9 research outputs found

    Model-Based Heuristics for Combinatorial Optimization

    Get PDF
    Many problems arising in several and different areas of human knowledge share the characteristic of being intractable in real cases. The relevance of the solution of these problems, linked to their domain of action, has given birth to many frameworks of algorithms for solving them. Traditional solution paradigms are represented by exact and heuristic algorithms. In order to overcome limitations of both approaches and obtain better performances, tailored combinations of exact and heuristic methods have been studied, giving birth to a new paradigm for solving hard combinatorial optimization problems, constituted by model-based metaheuristics. In the present thesis, we deepen the issue of model-based metaheuristics, and present some methods, belonging to this class, applied to the solution of combinatorial optimization problems

    Smart charging strategies for electric vehicle charging stations

    Get PDF
    Although the concept of transportation electrification holds enormous prospects in addressing the global environmental pollution problem, consumer concerns over the limited availability of charging stations and long charging/waiting times are major contributors to the slow uptake of plug-in electric vehicles (PEVs) in many countries. To address the consumer concerns, many countries have undertaken projects to deploy a network of both fast and slow charging stations, commonly known as electric vehicle charging networks. While a large electric vehicle charging network will certainly be helpful in addressing PEV owners\u27 concerns, the full potential of this network cannot be realised without the implementation of smart charging strategies. For example, the charging load distribution in an EV charging network would be expected to be skewed towards stations located in hotspot areas, instigating longer queues and waiting times in these areas, particularly during afternoon peak traffic hours. This can also lead to a major challenge for the utilities in the form of an extended PEV charging load period, which could overlap with residential evening peak load hours, increasing peak demand and causing serious issues including network instability and power outages. This thesis presents a smart charging strategy for EV charging networks. The proposed smart charging strategy finds the optimum charging station for a PEV owner to ensure minimum charging time, travel time and charging cost. The problem is modelled as a multi-objective optimisation problem. A metaheuristic solution in the form of ant colony optimisation (ACO) is applied to solve the problem. Considering the influence of pricing on PEV owners\u27 behaviour, the smart charging strategy is then extended to address the charging load imbalance problem in the EV network. A coordinated dynamic pricing model is presented to reduce the load imbalance, which contributes to a reduction in overlaps between residential and charging loads. A constraint optimization problem is formulated and a heuristic solution is introduced to minimize the overlap between the PEV and residential peak load periods. In the last part of this thesis, a smart management strategy for portable charging stations (PCSs) is introduced. It is shown that when smartly managed, PCSs can play an important role in the reduction of waiting times in an EV charging network. A new strategy is proposed for dispatching/allocating PCSs during various hours of the day to reduce waiting times at public charging stations. This also helps to decrease the overlap between the total PEV demand and peak residential load

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios
    corecore