0.946 0.956 0.985 0.722
bnl2 456.00 0.962 0.968 0.974 0.952 0.932 0.981 1.067
cycle 109.90 1.011 0.992 1.049 1.131 1.162 1.053 1.537
czprob 31.67 0.985 0.946 0.926 0.923 0.917 0.928 0.928
d2q06c 310.76 1.007 1.010 1.033 1.028 1.035 1.017 1.234
gauges 174.62 1.003 0.976 0.996 1.016 0.899 0.918 0.756
greenbea 263.05 1.016 1.011 1.035 1.015 1.051 1.000 1.135
greenbeb 254.24 1.026 1.048 1.033 1.062 1.100 1.059 1.147
scfxm3 83.90 0.982 0.974 0.965 1.014 0.934 0.975 1.144
sctap2 187.38 0.976 0.982 0.986 0.988 0.980 0.980 1.446
sctap3 225.57 0.940 0.980 0.948 0.934 0.920 0.963 1.441
ship 121 86.90 0.988 0.999 1.007 0.965 1.012 0.994 0.958
ship 12s 85.05 0.974 1.010 1.025 0.978 1.016 0.969 0.900
sierra 157.90 1.018 1.026 1.013 1.011 0.921 0.994 1.239
stocfor2 138.52 0.958 0.978 0.941 0.981 0.969 0.994 0.937
woodw 292.29 0.957 0.744 0.741 0.700 0.675 0.677 1.148
ere-a 251.38 0.779 0.696 0.654 0.647 0.615 0.649 2.055
cre-c 284.67 0.727 0.601 0.578 0.542 0.525 0.564 1.830
cre-d 1442.71 0.942 0.908 0.852 0.834 0.861 0.787 1.285
osa-07 80.90 1.001 0.994 0.993 0.992 0.994 0.989 0.975
(’09 2430.19 0.893 0.798 0.726 0.676 0.615 0.654 0.840
CQ9 2041.67 0.846 0.717 0.667 0.637 0.570 0.619 0.830
GE 610.90 0.982 0.987 0.976 0.977 0.943 0.988 0.928
NL 2046.62 0.821 0.644 0.557 0.487 0.396 0.514 0.704
mocl2 1517.71 0.863 0.837 0.823 0.823 0.790 0.805 2.124
world 1598.10 0.878 0.834 0.788 0.770 0.758 0.798 2.010
Avg 1.000 0.941 0.911 0.898 0.890 0.872 0.883 1.212

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 110

Table A. 19. Comparison of run times for different methods

RIG represents finding wide separator by minimizing the edges on the cut. Wl·-
VV6 are weightening schems explained in Section 6.6.2. Hy is the hypergraph
model of Leiserson. RIG column present the actual value (in seconds) of average
run-time after 20 runs . Other columns have been normalized with respect to
this one.

Problem RIG VVl W2 W3 W4 W5 W6 Hy
25fv47 0.51 0.94 0.94 0.96 0.96 0.94 0.96 2.67
80bau3b 0.87 0.94 0.95 0.94 0.94 0.94 0.94 2.38
bnl2 0.89 0.98 0.96 0.94 0.94 0.94 0.94 2.84
cycle 1.10 0.96 0.95 0.95 0.95 0.95 0.95 3.77
czprob 0.42 1.00 0.98 0.98 0.98 0.98 0.98 3.52
d2q06c 1.23 0.96 0.96 0.95 0.95 0.95 0.95 3.00
ganges 0.44 0.93 0.93 0.95 0.95 0.93 0.93 2.70
greenbea 1.81 0.94 0.91 0.92 0.91 0.90 0.91 2.63
greenbeb 1.78 0.94 0.94 0.93 0.92 0.92 0.92 2.69
scfxm3 0.41 0.95 0.95 0.98 0.95 0.95 0.93 3.56
sctap2 0.36 0.97 0.97 0.94 0.94 0.92 0.94 2.83
sctap3 0.48 0.96 0.94 0.94 0.94 0.92 0.92 2.90
shipl21 0.56 0.95 0.95 0.96 0.95 0.96 0.93 3.05
.sliipl2s 0.34 1.00 0.97 0.97 0.97 0.97 0.97 3.50
sierra 0.37 0.95 0.95 0.92 0.92 0.89 0.92 2.68
stocfor2 0.72 0.96 0.94 0.94 0.94 0.92 0.94 3.18
woodw 0.98 0.95 0.92 0.89 0.88 0.88 0.88 2.45
ere-a 1.28 0.99 1.00 0.99 0.98 0.99 0.98 3.26
cre-c 1.14 1.01 0.98 0.96 0.94 0.95 0.96 3.11
cre-d 6.70 0.98 0.99 0.99 0.98 1.00 1.00 4.76
osa-07 4.13 0.99 0.99 1.00 0.97 0.98 0.96 2.80
C09 4.45 1.00 1.02 1.04 1.05 1.06 1.05 6.31
CQ9 4.07 1.02 1.04 1.06 1.07 1.07 1.07 5.77
GE 1.92 1.00 1.00 1.01 0.99 1.01 1.00 5.02
NL 2.67 1.04 1.09 1.14 1.16 1.21 1.15 3.75
mod2 9.64 1.01 1.02 1.02 1.04 1.04 1.04 7.11
world 9.50 1.02 1.05 1.05 1.05 1.05 1.03 7.22
Avg 1.000 0.976 0.974 0.975 0.935 0.897 0.932 3.684

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 111

Table A.20. Comparison of separators with weighted and unweighted models
UVV and W stand for the unweighted and weighted models for finding wide sep­
arators. One-Ma.x heuristic has been used for finding the narrow separator. Min
and .'\vg are minimum and average separator sizes after 20 runs. Time is the
a\ erage time of 20 runs in seconds. Columns of UVV present the actual values,
and columsn of W have been normalized with respect to W.

Problem k Min Avg Time
UW W UVV W UW W

2 80 0.95 87.55 0.97 0.29 1.07
25fv47 4 112 1.00 127.83 1.00 0.39 1.03

6 141 1.04 155.50 1.00 0.45 1.00
8 181 0.91 188.80 1.00 0.51 0.94
2 74 0.95 85.00 0.96 0.41 1.05

80bau3b 4 199 0.94 218.35 0.95 0.63 0.98
6 291 0.90 326.40 0.88 0.79 0.95
8 337 0.94 357.80 0.95 0.87 0.94
2 104 1.05 116.45 1.13 0.48 0.98

bnl2 4 273 0.95 289.62 0.98 0.68 0.97
6.. 359 0.91 387.86 0.95 0.82 0.94
8 408 0.96 456.65 0.93 0.89 0.94
2 37 1.05 46.10 1.05 0.70 0.99

cycle 4 49 1.31 65.15 1.27 0.89 0.98
6 76 0.91 86.35 1.08 1.02 0.98
8 96 1.04 109.40 1.16 1.10 0.95
2 27 1.00 28.80 1.00 0.23 0.96

czprob 4 29 0.93 30.15 0.96 0.31 1.00
6 29 0.97 31.35 0.93 0.39 1.00
8 29 1.00 31.60 0.92 0.42 0.98
2 119 1.05 151.65 1.04 0.76 0.99

d2q06c 4 198 1.13 233.20 1.05 0.97 0.99
6 256 1.05 285.60 1.04 1.13 0.98
8 296 0.99 311.40 1.03 1.23 0.95
2 25 0.96 40.70 0.98 0.23 1.00

ganges 4 89 0.76 106.80 0.93 0.32 1.00
6 121 0.88 147.45 0.99 0.38 1.00
8 150 0.85 175.20 0.90 0.44 0.93
2 82 1.02 100.85 1.10 1.05 0.99

greenbea 4 135 0.93 175.65 0.94 1.41 0.95
6 182 1.01 206.75 1.07 1.63 0.95
8 237 0.97 262.00 1.06 1.81 0.90

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 112

I'able A.21. Comparison of separators with weighted and unweighted models
(cont.d)

Problem k Min Avg Time
UW VV UW W UW W

2 80 1.09 98.70 1.19 1.06 0.97
greenbeb 4 136 1.01 159.15 1.15 1.41 0.94

6 175 1.02 208.05 1.01 1.62 0.99
8 232 1.03 254.20 1.10 1.78 0.92
2 12 1.00 16.85 1.06 0.24 0.96

scfxm3 4 28 0.96 36.05 1.01 0.32 0.97
6 49 0.98 57.75 0.96 0.37 1.00
8 77 0.94 84.00 0.93 0.41 0.95
2 68 1.00 71.35 1.03 0.18 1.00

sctap2 4 120 1.04 129.40 1.01 0.27 0.96
6 152 0.98 163.15 1.01 0.33 1.00
8 177 0.99 187.75 0.98 0.36 0.92
2 78 0.83 86.05 0.94 0.24 1.00

sctap3 4 152 0.91 161.15 0.94 0.35 1.00
6 184 0.90 201.30 0.91 0.44 0.98
8 217 0.87 225.45 0.92 0.48 0.92
2 25 0.96 39.10 0.72 0..32 0.97

shipl21 4 51 0.96 65.00 0.89 0.43 1.00
6 66 0.95 82.40 0.96 0.52 0.98
8 79 0.99 87.05 1.01 0.56 0.96
2 47 0.94 56.10 0.95 0.19 1.00

shipl2s 4 59 0.95 72..30 1.01 0.26 1.00
6 64 1.02 78.25 1.00 0.32 0.97
8 74 0.95 85.30 1.01 0.34 0.97
2 49 1.02 52.85 0.97 0.18 0.94

sierra 4 104 0.95 111.85 0.97 0.27 0.93
6 121 0.98 138.05 0.97 0.33 0.94
8 139 0.96 157.65 0.92 0.37 0.89
2 15 1.00 20.40 1.11 0.41 0.95

stocfor2 4 45 0.98 67.30 0.94 0.54 0.98
6 95 0.99 122.15 1.06 0.65 0.95
8 104 1.15 137.35 0.97 0.72 0.92
2 134 0.42 142.00 0.59 0.57 1.00

woodw 4 225 0.30 275.15 0.41 0.76 0.97
6 224 0.69 287.90 0.60 0.88 0.94
8 245 0.65 292.15 0.68 0.98 0.88

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 113

Table A.22. Comparison of separators with weighted and unweighted models
(cont.d)

Problem k Min Avg Time
u w W UVV W UW W

2 105 0.76 139.50 0.72 0.81 1.00
ere-a 4 167 0.67 207.55 0.64 1.05 0.98

6 216 0.61 2.55.90 0.59 1.24 0.98
8 214 0.66 249.70 0.62 1.28 0.99
2 167 0.42 207.95 0.46 0.68 0.97

cre-c 4 209 0.49 263.20 0.46 0.92 0.97
6 254 0.49 287.50 0.51 1.10 0.94
8 238 0.53 287.00 0.52 1.14 0.95
2 852 0.77 963.68 0.84 5.50 1.00

cre-d 4 1180 0.77 1325.62 0.81 6.37 0.96
6 1362 0.74 1.504.33 0.81 6.63 1.01
8 1293 0.86 14.38..55 0.86 6.70 1.00
2 73 1.00 75.40 0.99 2.33 1.01

osa-07 4 80 1.00 80.00 1.00 3.35 1.01
6 82 0.99 82.00 1.00 3.26 0.98
8 80 1.00 80.90 0.99 4.13 0.98
2 1098 0.66 1281.60 0.67 3.65 1.06

C09 4 1933 0.57 20.52.10 0.61 4.02 1.07
6 2201 0.59 2338.05 0.60 4.32 1.06
8 2360 0.58 2427.95 0.62 4.45 1.06
2 1115 0.53 1271..50 0.55 3.25 1.09

CQ9 4 1684 0.45 1783.10 0..54 3.67 1.09
6 1870 0.53 2001.10 0.56 3.95 1.08
8 1857 0.57 2040.95 0.57 4.07 1.07
2 206 0.93 242.55 1.04 1.54 0.99

GE 4 356 0.93 408.70 0.96 1.73 0.99
6 470 1.01 5.32.10 1.02 1.88 0.97
8 563 0.92 610..55 0.94 1.92 1.01
2 1055 0.32 1103..35 0.43 1.93 1.24

NL 4 1448 0.38 1667.80 0.39 2.31 1.22
6 1504 0.41 1892.10 0.41 2..58 1.18
8 1914 0.33 2045.00 0.39 2.67 1.21
2 338 0.98 .522.85 0.86 8.54 1.02

mod 2 4 572 0.98 892.20 0.77 9.05 1.04
6 976 0.65 1187..55 0.72 9.39 1.03
8 1314 0.78 1525.95 0.79 9.64 1.04
2 430 0.82 .588.15 0.82 8.40 1.02

world 4 643 0.96 1003.80 0.73 8.89 1.04
6 1107 0.64 1229.85 0.69 9.29 1.02
8 1297 0.83 1600.55 0.76 9.50 1.05

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 114

Table A.23. General Comparison of separators with weighted and unweighted
models
All entries have been normalized with respect to UW.

k Min Avg Time
UW w UW w UW w

2 1.00 0.87 1.00 0.90 1.00 1.01
4 1.00 0.86 1.00 0.86 1.00 1.00
6 LOO 0.85 1.00 0.86 1.00 0.99
8 1.00 0.86 1.00 0.87 1.00 0.97

Avg. 1.00 0.86 1.00 0.87 1.00 0.99

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 115

Table A.24. Comparison of different models

Minimum and Average fields show the minimum and average number of coupling
rows after 20 runs. Time shows the average running time in seconds. Entries in
the columns of RIG are the actual values, and other values have been normalized
with respect to RIG.

Problem k Minimum Average Time
RIG BG RN RIG BG RN RIG BG RN

2 76 1.21 1.09 84.90 1.45 1.06 0.31 1.35 1.19
25fv47 4 112 1.36 1.04 128.07 1.49 1.09 0.40 1.62 1.68

6 147 1.45 1.05 155.45 1.57 1.16 0.45 1.76 1.87
8 164 1.69 1.15 189.25 1.61 1.17 0.48 1.81 1.96
2 70 1.91 1.06 81.53 2.99 1.12 0.43 3.30 2.77

S0bau3b 4 187 2.34 1.34 207.05 2.59 1.52 0.62 3.63 3.74
6 261 2.16 1.31 285.95 2.26 1.36 0.75 3.65 4.04
8 318 2.20 1.24 341.65 2.15 1.25 0.82 3.61 4.10
2 109 1.02 1.11 132.03 1.02 1.09 0.47 1.81 1.28

bnI2 4 258 1.07 1.08 282.55 1.10 1.13 0.66 1.68 1.79
6 325 1.12 1.08 368.60 1.13 1.07 0.77 1.68 1.97
8 392 1.30 1.05 425.10 1.28 1.12 0.84 1.65 2.01
2 39 1.49 0.87 48.55 1.44 0.97 0.69 1.09 0.91

cycle 4 64 1.72 1.47 83.00 1.83 1.64 0.87 1.06 1.43
6 69 2.04 0.81 93.50 1.67 0.84 1.00 1.01 1.60
8 100 2.24 1.93 127.00 2.04 1.78 1.05 1.05 1.73
2 27 10.56 6.52 28.70 11.85 7.73 0.22 4.27 3.64

czprob 4 27 12.96 5.96 29.00 14.98 7.79 0.31 3.77 4.29
6 28 12.00 5.43 29.20 14.00 7.90 0.39 3.36 4.31
8 29 13.90 4.59 29.05 16.18 7.57 0.41 3.44 4.07
2 125 1.30 1.18 157.55 1.45 1.17 0.75 1.91 1.43

cl2ci06c 4 223 1.39 1.13 245.80 1.43 1.15 0.96 1.70 2.32
6 268 1.38 1.03 296.80 1.40 1.11 1.11 1.58 2.59
8 293 1.45 1.08 321.75 1.45 1.15 1.17 1.58 2.83
2 24 1.12 1.17 39.75 0.91 0.95 0.23 1.30 1.22

ganges 4 68 1.35 0.97 99.75 1.17 0.83 0.32 1.31 1.81
6 107 1.25 0.79 146.00 1.09 0.73 0.38 1..34 1.95
8 128 1.23 0.87 157.65 1.15 0.84 0.41 1.34 2.07
2 84 1.12 1.08 111.00 1.18 0.98 1.04 1.52 1.09

greenbea 4 125 1.37 1.16 165.20 1.29 1.11 1.34 1.43 1.63
6 183 1.16 1.05 220.40 1.37 1.12 1.55 1.34 1.87
8 231 1.34 0.92 278.05 1.29 1.00 1.63 1.34 1.98

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 116

Table A.25. Comparison of different models (cont.d)

Problem k Minimum Average Time
RIG BG RN RIG BG RN RIG BG RN

2 87 1.05 0.94 117.10 1.03 0.91 1.03 1.50 1.12
greenbeb 4 138 1.21 1.07 182.25 1.16 1.07 1.33 1.40 1.68

6 178 1.19 0.98 210.05 1.33 1.11 1.61 1.28 1.86
8 238 1.35 0.99 278.85 1.32 0.99 1.63 1.33 2.00
2 12 0.92 0.83 17.90 0.84 0.74 0.23 1.39 1.04

scfxmS 4 27 1.04 0.85 36.55 0.98 0.92 0.31 1.52 1.58
6 48 0.83 0.88 55.70 0.83 0.92 0.37 1.51 1.78
8 72 1.21 1.06 78.30 1.30 1.08 0.39 1.64 1.90
2 68 1.15 0.60 73.80 1.18 0.63 0.18 1.72 1.28

sctap2 4 125 1.18 0.81 130.60 1.22 0.81 0.26 1.73 1.77
6 149 1.21 0.78 164.10 1.22 0.82 0.33 1.64 1.82
8 176 1.16 0.82 183.55 1.23 0.86 0.33 1.79 2.12
2 65 1.34 0.62 80.90 1.21 0.62 0.24 1.92 1.17

sctap3 4 139 1.17 0.58 151.20 1.22 0.79 0.35 1.86 1.66
6 165 1.25 0.82 183.00 1.28 0.83 0.43 1.79 1.84
8 189 1.31 0.86 207.65 1.27 0.87 0.44 1.98 2.00
2 24 1.08 0.42 28.05 3.17 0.37 0.31 3.71 2.00

shipT21 4 49 0.96 0.20 58.10 2.94 0.18 0.43 3.72 2.79
6 63 0.83 0.16 78.70 1.55 0.13 0.51 3.73 3.16
8 78 3.23 1.64 87.75 3.25 1.67 0.54 4.02 3.37
2 44 0.52 0.23 53.45 1.12 0.19 0.19 3.37 1.42

shipl2s 4 56 0.50 0.18 73.15 0.79 0.14 0.26 3.15 2.04
6 65 0.85 0.15 78.40 1.31 0.13 0.31 3.03 2.23
8 70 1.97 1.27 86.10 1.99 1.15 0.33 2.97 2.39
2 50 1.00 0.84 51.45 1.07 0.98 0.17 2.41 1.41

sierra 4 99 1.05 0.82 108.40 1.10 0.88 0.25 2.32 1.84
6 119 1.11 0.84 133.40 1.16 0.92 0.31 2.26 1.97
8 134 1.24 0.90 144.95 1.24 0.96 0.33 2.30 2.03
2 15 0.93 0.73 22.60 0.90 0.87 0.39 1.21 0.85

stocfor2 4 44 0.95 0.89 63.20 0.90 0.74 0.53 1.19 1.30
6 94 1.01 1.11 129.90 0.87 0.90 0.62 1.16 1.47
8 120 0.79 0.78 132.90 0.88 0.81 0.66 1.20 1.58
2 56 3.91 3.43 84.00 3.57 2.41 0.57 4.07 6.44

wooclw 4 68 9.15 6.35 113.40 5.97 4.11 0.74 4.43 9.05
6 155 5.30 2.50 173.90 5.19 2.58 0.83 4.69 9.14
8 160 5.06 2.79 197.75 4.73 2.48 0.86 4.73 9.00

APPENDIX A. EXPERIMENTAL RESULTS IN DETAIL 117

Table A.26. Compari.son of different models (cont.d)

Problem k Minimum Average Time
RIG BG R.N RIG BG R.N RIG BG RN

2 80 2.12 1.14 100.40 2.11 1.09 0.81 1.32 1.02
ere-a l. 112 2.36 1.11 133.85 2..50 1.07 1.03 1.22 1.34

6 131 2.25 1.08 151.75 2.43 1.05 1.22 1.19 1.42
8 141 2.44 1.03 154.55 2.-58 1.07 1.27 1.17 1.48
2 70 2.66 1.07 94.80 2.75 1.10 0.66 1.52 1.20

cre-c 4 102 3.44 1.07 122.25 3.73 1.06 0.89 1.39 1.43
6 124 3.15 0.98 145.55 3.56 1.01 1.03 1.39 1.55
8 127 3.45 1.00 149.40 3.71 1.01 1.08 1.38 1.62
2 657 3.96 1.48 810.30 3.65 1.53 5.51 18.74 3.91

cre-d 4 913 3.92 1.32 1067.50 3.90 1.36 6.12 22.16 5.46
6 1004 4.11 1.51 1214.55 3.76 1.39 6.69 21.93 5.96
8 1117 3.81 1.35 1242.55 3.70 1.45 6.73 22.44 6.51
2 73 6.26 13.98 74.85 8.13 13.85 2.35 15.10 4.38

osa-07 4 80 10.98 12.66 80.00 12.12 12.91 3.39 13.47 4.23
6 81 9.88 12.59 81.95 12.03 12.68 3.21 15.52 5.23
8 80 11.61 12.48 80.45 12.75 12.86 4.05 13.64 4.07
2 724 1.79 1.08 861.10 1.83 1.25 3.88 1.25 1.41

C09 4 1099 2.09 0.83 1258.95 1.93 1.19 4..30 1.38 2.22
6 1292 2.10 0.86 1396.30 2.00 1.15 4.56 1.45 2.57
8 1363 2.13 0.89 1501.20 1.99 1.09 4.72 1.43 2.62
2 596 2.26 1.12 702.75 2.17 1.41 3.53 1.14 1.41

CQ9 4 751 2.89 1.13 971.75 2.36 1.28 4.00 1.25 2.15
6 982 2.52 1.02 1113.00 2.37 1.25 4.27 1..35 2.44
8 1061 2.52 0.80 1167.90 2..38 1.25 4..36 1.36 2.51
2 192 1.49 1.08 251.45 1.32 0.94 1.52 1.31 1.27

GE 4 331 1.44 1.00 393.55 1.40 1.04 1.71 1.33 2.17
6 477 1.29 1.10 542.70 1.30 1.06 4.83 1.34 2.66
8 517 1.46 1.15 576.90 1.50 1.12 1.93 1.34 2.77
2 336 2.94 1.07 472.60 2.61 0.97 2.40 0.92 0.93

NL 4 547 3.30 0.85 656.25 3.04 0.93 2.82 0.95 1..33
6 623 3.30 1.02 771.60 2.88 0.91 3.04 0.99 1.53
8 633 3.51 1.02 807.00 2.91 0.93 3.22 0.97 1.54
2 330 2.22 1.07 452.25 3.13 0.87 8.72 1.19 0.94

inod2 4 559 1.77 1.21 691.15 2.53 1.14 9.44 1.33 1.61
6 631 2.16 1.41 856.50 2.76 1.25 9.67 1.41 2.05
8 1029 1.82 1.27 1200.75 1.90 1.22 10.07 1.42 2.15
2 354 1.89 1.05 485.15 2.44 0.84 8.61 1.26 0.98

world 4 615 1.87 1.15 736.80 2.48 1.08 9.24 1.41 1.69
6 712 2.79 1.30 846.75 2.84 1.29 9.47 1.51 2.16

8 .. 1074 1.79 1.23 1214.40 2.02 1.22 10.02 1.48 2.04

. \ PFENDIX A. EXPERIMENTAL RESULTS IN DETAIL 118

Table A.27. General Comparison of Different Models
.All values have been normalized with respect to RIG. Results of osa-07 has been
excluded for this table.

k Min Average Time
RIG BG RN RIG BG RN RIG BG RN

2 1.00 2.03 1.26 1.00 2.24 1.26 1.00 2.52 1.68
4 1.00 2.43 1.36 1.00 2.52 1.38 1.00 2.65 2.36
6 1.00 2.28 1.20 1.00 2.41 1.30 1.00 2.62 2.59
8 1.00 2.50 1.29 1.00 2.56 1.42 1.00 2.68 2.68

Avg 1.00 2.31 1.28 1.00 2.43 1.34 1.00 2.62 2.33
Avg 1.00 2.30 1.64 1.00 2.37 1.70 1.00 3.01 2.45

B. Pictures of Matrices

Figuro 13.1. Matrix GE Original .Structure

11!)

APPENDIX B. PICTURES OF MATRICES 120

■ I i == § »1-------

F ig u re B.O. M a ir ix GE a lter 1 B lo c k D e c o m p o s i t i o n

APPENDIX B. PICTURES OF MATRICES 121

m s m

Figure B.4. Matrix GE after 6 Block Decomposition

F ig u re B .o . M a tr ix GE a fter S B lo ck D e c o m p o s i t i o n

см
.

іъ
I«*« I« 1%

:*1
·

*
-

-
-

-
·

·
/

I

T
T

gg5:ЬносоbígcqQίζьзD.

:!f!è!èirlèli
I

111·«··%
ninnüi
lllllm

r
m

iiiiii

(D-UUЧ-Э
COg*5bC7>СЗГ
OX%sCOcri<υbO

APPENDIX B. PICTURES OF MATRICES 123

Figure B.7. Matrix CQ9 after 2 Block Decomposition

F igu re B .8 . M a tr ix CQ9 after 4 B lock D e c o m p o s i t i o n

APPENDIX B. PICTURES OF MATRICES 124

Figure B.9. Matrix CC)9 after 6 Block Decomposition

F igu re B.IO. M a tr ix CQ9 after 8 B lo ck D e c o m p o s it io n

