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ABSTRACT

Although the concept of transportation electri�cation holds enormous prospects in ad-

dressing the global environmental pollution problem, consumer concerns over the limited

availability of charging stations and long charging/waiting times are major contributors

to the slow uptake of plug-in electric vehicles (PEVs) in many countries. To address the

consumer concerns, many countries have undertaken projects to deploy a network of both

fast and slow charging stations, commonly known as electric vehicle charging networks.

While a large electric vehicle charging network will certainly be helpful in addressing

PEV owners' concerns, the full potential of this network cannot be realised without the

implementation of smart charging strategies. For example, the charging load distribution

in an EV charging network would be expected to be skewed towards stations located

in hotspot areas, instigating longer queues and waiting times in these areas, particularly

during afternoon peak tra�c hours. This can also lead to a major challenge for the utilities

in the form of an extended PEV charging load period, which could overlap with residential

evening peak load hours, increasing peak demand and causing serious issues including

network instability and power outages.

This thesis presents a smart charging strategy for EV charging networks. The proposed

smart charging strategy �nds the optimum charging station for a PEV owner to ensure

minimum charging time, travel time and charging cost. The problem is modelled as a

multi-objective optimisation problem. A metaheuristic solution in the form of ant colony

optimisation (ACO) is applied to solve the problem.

Considering the in�uence of pricing on PEV owners' behaviour, the smart charging

strategy is then extended to address the charging load imbalance problem in the EV net-

work. A coordinated dynamic pricing model is presented to reduce the load imbalance,

which contributes to a reduction in overlaps between residential and charging loads. A

constraint optimization problem is formulated and a heuristic solution is introduced to

minimize the overlap between the PEV and residential peak load periods.

In the last part of this thesis, a smart management strategy for portable charging

stations (PCSs) is introduced. It is shown that when smartly managed, PCSs can play

an important role in the reduction of waiting times in an EV charging network. A new

strategy is proposed for dispatching/allocating PCSs during various hours of the day to

reduce waiting times at public charging stations. This also helps to decrease the overlap

between the total PEV demand and peak residential load.
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Chapter 1

INTRODUCTION

Plug-in electric vehicles (PEVs) powered by electricity from low carbon emission grids

can provide signi�cant bene�ts in terms of reducing transportation impact on climate as

well as minimising a transport grid's reliance on oil-based fuels. PEVs provide a cleaner

and quieter environment, and reduce operating costs at the same time [10]. PEVs can

potentially operate as �exible electric loads to support the operation of power systems

and the integration of renewable energy sources [11]. The concept of using parked PEVs

as storage devices for renewable energy has also attracted increasing interest from both

utility and PEV owners in recent years [12, 13, 14]. PEV owners enjoy many social,

environmental and economic bene�ts associated with owning PEVs. Fuel and maintenance

costs of PEVs are signi�cantly lower than standard gasoline cars. PEVs are also known to

provide stronger torque, smoother acceleration and a quieter driving experience.

Despite o�ering some clear advantages, the market penetration of PEVs has been rela-

tively low. Among other reasons, potential PEV owners identify a lack of public charging

infrastructure as one of the key reasons for low uptake of technology. Driver's range anxi-

ety is a major contributing factor. The other major concern is the long recharging/waiting

time. To increase the uptake rate of PEVs, governments and automotive industries in most

developed countries have been working together, and have undertaken projects to deploy a

network of electric charging stations, commonly known as EV networks [15]. EV networks

are anticipated to play a critical role in coming decades as the forecast for PEV market

growth looks very promising (Figure 1.1), primarily associated with increasing support

from governments and automotive industries.

As the expectations for future PEV sales increase, there is a growing research focus

on the development of charging infrastructure. Charging infrastructure is broadly divided

into three categories based on PEV charging speeds. According to community energy
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Figure 1.1: Global Electric Vehicle Market [1].

association (CEA), di�erent levels of PEVs charging are AC level 1, AC Level 2 and DC

fast charging. AC level 1 typically takes 10-20 hours to charge and the long charging time

makes Level 1 chargers suitable only for home usage. AC Level 2 can be used for both

commercial and home charging purposes. PEVs will take 4-8 hours to reach a full charge;

and DC charging, also called fast charging, provides the fastest way of charging PEVs and

can achieve full charge in 10 to 15 minutes [16, 17].

An EV network as presented in Figure 1.2 provides an opportunity for quick recharg-

ing on-demand; thereby, signi�cantly addressing consumers' range anxiety problems. In

addition, EV networks can play a critical role in peak load-shaving by o�ering charging

facilities during o�-peak hours. However, utilities have major concerns over the negative

impacts of such stations on the stability of the power grid [18]. For instance, simultaneous

charging of too many vehicles at CSs can substantially increase the power demand at that

station and impose detrimental impacts on grid components. However, intelligent routing

of PEVs can turn this challenge into an opportunity by viewing vehicles as mobile storage

devices with charge/discharge capabilities [12].

It is anticipated that EV networks will address a number of key concerns currently raised

by utility and potential PEV owners. Firstly, driver's range anxiety must be managed by

better communication between PEVs and the smart grid interfaces to facilitate timely and
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Figure 1.2: Example of an EV network [2]

fast recharging at public charging stations. Secondly, the average waiting/recharge time

needs to be minimised. Thirdly, the PEV charging load needs to be smartly managed so

that PEVs do not contribute to a signi�cant increase in peak demand.

Charging strategies, which in�uence the way the resources are utilised in an EV net-

work, can play a critical role in achieving the above mentioned targets. Using a smart

charging strategy, PEVs can optimise their decisions; for example, when to recharge, where

to recharge, and what amount to recharge. Charging strategies however, come with their

own set of challenges. For example, uncoordinated charging strategies in a limited charging

infrastructure can increase the average recharge time [19] and contribute to an increase in

peak loads [18]. As more PEVs join the grid, the waiting time at CSs in combination with

actual road tra�c can constitute a major challenge. During peak hours, CSs may end up

with long queues that can directly impact the comfort of PEV owners. To resolve these

challenges, there is the need for a systematic PEV-scheduling technique, which not only

takes into account the distribution of electricity load, but also reduces tra�c congestion

and waiting times at CSs. Currently, charging infrastructures are not widely available in

all major cities, and because of long waiting times at charging stations, the recharging

process can cause signi�cant delays [20, 21].

The temporal PEV charging load pro�le of an EV network is also expected to follow a
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pattern where the PEV load is high in the late afternoon [5]. Unless properly managed,

the peak PEV load period can extend and overlap with peak residential load periods.

Utilities have already expressed their concern over the possibility of facing this overlap

between PEV and daily residential loads periods. An extended overlap period is likely to

put signi�cant stress on both the generation and distribution sides of the energy industry

[5].

In order to accelerate the rate of uptake of PEVs, smart charging strategies that address

some of the above mentioned challenges can play a signi�cant role. This thesis presents

one such smart charging strategy, one that reduces waiting times and charging costs for

PEV owners. The proposed strategy also reduces overlap between the PEV load and daily

residential load periods.

1.1 Research signi�cance and motivation

The total number of PEVs in the world is currently over 3.5 million, and all of them have

the potential to become important elements within smart grids [22, 23]. The international

energy agency (IEA) sees the potential of 220 million electric vehicles by 2030, providing

the world takes a more aggressive approach to �ghting climate change and cutting emis-

sions than currently planned [24]. Increasing the number of PEVs results in a signi�cant

reduction in emission up to 30% [24].

All PEVs can apply a two-way communication strategy to enable real-time monitoring

and transmission control in the energy distribution grid to improve coordination and usage

of renewable and available energy resources [25]. Ideally, PEVs can be recharged outside

of peak demand periods so that, grid capacity does not have to be increased, renewable

energy can be fully utilised, and charging costs may be reduced within a real-time energy

management regime. Smart charging strategies can signi�cantly help to achieve this target.

Using a smart charging strategy, PEVs can optimise their own charging decisions to meet

the dual goals of minimising the grid's peak hour load and drivers anxiety/waiting times

[26].

Motivated by the need to develop a smart charging strategy, this research investigates

the mentioned challenges with regard to PEV charging in EV networks. In particular,

this research seeks answers to the existed challenges by exploring ways of managing PEV

charging loads across various charging stations in an EV network so that both utility and

PEV owners can enjoy bene�ts in the form of reduced peak demand, short waiting times

and low recharging costs, respectively.
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1.2 Aims

The main aim of this thesis is to present a smart charging strategy that provides bene�ts to

both PEV owners and energy providers with the expectation that this ultimately promotes

the uptake of PEVs. More speci�cally, the aims of this research include:

• developing a smart charging strategy that minimises travel times, waiting times and

charging costs for PEV owners.

• developing a coordinated dynamic pricing model that can be used by within smart

charging strategies to distribute PEV loads uniformly across all charging stations

in an EV network so that overlap between PEV load and residential load can be

minimized.

• developing a strategy to dispatch/allocate portable charging stations (PCSs) so that

waiting times at charging stations and overlap between PEV load and residential

peak load can be minimised.

1.3 Research contributions

The contributions of this thesis arise in proposing a new smart charging strategy and asso-

ciated models including a dynamic pricing model and a PCS dispatch model to overcome

the limitations of existing charging strategies . The main contributions of this thesis are

as follows:

• As the �rst contribution, Chapter 3 present a smart charging strategy for a PEV

network that o�ers multiple charging options, including AC level 2 charging, DC fast

charging and battery swapping facilities at charging stations. For a PEV requiring

charging facilities, The issue of �nding the optimal charging station is modelled

as a multi-objective optimization problem where the goal is to �nd a station that

ensures minimum charging time, travel time and charging cost. Then the model

is extended to a meta-heuristic solution in the form of an ant colony optimization.

Simulation results show that the proposed solution signi�cantly reduces waiting time

and charging costs.

• As the second contribution, a new coordinated dynamic pricing model is introduced

to reduce the overlaps between residential and CS loads by inspiring temporal PEV

load shifting during evening peak load hours. The new idea is to dynamically adjust
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price incentives to guide PEVs toward less popular/underutilized CSs. A constraint

optimization problem is formulated and introduced a heuristic solution to minimize

the overlap between PEV and residential peak load periods. Our extensive simulation

results indicate that the proposed model signi�cantly reduces the overlap and PEV

load during evening peak hours.

• As the third and �nal contribution, the concept of dispatching portable charging sta-

tions (PCSs) is introduced to reduce waiting times for PEVs during an EV network's

busy hours. In the proposed PCS management system, the strategy of dispatch-

ing PCSs in implemented at the right time to the right locations in order to ensure

e�cient management of PEV load. An optimization model with the aim of minimis-

ing total waiting times is de�ned. Considering the time complexity of the optimum

solution, using a heuristic solution to implement the PCS dispatching strategy. Sim-

ulation results show that the proposed model can signi�cantly help to reduce the

average waiting times during peak hours.

1.4 Thesis outline

This thesis is organized into six chapters as follows:

• Chapter 2 discusses the background and literature review of integrating PEVs into

the power grid and their impacts. This chapter presents all relevant smart charging

strategies along with both their advantages and disadvantage. Finally research gaps

are identi�ed and the research questions are proposed .

• Chapter 3 proposes a smart charging strategy for a PEV network that o�ers mul-

tiple charging options at charging stations. A multi-objective optimisation model is

introduced where the goal is to reduce charging time, travel time, and charging costs.

In the proposed model a queuing model is used to estimate the delay at various charg-

ing stations. To mitigate the challenge of longer waiting times and potential overlap

between peak PEV and residential load periods, also the concept of partial charging

is introduced during peak load hours. Finally, the research question is solved using

an ACO-based metaheuristic solution. This research [5] is published in the IEEE

Transactions on Transportation Electri�cation, vol. 4, no. 1, pp. 76�88,

2018.

• Chapter 4 implements a new coordinated dynamic pricing model that encourages
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temporal PEV load shifting to reduce overlaps between PEV and residential peak

load periods. The dynamic pricing model is formulated as a constrained optimisa-

tion problem. This chapter, also presents a rule based heuristic solution to address

the dynamic pricing challenge in real-time. The proposed solution is included in

the proposed charging strategy, which is then implemented using an ACO model for

bench-marking. The �ndings of this study reveal signi�cant bene�ts to both con-

sumers and utilities by minimising waiting times at CSs and by shifting the charging

demands to reduce overlaps. This research is published in the IEEE Transactions

on Transportation Electri�cation , vol. 5, no. 1, pp. 226�238, 2019.

• Chapter 5 introduces a new model to dispatch portable charging stations in order

to minimise waiting times at busy �xed charging stations. The research question

is modeled as a constrained optimization problem where a heuristic solution is pro-

vided to solve the problem in real-time. This research has been submitted to IEEE

Transactions on Sustainable Energy and is under the �rst revision.

• Chapter 6 presents the conclusion from this research, followed by suggestions for

future works.

1.5 Publications resulting from this research

1. Z. Moghaddam, I. Ahmad, D. Habibi, and Q. V. Phung, �Smart Charging Strategy

for Electric Vehicle Charging Stations�, IEEE Transactions on Transportation

Electri�cation , vol. 4, no. 1, pp. 76�88, 2018 .

2. Z. Moghaddam, I. Ahmad, D. Habibi, and M.A.S Masoum, �A coordinated Dynamic

Pricing Model for Electric Vehicle Charging Stations�, IEEE Transactions on

Transportation Electri�cation , vol. 5, no. 1, pp. 226�238, 2019.

3. Z. Moghaddam, I. Ahmad, D. Habibi, and M.A.S Masoum, �Portable Charging Sta-

tions in Electric Vehicle Networks�, IEEE Transactions on Sustainable Energy

(Submitted, under the �rst revision).
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Chapter 2

BACKGROUND AND LITERATURE REVIEW

This chapter aims to provide a background to PEVs, charging infrastructures and their

impact on the power grid. Smart charging strategies are also investigated as a solution

for providing an optimal and e�ective way of charging electric vehicles whilst preventing

negative impacts on the power grid. Solutions are currently being developed with related

work, and di�erent methodologies.

This chapter begins with Section 2.1 which includes an overview of integrating of PEVs

into electric power grid, introducing charging infrastructures and discussing the impact of

PEVs charging on the power grid. A brief discussion on charging standards and infras-

tructures are then presented in Section 2.2. In Section 2.3, smart charging of PEVs in

the EV network is investigated. Also in this section, three smart charging strategies with

their related works are reviewed. Based on the �ndings of di�erent charging strategies and

identifying the existing gaps for improving the solutions, the author presents the relevant

research questions for this thesis in Section 2.4. Finally, Section 2.5 concludes the chapter.

2.1 PEVs integration into electric power grid

The integration of increasing PEVs into the electric power system is an important issue that

needs to be assessed and observed in terms of economic impacts, operation and control

bene�ts under optimal conditions. There are many existing studies that analyzed the

impact of the PEVs on the power grid [27, 28].

Generally, using PEVs increases domestic electricity consumption and if their owners

charge their cars synchronously, for example overnight, demand patterns are not uniform

over a 24 h cycle [29]. Costs increase if PEVs are recharged during peak demand periods

and if a real time charging regime exists. PEVs can be considered as the centrally controlled

generators with the concept of V2G in the high voltage side and loads at the low voltage
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side. Therefore, power �ows from the generators, which are connected, to the low voltage

side of the network, to the high voltage side [30, 31]. Researchers [28] have argued that

using various distribution and generation models with bidirectional power �ows can a�ect

power supply quality and voltage levels. Other impacts of PEVs on the distributed grid

include increasing fault currents leading to bugs in the network protection system and phase

imbalances (speci�c to single-phase applications). Using a power electronics controller,

PEVs can communicate with a power system. These controllers usually include an on-

board a.c to d.c converter which is coupled to the grid via a single or three-phase connector.

In the power grid, PEVs are active loads in charging process that create extra demand on

the network but also as generators when operating in regeneration mode. Therefore, the

behaviour of PEVs in both modes, charging from and discharging to the power grid, should

be analyzed further. As the number of PEVs grow they will signi�cantly impact the grid,

so well-designed PEV interface devices will be needed to minimise the e�ects of PEVs on

the power grid's fault and security system [30].

A major concern associated with charging PEVs is the potential of exceeding the grid

power and grid infrastructure capacities. In the case of a large amount of uncontrolled

PEV charging, like a large number of PEVs charging concurrently, there is a substantial

increase in power demand, which can be higher than the available local transformer power

supply. This could cause transformer overload or higher than the current capability of

the transmission and distribution grid infrastructures, leading to thermal over loading

of conductors. Therefore, these impacts need to be quanti�ed in order to preserve the

reliability of the grid. Increased power harmonics related to PEV charging can create an

additional impact on distribution grid transformers, which are widely distributed across

di�erent parts of the power grid. Thus, future distribution network planning needs to

assess the PEV market uptake scenarios and adapt the local grids accordingly [32].

2.2 PEV charging standards

One of the fundamental entities in electric vehicle's applications is PEV charging. There

are several charging levels for PEVs based the power capability and charging duration.

These levels of charging identify slow or fast charging scenarios [27]. As Table 2.1 shows,

there are three AC charging types based on their power level which are known as slow

charging and there are two power levels for DC fast charging [33, 34].
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Table 2.1: Charging level characteristics based on SAE J1772 standard

Power level type Voltage level Current
capacity [A]

Power
capacity
[kW]

Charging time
for 100 km of
PEV range

AC Level I- single phase 120 V AC 16 3.3 17 hours
AC Level II- single phase 230 V AC 32 7.4 3-4 hours
AC Level III- three phase 400 V AC 32 22 1-2 hours

DC Level I 400-500 V AC 100-125 50 20-30 minutes
DC Level II 300-500 V AC 300-350 120 10 minutes

The charging time that each PEV can spend fully charging its battery depends on

battery storage capacity and charging level characteristics (e.g. voltage and current rating).

The recent development of a universal charging facilities by automakers in collaboration

with the society of automotive engineers (SAE) integrates both AC charging and DC-

fast charging solutions. In addition to the SAE standard, there is a charging standard

known as CHAdeMO, developed by the Tokyo electric power company which has gained a

considerable acceptance in the EV market [33].

For public charging of PEVs there is a need to establish charging infrastructure with

structures, machinery, and equipment necessary and integral to support a PEV, including

battery charging stations, and battery swap stations [35]. A battery charging station is

de�ned as an electrical component assembly or cluster of component assemblies speci�cally

designed to charge PEV batteries. A rapid charging station is de�ned as an industrial grade

electrical outlet that allows for faster recharging of PEV batteries through higher power

levels [35]. A battery swap station is de�ned as a fully automated facility that enables

a PEV with an exchangeable battery to enter a drive lane and exchange the depleted

battery with a fully charged battery through a fully automated process. In all the above

infrastructure must meet or exceed any applicable state building standards, codes, and

regulations [36].

Public facilities range from AC level 1 residential electrical outlets at local restaurants

to DC fast charge facilities in a parking garage. These can be free to use or require pay-

ment. Distributed charging stations can be considered EV networks that are primarily

owned and operated by private providers, but many local governmental entities have also

installed chargers at libraries and other public facilities. According to the U.S. Department

of Energy's Alternative Fuels Data Center, there are currently over 8,600 PEV recharging

stations with over 21,000 charging outlets in the United States [36]. Finding the location

of public charging stations is almost totally dependent on having access to the Internet or
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a smartphone with a location �nder application. Some new PEVs with on-board naviga-

tion can display the location of charging stations, but the most up-to-date information is

available on Internet websites or Internet-based smartphone applications.

Uncontrolled PEV charging in the EV network with the high penetration of PEVs can

result in undesirable impacts on the stability of the power grid. In the next section smart

charging schemes are discussed as an intelligent tool to control unexpected PEVs demands.

2.3 Smart charging

Smart Charging is a control mechanism that can be enabled by the grid, by charging point,

or the vehicle itself, while a communication system interfaces with the charging process

taking into account actual grid capabilities as well as customer preferences (Figure 2.1). As

presented in [37], smart charging represents opportunities for the entire stakeholder group.

For customers it can maximize convenience while reducing costs. Studies show that EV

users prefer to charge their cars in a regular pattern, mostly at home or on the way back

from work in the afternoon. If charging at home, they will probably use residential low-

voltage grids as the primary charging point. However, PEVs have the potential to double

household's power consumption in peak hours, so a signi�cant and costly upgrade of the

home grid may be required. If drivers charge their cars at public stations, a high-voltage

power grid is likely to be preferred fast charging point, but during peak hours this may

create an extra load on the power grid. However, in both scenarios, smart grid controlling,

decrease extra peak hour loads on the power grid. To facilitate smart charging, customers

should be informed about the role they can play in preventing excessive grid loads by

adopting appropriate elastic/non-elastic charging behaviours. PEVs represent a new type

of electricity load that will mostly be connected to the distribution grids at low/high

voltage levels. As PEVs were not considered at the initial stage of network planning, they

can cause serious network overloads. Smart charging considers network constraints in order

to avoid overloading the grid [37]. If the charging is coordinated to make better use of the

available grid capacity at o�-peak hours, smart charging may reduce additional peak load

to zero. It also has potential for optimizing the power grid utilization. Smart charging can

also help to maximize their use of solar systems during the daytime before peak periods.

This energy e�ciency option could be very interesting for utilities [37].

As the area of the research in this thesis is about charging strategies for an EV network
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Figure 2.1: Smart charging control system overview [3].

of public charging stations, in the following sections some of the proposed smart charging

strategies is reviewed.

2.3.1 Smart scheduling

Figure 2.2 shows the average afternoon tra�c distribution as a percentage of the total

vehicle counts, and a typical residential load pro�le in an urban area in New South Wales

(NSW), Australia [38, 39]. It is evident that the period between 2 p.m. and 6 p.m. is the

busiest, when most of the vehicles are on the streets. The load pro�le for a PEV charging

network is expected to follow a similar trend, as most of the PEVs are also expected to

be on the roads during this period and would need to recharge. This is analogous to

traditional gas stations, where the load is generally high in the late afternoon. Figure 2.2

also demonstrates that there is an overlap between the daily residential peak load and

the PEV load. This overlap would be a major challenge for the power industry since an

extended period of overlap can put signi�cant stress on both the generation and distribution

sides of the energy industry. An uncoordinated charging strategy can result in a long queue

at hotspot areas during busy period, which would increase the charging time (i.e., waiting

time at a station plus time to recharge) and the overlap period between the PEV and the

residential load. This challenge can be mitigated by introducing a smart charging strategy

where the smart grid can collect real-time information about loads at various charging
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Figure 2.2: Tra�c counts and residential loads in NSW, Australia

stations and pass this information to individual PEVs, enabling PEVs to come up with

their charging plans (i.e., the optimum charging station along the route to the destination).

The relevant industries consider this delay to be a major challenge and are exploring all

available options to reduce waiting time at public charging stations [40], commonly known

as PEV networks. A smart charging strategy can make a major contribution to the e�cient

management of available resources in PEV networks. Recognizing the signi�cance of smart

charging in the context of PEV networks, researchers have investigated and presented

various smart charging strategies in recent years, targeting the reduction of range anxiety

and charging time [41]. However, a gap still exists in the literature as none of these

previous works consider multiple charging and dynamic pricing options at charging stations

in their PEV networks [42], [43]. In practice, a charging station, like a traditional gas

station (selling petrol, diesel, LPG) can have multiple charging options with dynamic price

information. A smart grid can collect important information about the current status

(e.g., available number of sockets, queue status, price etc.) of every charging station in a

PEV network. The grid can then provide this information in real-time to the individual

PEV user [44], [45]. This information can be taken into account to calculate a path to the

destination which would reduce both the time and cost of charging.
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2.3.1.1 Related research

Most of the established research [25, 46, 47, 48] on PEV charging strategies has focused

on controlling residential charging patterns to avoid potential overloads, stresses, voltage

deviations and power losses that may occur in distribution systems from domestic PEV

charging activities. Some researchers [49, 50] have also investigated the simultaneous uti-

lization of distributed renewable resources and PEVs to improve the performance of smart

power distribution networks. Most recently, researchers have started to investigate charg-

ing strategies for public charging stations.

In [51], Amini et al. proposed a framework for interdependent power and electri�ed

transportation networks that utilise the communication of PEVs with competing charging

stations to exchange information such as electricity price, energy demand and time of

arrival. While the framework solves an important problem in the area of optimal power �ow

and vehicle routing, Amini et al. do not consider multiple charging options and associated

queuing models to address the problem of longer waiting times at charging stations. In

[52], Shun-Neng et al. investigated the PEV charging problem and proposed two types

of charging station selection algorithms: the �rst solution utilized only local information

(e.g., SoC, geographical position etc.) relating a PEV and the second solution utilizing the

global information obtained through interactions between the PEVs and charging stations

server using a mobile telecommunications network. Their work demonstrated that the

performance of the charging algorithm that used global information was better than an

algorithm that used local information. However, their work focused on waiting time and

did not consider the multiple charging option, cost and travel time.

In [53], Pourazarm et al. solved a path-�nding problem within a graph of charging

station nodes using a dynamic programming solution. They applied a grouping technique

based on tra�c �ows with multi-vehicle routing to achieve the shortest path. This work,

however, did not consider the waiting time and recharging cost at charging stations. Similar

to the work presented in [53], Sweda et al. [54] introduced a recharging plan for PEVs to

�nd a charging station with the shortest path. Their model was designed for an urban

environment where the number of routes can be very large and the number of charging

stations is limited. They proposed a pre-processing approach to save computations in

an urban environment. Their work, however, focused on �nding the shortest path based

on the minimum travel time only. In [55], a distributed charging scheduling protocol

was proposed to minimize waiting times in the charging stations. The authors used a
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theoretical approximation model which was based on the arrival rate of PEVs at each

charging station and achieved a high performance in terms of waiting time. However, they

did not consider a multi-server queuing system for di�erent charging options. In addition,

they did not consider the minimization of total travel time and recharging cost in their

objective function. In [56], Gusrialdi et al. proposed an optimized charging strategy using

a stochastic model for controlling the PEV arrival rate at charging stations in order to

minimise the demand �ow and the waiting time. However, they did not consider the

impact of variable price and multiple charging options at a charging station.

Razo et al. in [6] proposed a smart charging approach to plan charging stops on high-

ways with limited charging infrastructure. Using the coordination between the charging

stations and PEVs, their approach focused on minimizing the waiting time at charging

stations as well as overall travel time. Considering the complexity of the optimisation

problem, they adopted a meta-heuristic (A* search) approach to �nd a solution. However,

this work did not consider multiple charging options and price variation among charging

stations in their model.

As discussed above, while researchers have introduced a number of smart charging

strategies for PEVs, none of the existing studies presents an integrated solution that con-

siders multiple charging options, waiting time, travel time and recharging costs. In Chapter

3, a smart charging strategy is introduced to focus on total travel time reduction, with

di�erent charging options at charging stations and also taking into account various prices

for each charging option.

2.3.2 Dynamic pricing

Regarding the described challenge for the power grid represented represented in Figure

2.1, utilities have already expressed concerns over the possibility of facing an overlap be-

tween load and daily residential load periods. An extended overlap period is likely to put

signi�cant stress on both the generation and distribution sides of the energy industry [5].

The PEV load combined with increasing residential load during evening hours, commonly

known as the "duck curve" problem, presents a major challenge (i.e., high peak-to-average

demand ratio) for the energy industry. Researchers have been working to shift some loads

from the evening hours to address the duck curve challenges [57, 58]. This motivates the
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researchers of this study to investigate charging strategies in EV networks, with mind to

develop a coordinated dynamic pricing model for temporal PEV load shifting to reduce

the PEV load during the evening hours.

Within the literature, various smart-charging strategies have been proposed to address

the concerns raised by PEV owners and utilities. Most of these studies have been aimed at

reducing the average waiting period and charging cost [59, 60, 6]. In our previous work [5],

a solution is presented to reduce waiting time and charging costs. This in turn provides

guidelines for PEV owners to assist them to select the best available CS based on the

minimisation of distance, charging price and waiting time at the CS. The scope of the

work presented in [5], however, does not include PEV load shifting and price coordination

among CSs in an EV network. In this research, the authors show that price coordination

among CSs can be an e�ective tool in balancing PEV load, which ultimately reduces the

overlap between the PEV and residential loads.

The absence of price coordination within a charging station network leads to a non-

uniform distribution of charging load across the CSs (e.g., long queues at hotspot areas

whereas other CSs are not utilized to their maximum capacities). This results in under-

utilization of the maximum capacity of the CS network; therefore, increasing the charging

times and the overlap period between the PEV and residential loads. As a result, the PEV

load during the evening hours can be high enough to cause network instability problem

due to an increase in total load (i.e., residential peak load plus PEV load).

In a consumer-driven market, utilities are unable to directly deny services to PEV

owners even when grid stability problems loom. However, PEV owner behavior can be

in�uenced by adjusting the charging prices. Therefore, price incentives/signals can be

used as important management tools in an EV network. Consequently, dynamic pricing

has been an active area of research and researchers have made some important contributions

in the literature such as [61, 62, 63, 64]. However, none of the existing solutions addresses

the challenge of reducing the overlap between the PEV and residential load periods.

2.3.2.1 Related research

In this section, previous studies related to the estimation of PEVs charging load, pricing

models and PEV charging strategies is presented with emphasizes on reducing the overlap

between PEVs charging and residential loads during peak hours. The authors of [21]

presented a novel hardware design and implementation logic for a smart grid system to

establish an interaction between PEVs and the power grid in order to ensure a safe and
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semi-stable load on the grid and minimize the cost. However, they focused on residential

PEV charging without considering EV charging stations.

The electri�cation of transportation brings both opportunities and challenges to exist-

ing critical infrastructures [65]. For example, Wu et al. [66] addressed the challenges of

energy scheduling in o�ce buildings integrated with photovoltaic systems and workplace

PEV charging for public users. They proposed to leverage day-ahead power market and

time-of-use electricity, and used stochastic programming to address the uncertainties in

PEV charging. They proposed a model to estimate the demands of charging a PEV at the

workplace. However, there is limited �exibility for selecting a charging stations since they

did not consider real-time pricing in their model and overlooked various charging options.

In [67], the authors presented a framework of PEV charging stations using the queueing

model. They proposed a price strategy based on social optimal congestion which enforces

the CSs prices to the customer in order to minimize the total latency of PEV users and

total electricity costs of CSs. However, in their queueing model for CSs, they did not

mention the charging rates and also they did not consider any load management of PEVs

at peak hours.

There are also a number of industry projects [68] and research papers [69, 70] on fast

charging stations with BSSs to store the purchased electricity from the grid at cheapest

hours of a day and sell it to PEVs at peak hours. Sanzhong et al. [69] studied the power

demand of the CS and proposed an optimum design of a fast-charging station equipped

with BSSs. Similarly, Nargestani et al. [70] have investigated the charging stations with

BSSs but also estimated the optimum sizing of BSSs for controlling the charging demand.

However, none of the existing literature discusses changing the price at CS and controlling

the PEVs demand at peak hours.

Another important factor in managing a charging station is the power market. Similar

to petrol stations, multiple CSs in the same area may belong to di�erent owners, therefore

competition between di�erent CSs should be considered [71]. The authors of [72, 73, 74]

have employed approaches based on game theory to model an interplay among multiple

PEVs or between PEVs and power grid. They have established a competition system

based on game theory for charging stations in terms of increasing CS pro�ts; however, the

impacts of tra�c load of PEVs on the power grid at peak hours are not considered. Erol-

Kantarci et al. [75] proposed a prediction-based charging scheme that receives dynamic

pricing information via wireless communication, predicts the market prices during the

18



charging period and determines an appropriate time of day to charge the vehicle at low

cost. However their prediction-based charging scheme was based on a simple, light-weight

classi�cation technique which is suitable for implementation on a vehicle or a charging

station. Therefore, they have not considered the impact of driving and charging patterns

such as the increase in the demand for charging at peak hours in their charging scheme.

Junjie et al. in [76] presented two indirect methods for PEV management system

in the power grid. They used market-based and price-based controls to minimize the

communication cost and computational complexity. However, both control strategies have

some limitations such as uncertainty of the price-based control strategy. Moreover, they

did not present real-time veri�cation of the proposed control strategies.

The authors in [77] developed an algorithm by controlling charging price and the num-

ber of vehicles to be scheduled as well as the charging/discharging of BSSs so that the

charging station could achieve pro�t maximization. However, their work did not consider

PEV load shifting. In [61], a price strategy for the economic operation of CSs equipped

with the renewable resources has been proposed. In their proposed pricing model, they

suggested a stochastic approach for dealing with the uncertainty of the renewable energy

sources to make an optimal price decision in order to maintain the operational cost at the

minimum level. In [64], Cherikad et al. proposed a distributed dynamic pricing model for

PEVs charging and discharging scheduling and building energy management in a micro-

grid. Their model was based on a decentralized communication architecture and they used

a linear optimisation approach to achieve the e�cient price decision to maximizes PEVs

utility, and maintains the microgrid stability.

The authors in [62] using a dynamic linear program for PEVs charging process, proposed

a real-time price strategy for the CSs to minimize the cost of electricity purchased from

the grid. However, temporal PEV load shifting was not the focus of this research.

As discussed above, although researchers have made important contributions in the

areas of charging strategy, dynamic pricing, and load management, none of the existing

solutions presents a coordinated pricing model to control PEVs demand at CSs and mitigate

the extra stress on the power grid at peak hours, which is the main focus of Chapter 4.

2.3.3 Portable charging stations

As discussed in the previous sections, the anticipated challenges associated with increasing

PEV numbers, are the long waiting times at �xed charging stations (FCSs) with impacts

on actual road tra�c patterns and electricity demand from utility networks. To resolve
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these challenges, several planning methods have been proposed.

Some of the proposed strategies for managing charging demand in FCSs are based on

the estimation of tra�c �ow [60, 65, 66]. However, considering di�erent driving patterns of

PEVs and conventional vehicles, estimated data may not re�ect the real charging demand

of PEVs. Consequently, existing charging strategies based on PEV demand estimations

may not be accurate and result in longer queueing times for charging at peak hours.

In recent studies [5, 78, 79, 59], di�erent methods have been proposed to control charg-

ing demands in order to manage electricity balance of PEVs in FCSs and improve the

stability of the power grid. However, these strategies have proposed solutions that manage

uncoordinated PEV charging requests without considering their impacts on the power grid

at peak hours.

In practical implementations, public charging stations would need to established to de-

crease concerns of range anxiety among PEV owners [17, 80, 81]. To establish a charging

station e�ectively, a reliable interface to the distribution grid is required based on coop-

eration between provider and operator [82]. According to the �exible mobility of PEVs,

charging stations can be categorized into two types: FCSs and portable charging stations

(PCSs). FCSs usually feature �xed facilities built in speci�ed parking lots while PCSs can

move and they are not limited to an established �xed point [82]. PCSs have emerged as

a way to deliver extra capacities for EV networks and also to give emergency charging to

PEVs when they are out of charge.

The PCS power source comes in the form of battery storage installed on the back of a

truck type vehicle and utilizing the back compartment, side panel and the dashboard [82].

Capacity and charging rate are two main factors for selecting suitable batteries for PCSs

in order to e�ectively charge PEVs. One of the most promising batteries in this context

are lithium batteries which are light weight, have high energy density, high speci�c energy

and high speci�c power. In ultra capacitor consideration, the most appropriate is electric

double-layer capacitor because of its high power density. The combination of these two

energy storage can conduct all ac and dc charging levels [83, 52].

The distinct advantages of PCSs over FCSs are [84]: a) Establishing FCS are limited

by construction cost, maintenance cost, site size, power grid capacity, etc [84]. While,

there are fewer requirements for the sizing and allocating/dispatching of PCSs due to their

portability and �exible capacities; b) PCSs do not rely on the power grid and can e�ectively

reduce the overall PEV load demands particularly during peak hours; c) Considering the

portability of PCSs, service providers can optimize their placements near hotspot areas
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based on the PEV charging demands to minimize cost of energy while also reducing the

stress on the power grid; and d) Unlike FCSs, the whole charging process of a PCS is

supervised by a trained technical sta� that will help to reduce possible failure rates and

improve the user's experience.

2.3.3.1 Related research

The scope of research in adopting PEVs in the EV network is growing rapidly. There is

a lot of research which proposes smart charging strategies based on real-time information

of users and charging stations, to control charging loads. Some of these propose optimum

routing strategies to to manage PEV tra�c in an smart way in order to decrease cost and

increase the stability of the grid by the coordinate charging loads [5, 85, 86, 6]. Another

e�ective method in controlling charging demand of PEVs is dynamic pricing strategy which

depends on the user's response to the pricing strategy in order to control PEVs loads on the

grid, speci�cally during peak hours [77, 87, 62]. Although most of these research aimed to

solve the non-stability of power grid by controlling the PEV charging load, there still exists

queues at charging stations in hotspot areas during peak hours. This is a major challenge

as it can overlap with residential peak loads and cause serious issues of instability in the

power grid.

In addition to proposed charging strategies for better management of PEV loads in the

EV network, in this thesis, a new architecture of EV networks is proposed that include

the portable charging stations to the existing EV network to reduce the increase on peak

demand.

There are a few studies that have investigated using PCSs as an alternative for charging

PEVs. Yang et al. in [88] have proposed mobile charging stations in order to minimize

waiting times. However, whilst mobile charging stations may provides users with better

waiting times than �xed charging stations, but they have not considered the speci�c tem-

poral load shifting of PEVs demand during peak hours. In [17], the authors propose a

portable charging service in urban areas that considers queueing-based analysis to assign

the PCS to the nearest PEV request in their coverage area. Although they evaluated their

proposed model based on real tra�c data, but they failed to consider controlling charging

demand in hotspot areas during peak hours as a main objective. Qi Liu et al. in [84]

investigated the portable charging facility to recharge PEVs and proposed their scheduling

strategies based on user charging behaviour to increase the charging e�ciency in both wait-

ing times of PEVs and load rats of stations, however they only considered PCSs without
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including �xed CSs and also they did not account for the peak load shaving in hotspot

areas.

Relevant industries have also considered portable charging stations as an emergency

option to charge PEVs in city areas. Based on the information in [89, 90, 91], the investment

of charging station providers on the portable charging facility has been already begun.

These providers are going to develop this idea, with the aim of decreasing the cost of

energy by using portable instead of �xed charging infrastructures.

Based on the above literature review, using portable charging stations is still a relatively

new concept. As none of the literature speci�cally considers in�uencing PEVs demand at

CSs to mitigate the extra stress on the power grid during peak hours, that is the main goal

of Chapter 5.

2.4 Research questions

As discussed in Section 2.3 several smart charging research projects have already been

conducted; however there has been insu�cient depth of analysis on controlling charging of

PEVs to prevent extra power grid peak load. Smart Grids with measuring devices and a

communication infrastructure, among other devices, should help to solve the problem of

uncoordinated charging and irregular load on distribution grids. This thesis targets the

di�erent smart charging strategies to prevent the peak load period for PEV charging from

overlapping with the residential peak. After reviewing the existing literature which have

been investigated in the previous section, this thesis asserts that there are still unanswered

research gaps in the area of smart charging for electric vehicles charging stations. Therefore,

the following research questions are addressed in this thesis:

• What is the best approach to adopt a charging strategy that identi�es the most

suitable charging station for a PEV user, so that the users can recharge at the

minimum cost and reach their destination without a signi�cant delay? In Chapter

3 of this thesis, the research challenge is modeled as a multiobjective optimisation

problem where the goal is to reduce charging time, travel time, and charging cost. A

queuing model has been applied to estimate the delay at various charging stations.

• How PEVs demand can be controlled in response to charging prices at various charg-

ing stations in order to reduce overlaps with the residential peak load periods? In

Chapter 4 of this thesis, a new coordinated dynamic pricing model is introduced,

implemented and evaluated for vehicle charging in EV networks. Additionally, a
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rule based heuristic solution is presented to address the dynamic pricing challenge

in real-time. The proposed solution is included in a charging strategy, which is then

implemented using an ACO model for bench-marking.

• How can an alternative option for the �xed charging stations can be implemented to

alleviate power grid stress from extra peak loads? In the Chapter 5 of this thesis,

the research question is modeled as an assignment problem of PCS problem in the

speci�ed locations in the proposed EV network in terms of a constrained optimisation

problem. Then a heuristic solution to solve the NP-hard optimisation problem has

been proposed which can signi�cantly reduce the average PEV waiting times and

decrease the overlap between PEV and residential loads during peak hours in the EV

network.

2.5 Concluding remarks

This chapter has provided an outline of the relevant research undertaken to develop the

smart charging strategies that take into account minimizing the overlap between PEVs and

residential loads during peak hours. In this context, this chapter has presented an overview

of the impacts of PEVs charging integrated into the power grid, charging infrastructures,

smart charging solutions for small PEVs. Several challenges related to increasing PEVs

loads during peak hours have also been discussed. Finally, this chapter has identi�ed several

gaps in the existing literature and set out the key research questions of the study. Chapter

3 will present the smart charging strategy considering the optimum routing strategy for

PEVs to charging station.
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Chapter 3

SMART CHARGING STRATEGY FOR

ELECTRIC VEHICLE CHARGING STATIONS

In this chapter, a smart charging strategy for a PEV network is presented that supports

multiple charging options at its charging stations. Multiple charging options as a multi-

server queuing system is modeled in order to estimate the waiting time for each charging

option at a charging station. The queuing system is presented in detail in Section III. The

optimal charging station-�nding problem also is presented as a multi-objective optimisation

problem where the objective is to minimize the travel time, waiting time and charging

cost. The optimisation problem and related constraints are presented in the last part

of this Section. Considering the industry demand for a robust solution, the problem is

extended as a meta-heuristic optimisation problem. A detailed description of the meta-

heuristic solution is presented in Section IV. The main objectives of this chapter, can be

summarized as follows:1

• Introducing a smart charging strategy that considers multiple charging options and

relevant price information at each charging station in a PEV network. The research

question is modeled as a multi-objective optimisation problem, and re�ecting the

need for a real-time solution, als a meta-heuristic solution is presented.

• Presenting that dynamic price variation at charging stations can be a useful mech-

anism to control the average charging time, which ultimately can prove pivotal in

reducing the overlap extension between the PEV and residential peak load periods.

1The presented chapter has been published as: Moghaddam, Z., Ahmad, I., Habibi, D., Phung, V.,
(2018), Smart Charging Strategy for Electric Vehicle Charging Stations. IEEE Transactions on Trans-
portation Electri�cation, 4(1), 76-88, IEEE, DOI: 10.1109/TTE.2017.2753403.
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• Verifying the signi�cance of the proposed solution by using a computer simulation

on a Washington City PEV network.

A

B

C

D

E

F

Figure 3.1: A graph representation of a PEV network

3.1 System Model

A PEV network can be considered as a weighted directed graph G = (V, E), where V is the

set of charging stations which is denoted as j : (j = 1...N) and E is the set of connecting

paths between the nodes as shown in Figure 3.1. Each charging station provides three

charging options: i) DC fast charging, ii) AC level 2 charging and iii) battery swapping

facilities [92]. Each charging option has a queue, and each queue has a speci�c service rate,

waiting time and price. The queue length is in�uenced by factors such as PEV arrival rates,

and service times (i.e., time to fully recharge). The queue length is an important parameter

as it determines the waiting time before the actual service is o�ered. The PEV arrival rate

is also partially in�uenced by price information. In our system model, each PEV indexed

by i at a time instant t can be attributed by its current state of charge SoCi(t), current

location Si and intended destination dsti. All charging stations and PEVs are connected

to the smart grid and can exchange information in real-time. If a PEV plans to go from

a source to a destination node and its current SoC suggests that it will not have enough

stored energy, it will have to recharge at a charging station. A PEV driver may also

prefer to charge at a faster rate from a fast charging station instead of using the slow

charging facility at his/her accommodation. The research question then translates into
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�nding the optimum charging station that does not signi�cantly increase the travel time

to the destination and o�ers the best price for recharging.

DC Fast Charging
queue

EVs arrival 

AC Level 2 
queue    

Battery Swapping 
queue 

:

:

:

EVs depart the 
station

Charging Sockets

Figure 3.2: The M /M /s/C queuing model for a charging station

For a PEV, the total travel time depends on the time required to reach the charging sta-

tion, the time spent waiting in the queue for the preferred charging option, service/charging

time and time required to reach the destination. As such, following sub-sections show how

to model and calculate the total travel time taking the queuing delay and charging cost

for each charging option into account.

1) Driving Time from Source to Destination

For a PEV at a time instant t, if T drive(s, dst) indicates the driving time from its

current location s to the destination dst and j indicates the charging station along the

way, then T drive(s, dst) can be obtained by:

T drive(s, dst) =
D(s, j)

v(s, j)
+
D(j, dst)

v(j, dst)
(3.1)

where the �rst term of the above equation is the time required for the PEV to travel from

its current location to the charging station and the second term states the travel time from

the charging station to the speci�c destination. Here, D(s, j) and D(j, dst) indicate the

route distance from the source to the charging station and the charging station to the

destination, respectively. v(s, j) and v(j, dst) indicate the average moving speed of the

PEV from its source to the charging station and the charging station to the destination,

respectively. To make sure that the PEV does not run out of charge before reaching the
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charging station, D(s, j) must be less than Dmax, the maximum distance that the PEV

can travel based on its current SoC. The maximum distance that the PEV can travel

based on its SoC at a current time t, can be given by:

Dmax(t) =
EcaSoC(t)

ETravel
(3.2)

where Eca is the total capacity of batteries in PEV, and ETravel represents its energy

consumption per unit of traveling distance. In addition to the net driving time as indicated

by Eq. (3.1), the PEV would have to wait in the queue at a charging station before it

obtains access to the desired facility. The waiting time in the queue at a charging station

can be estimated using a queuing system which is presented in the next section.

2 ) Queuing Model for a Charging Station

Figure 3.2 shows the queuing system used for charging stations with multiple charging

options in our model. To estimate the waiting time for each charging option at a station,

the M/M/s/C model is used [93, 19], where the letters have the following meaning:

Figure 3.3: The state transition diagram of the M/M/s/C queuing system

• the �rst M (Markov): Markovian (exponential) PEVs arrival time distribution

• the second M (Markov): Markovian (exponential) charging time distribution

• s: the number of servers

• C: the system capacity ( the number of PEVs that can be parked at the station).

Every PEV that arrives at a station can immediately recharge if there is an available

socket in the charging station. If all the sockets are busy, the PEV needs to wait in a

queue until a socket becomes available. In this study it is assumed that each charging

station has three queues, one for each charging option. PEVs in each queue are served
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by s servers. Each server operates with an exponential service rate µkj facilitated by a

socket. The PEV arrival process at a charging station follows a Poisson distribution with a

mean arrival rate λj . The service rates are constrained by the infrastructure (i.e., sockets

and charging rates) whereas the mean PEV arrival rate during various hours of the day

can be derived from historical data. A smart charging strategy that in�uences the route

selection decision can have an impact on arrival rates at a charging station. However, the

tra�c/load analysis based on the data collected over a period of time is expected to capture

this impact. Based on the principle of Markov chains [94], the state transition diagram

for the M/M/s/C queueing process can be derived and depicted as shown in Figure 3.3,

where each state of the chain corresponds to the number of PEVs in the queue. When new

PEVs arrive or a PEV recharges and departs the station, the queing process moves to a

di�erent state. This state transition is essentially a stochastic process with Xr being the

random variable that represents the value of the chain at step r. This stochastic process

with state space ξ = {1, 2, 3, ...} exhibits the property of a Markov chain because of the

P (Xr+1 = j|Xr = i,Xr−1 = xr−1, ..., X0 = x0) = P (Xr+1 = j|Xr = i) attribute.

The state transition probability matrix P for the above mentioned stochastic process

can be given as Eq. 3.3 [95, 96] :

P =



−λ λ ...

µ −(λ+ µ) 0 ...

0 2µ 0 0 ...

0 0 λ 0 0 0

...
. . .

(c− 1)µ −(λ+ (c− 1)µ)

cµ λ

. . .



(3.3)

De�nition 3.1. In the probability matrix P, P T .πT = 0T , where π is the row vector that

contains the stationary distributions. Assuming the occupancy rate with ρ = λ/cµ, the

rth stationary distribution can obtain by:
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πr = π0
λr

n!µr
=

(cρ)r

r!
π0 (3.4)

and reaching the system capacity C, the capacity for each station which is shown by c:

πc+r = ρrπc = ρr
(cρ)c

c!
π0,

r=0,1,2, ..., c+r=C

(3.5)

Now if
∑∞

p=0πp = 1, the π0 stationary distribution is:

π0 =
1∑c

i−0( 1
i!

(
λ
µ

)i
+
∑R

j=c+1
1

Cj−c )( 1
c!)
(
λ
µ

)i (3.6)

Using this formula, also the mean queue lengths for each queue is obtained by:

E(Lq) =

R∑
k=c

(p− c).πp (3.7)

where πp is the pth stationary distribution. After substituting the proper values and

simpli�cation of the equation, queue length can be given as:

E(Lq) = π0.
ρ(cρ)c

c!(1− ρ)2

[
1− ρR−c − (R− c)ρR−c(1− ρ)

]
(3.8)

Using the Little law at each charging station for three types of charging options, the

mean waiting time at each queue can be given as[97, 98, 99] :

∀o:(o=1, 2, 3)

E(W k
j ) =

E(Loj)

λj(1− πRj )
(3.9)

Therefore, for the queue corresponding to the battery swapping facility at a charging

station j, the mean waiting time is calculated as follows:

E(W 1
j ) =

µ1
j

λj(µ1
j − λj)(1− πRj )

(3.10)

for the DC-fast charging queue, the mean waiting time is calculated by:

E(W 2
j ) =

µ2
j

λj(µ2
j − λj)(1− πRj )

(3.11)
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and for the AC-normal charging queue, the mean waiting time is calculated by:

E(W 3
j ) =

µ3
j

λj(µ3
j − λj)(1− πRj )

(3.12)

3) Charging Cost for a PEV with a Speci�c Charging Option at the Charging Station

The charging cost of each PEV depends on its associated charging option and the

associated charging rate at the station j. For a PEV, the charging cost is calculated through

the formula below:

Crechargej (o) = ((dchargingPrk) j ∈ J (3.13)

where dcharging is the charging demand of each PEV, which depends on the remaining

and target SoC for each PEV:

dcharging = σE − SoC (3.14)

Here, σ is the coe�cient for partial charging, which can vary from the current SoC

to the maximum SoC (e.g., 90% battery capacity). Under normal circumstances, most

users would prefer full charging (i.e.,σ = 0.9). However, during peak-hours a preference

for full charging would lead to longer waiting times. Longer waiting times can stretch the

PEV peak period and make it overlap with the residential peak period. Partial charging

(i.e., σ < 0.9) can encourage users to postpone their full charging process and depart the

queue early. Partial charging can be in�uenced by a suitable dynamic pricing model, and

together, these measures can provide an e�ective solution to the problem of longer waiting

times during peak hours.

3.2 Proposed Model

The objective of the proposed charging strategy is to �nd a charging station along the path

such that the total travel time - including driving time from current location to destination,

waiting and charging time at a charging station - and the charging cost are minimized.

Mathematically, considering equations (3.1), (3.9) and (3.13), the objective of our charging

strategy can be modeled as: for ∀i ∈ I �nd a charging station j that minimizes total travel
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time and recharging cost, as below:

min[x(T drive(s, d)) + yTwaitj (o) + zCrechargej (o)] (3.15)

where x, y and z are the positive coe�cients of the objective function.

s.t.

T drive(s, d) ≤ ((EcaSoC(t))/ETravel)/v(s, j) (3.16)

Twaitj (o) <= T
max−wait
j (o) (3.17)

SoCmin ≤ SoC(t) (3.18)

∀j ∈ J
M∑
i=1

Eca ≤ Ecaj , (3.19)

Ecaj < Emaxca, grid (3.20)

In the optimisation problem, the summation of driving time from source to destination,

waiting time at the station for a speci�c queue, and charging cost for each PEVi at a

charging station j should be minimized. Constraint (3.16) shows the constraint for the

driving time from the current source to a charging station, which is explained in Eq. (3.2).

In constraint (3.17) the maximum waiting time for each queue at charging stations is

presented. This should be less than the maximum waiting time at each charging station for

di�erent charging options. Constraint (3.18) indicates that initial amount of SoC for a PEV

at charging station j should be greater than SoCmin. An additional constraint is de�ned

in Eq. (3.19), which states that the summation of the charging power capacity for all PEVs

at a charging station should be less than the maximum capacity of that charging station,

and constraint (3.20) considers the maximum grid capacity for each charging station.
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3.3 Smart Charging Strategy Using Metaheuristic Algorithm

In the previous section, the proposed smart charging strategy formulated as a classical

optimisation problem. However, the optimisation solution is NP-hard due to the path

discovery mechanisms [97]. This motivated us to further investigate the research problem

and �nd a heuristic solution.

3.3.1 Ant Colony Optimisation (ACO)

ACO is a category of swarm intelligence that analyzes the survival behavior pattern of

the insects in solving complex optimisation problems [98]. ACO is a widely recognized

meta-heuristic approach and has been successfully used across diverse domains, including

vehicle routing and scheduling [100, 101, 99, 102]. The main characteristic of ACO is

that every single ant in a colony can construct a possible solution by considering both

heuristic and stochastic information and exchanging that information with the ants and

the environment [98]. The collective intelligence gathered from a group of ants traveling

along alternate routes leads to the identi�cation of an optimal route [54, 103]. As a

description of the ACO algorithm, consider a colony with m ants that iteratively exploits

the graph and searches for feasible solutions to the problem. At each iteration u, an ant k

moves stochastically, based on a constructive decision policy which uses the information of

pheromone trails and attractiveness to obtain the probability for choosing the next node,

as below:

P kij(u) =
τij(u)αη∑
l∈Nk

i
τil(u)αη

ifj ∈ Nk
i (3.21)

Here Nk
i is the set of feasible neighborhood nodes in the graph. For a node i, a set of

feasible neighborhood nodes indicates that the list of nodes that are directly accessible

from node i and candidates for searching based on the heuristic information. Nodes that

are in the feasible neighborhood set o�ers a better chance of �nding the optimum solution

[101, 104], τij(u) is the sum of pheromones deposited between nodes i and j which denotes

the desirability of the move between the nodes; ηij is heuristic information which speci�es

the attractiveness of that move, and α, β are parameters which control the relative weight
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of pheromone and heuristic information. During the completion of a tour, each ant deposits

the pheromone information on the respective edges of its path. There is a rule for updating

pheromone information, as below:

τij(u+ 1) = ρτij(u) +
m∑
k=1

∆τkij(u) ∀(i, j) (3.22)

where 0 ≤ ρ ≤ 1 is the pheromone evaporation rate, which causes the pheromone value

to decrease over time to prevent a local optimum, and ∆τkij(u) refers to the inputs of ants

between nodes i, j. Consequently, each ant moves through those nodes similar to its partial

solution. Although the convergence properties of the ACO algorithm have been proven,

the probabilistic decisions depend on the problem-de�nition and user preferences [98]. For

the proposed objective function, the routing algorithm should consider the lowest travel

time, the lowest recharge cost and the lowest waiting time at each station, as the heuristic

information.

ACO is not only sensitive to the number of variables but also runs faster, which is

an important ability in relation to solve dynamic vehicle routing and refuelling problems.

ACO is a probabilistic search algorithm which has speci�c characteristics, considering the

problems in terms of the heuristic information in the probabilistic decision, and the strategy

of updating the pheromone trail in the path is based on the search objectives [99], [103].

3.3.2 Proposed Smart Charging Strategy using Ant Colony Optimisa-

tion

The main reason for choosing ACO in our proposed scenario is that using the heuristic

information in the ACO algorithm our model can estimates the minimum travel time and

charging cost at every node of the graph to accelerate the computation. With the arrival

of a new PEV every neighbor exploration allows us to test for the de�ned constraints

and exclude non-feasible alternatives at the �rst stage. However, the conventional ACO

algorithm keeps track of the variable it aims to minimize along the entire search. In the

proposed model, the smart-strategy in Algorithm. 3.1 is iteratively called up to provide

up-to-date information to the PEV driver. As information is shared between the smart

grid and a PEV driver, the following processes occur:
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Algorithm 3.1 ACO algorithm for the smart charging strategy
Require: Graph Of Charging Stations, Charging Station Speci�cations, PEVs Speci�ca-

tions, SoC , Destination Coordination;
Ensure: optimum path, P
1: SetAdjustableParameters (G, PEV , t, α, ρ, τ , β, SoC, η, CS);
2: Initialize (t,counter,iteration);
3: t: time slot;
4: Set t← 0;
5: while maximum iteration is not met do
6: t← t+ 1;
7: Initialize τglobal;
8: for each node j of graph G do

9: if j is in graph G's selected path then
10: Call function of driving time;
11: Call function of waiting time;
12: Call function of charging cost;
13: Pg ← 0;
14: else

15: for each ant n do
16: Initialize τlocal ;
17: for P ← 1 to G do

18: while constraints are not met do
19: g ←ηPg(t);
20: xnPg ← link(Pg);
21: end while

22: Update τlocal;
23: end for

24: end for

25: Sort (RouteSolution(N)) ascendingly;
26: Ipbest(t)= RouteSolution(1);
27: Update τglobal;
28: end if

29: end for

30: end while

31: Update Information (PathInfo,P);

• Loading initial information: the modi�ed ACO algorithm receives as input a graph

describing all possible paths, the current SoC of the PEVs battery, the maximum

energy consumption of the PEV, the coordination of the source and destination, the

colony number, the number of ants in each colony, the initial pheromone level and

the coe�cient of the creation and evaporation of the pheromone.

• Selecting speci�c heuristic information to obtain the probability distribution function:

In a conventional ACO algorithm, for calculating the probability distribution in Eq.

3.21 only the pheromone and one heuristic value (distance) are considered. In the

smart charging strategy, since PEVs look for an optimum path in terms of minimum
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travel time and charging cost, a modi�cation is used to maintain the driving time,

waiting time and charging cost as a set of heuristic information. Considering the

three objectives in the aforementioned objective function, the ACO algorithm for

each j ∈ Nk
i can be implemented with the Eq. 3.23:

P kij(u) =
τij(u)α[(T drive(s, d))Twaitj (o)Crechargej (o)]β∑

l∈Nk
i
τij(u)α[(T drive(s, d))Twaitj (o)Crechargej (o)]β

(3.23)

where the variables τij(u), T drive(s, dst)), Twaitj (o) and Crechargej (o) are the pheromone

intensity, driving time, waiting time and charging cost of a path. The parameters α and

β are constants, which determine the relative in�uences of the pheromone and heuristic

parameters on the PEV's decision. For the probability distribution, there is a trade-o�

between the three objectives. The process of �nding an optimum path is described in the

following:

• Pheromone initialization: Collect the possible solution at each iteration and up-

date the pheromone values using the general Eq. (3.22), τij(u + 1) symbolizes the

pheromones of a vehicle moving from the current location s to a destination d or

stopping at node j for charging during time period (u + 1) with the objective of

minimizing travel time. Here, the updated value of the pheromone is a function of

time and is controled by the number of PEVs on each route.

• Generate the best possible path: This step uses the modi�ed ACO algorithm which

is described in algorithm 3.1 for the PEV network which receives as input a graph

describing all possible paths including charging stations, the source and destination

nodes, and the SoC of the PEVs. Each time a neighbouring node is explored, the

function Feasible_nodes is responsible for selecting feasible nodes from the graph

with a calculation of the distance from each current location to all charging stations,

then using the output of this function (which is a set of feasible nodes, with function

get_nodes and using sub functions w-time and cost-to-charge) the heuristic values

can be obtained for calculating the probability function of the modi�ed ACO. As
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illustrated in Figure 3.4, the �rst step is exchanging information between PEVs and

charging stations using the smart grid panel in real-time. For planning and manag-

ing the charging strategy, the smart grid needs PEV components and the charging

station's speci�cations. The next step uses our proposed algorithm to implement a

charging strategy for PEVs along their trip. During this process, the algorithm needs

to consider the capacity of each charging station and the lengths of the queues which

are updated for all the iterations in the simulation. The analytical and numerical

results are explained in Section V.

Figure 3.4: Flowchart of the proposed smart charging strategy
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• Local pheromone update: While constructing the path decision solution, a local

pheromone update is executed so that the visited path becomes less attractive, al-

lowing the next PEV to explore other paths. This local update can be de�ned as:

τij(u+ 1) = (1− ρ)τ(u) + τ lij ∀(i, j) ∈ iterl (3.24)

where based on the ACO algorithm, for the local best solution at each local iteration,

only the PEV which constructed the best solution is allowed to deposit the pheromone

information. τ lij is the incremental amount of the local updating phase for the local itera-

tion.

• Evaluation of the tour: When the PEV arrives at the destination, for each PEV

tour the optimisation function value (total travel time), denoted as drive-time in

Algorithm 3.1 is calculated. The PEV tour that utilized the optimum path with the

minimum travel time and charging cost among all the PEV tours that are found in

the previous iterations is selected as the best tour.

• Global pheromone update: After a few iterations, each node is then able to estimate

the potential path, regardless of the varying conditions of the model topology and

the PEV tra�c. In fact, the global pheromone update rule is only employed by a

PEV that has constructed the best global solution so far and this update gives the

PEVs more opportunities to explore the search space, thus balancing the need for

exploration and PEV exploitation. The global pheromone update at each global best

solution can be de�ned as:

τij(u+ 1) = (1− ρ)τ(u) + τ gij ∀(i, j) ∈ iter
g (3.25)

where τ gij is the incremental amount of global updating phase for the global iteration.
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Figure 3.5: The Washington green highway PEV network [4]

3.4 Simulation and Results

3.4.1 Simulation Model

In the simulation, EV network of the Washington City road network along the driving

route from Oregon to Vancouver, Canada is considered (Figure 3.5). The PEV network

consisted of 28 charging stations, each equipped with two charging options (CHAdeMO Fast

charger and AC level 2 charger) and a battery swap facility. For the simulation, 1000 PEVs

comprising Nissan Leaf (30kWh), BMW i3 (22kWh) and Smart Ed (16 kWh) are used, with

their SoC modeled as a uniform distribution in the 10%~90% range. The PEV arrival at

each charging station was modeled as a Poisson distribution. The number of sockets for a

charging option at a station was distributed uniformly in the 1~10 range. For the fast DC
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charging option, each socket was assumed to supply 20 kW power [105, 106, 107]. For the

AC level II option, each socket supplied 7 kW power [108] and the average time to swap a

battery was considered as 3 minutes [109]). PEVs were assumed to travel at a maximum

speed of 60 miles/hour, consuming 0.12kWh/mile [110]. The time of use (i.e., dynamic)

tari� was modeled using an exponential function [111] with the minimum and maximum

rate set as $0.24 and $0.46 [112, 113, 114], respectively. Price variation at di�erent charging

stations was implemented using a uniform distribution within the −10 to +10 range of the

standard time of use tari� rate. The MATLAB platform is used to perform the simulation.

3.4.2 Results and Discussion

In this section, the average waiting time, travel time, charging cost and charging station

queue occupancy are presented. The waiting time results from the time spent waiting

in the queues plus charging time, whereas the travel time is made up of driving time

plus waiting time. The queue occupancy parameter indicates the current occupied queue

length expressed as a fraction of the maximum queue length at a charging station. The

proposed solution is compared with the active scheduling, known as the AS model in the

literature. In the AS model [6], the smart charging strategy is modeled as a meta-heuristic

optimisation problem (A∗ search algorithm) where the goal was to �nd charging stations

that reduced the travel time. The AS model, however, does not consider multiple charging

options (i.e., does not include a queuing model) and the costs associated with recharging

at a charging station. To the best of our knowledge, for a PEV network, the AS model is

the most relevant and best performing smart charging solution available in the literature.

The discussion of the results begins with Figure 3.6, which shows the normalized average

waiting time for PEVs at charging stations. The average waiting time over the travel time

is normalized, i.e., the period of time a PEV has to wait at a charging station on average

expressed as a fraction of the travel time. As the �gure suggests, the average waiting time

increases with the increasing volume of tra�c. This is because for a bigger �eet of PEVs,

more PEVs are required to share the limited charging facilities. The result, however, shows

that the waiting time is signi�cantly lower in the proposed solution compared to the AS

model. This is because in our model, multiple charging options as a queuing model are

implemented and considered the queuing delay for each charging option while selecting
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the best charging station for a PEV, which was missing in the AS model. In our model,

information in relation to the queuing delay for each charging option at every charging

station was communicated to a PEV, which allowed the PEV to make an informed decision

while choosing the best charging station.
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Figure 3.6: Normalized waiting time for di�erent number of PEVs

Figure 3.7 presents a comparison of the average travel time in the proposed and AS

models. It is evident that compared to the AS model, the proposed model reduces the

average travel time. This is because in the AS model, many PEVs show up at charging

stations (e.g., hotspot areas) where the queue lengths corresponding to their preferred

charging options are too long, and PEVs are required to wait for a longer period before

they can be served. In our proposed model, the waiting time corresponding to each charg-

ing option at a charging station is calculated based on the queuing model, which when

communicated to the PEV users, can help them to make a better decision.
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Figure 3.7: Average travel time for di�erent number of PEVs
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Figure 3.8: Charging station queue occupancy in hotspot areas
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In Figure 3.8, the comparison of average queue occupancy at charging stations is demon-

strated in hotspot areas (i.e., nodes with greater number of edges) for both models. It is

apparent that the AS model results in higher average queue occupancy because the model

does not use queue information speci�c to an individual charging type. In our proposed

model, PEVs tend to distribute themselves more uniformly among the available charging

stations, thereby reducing the pressure on charging stations in hotspot areas.

Just as gas/petrol prices vary from place to place, prices per charging option can vary

between charging stations. In the proposed model, therefore considered the price per

charging option at various charging stations, which ultimately generated a lower average

charging cost. In Figure 3.9, the average charging cost during various hours of the day is

shown. It is evident that because the price information is not taken into account while

calculating the route in the AS model, the average charging cost in the proposed model is

signi�cantly lower than the average cost in the AS model.
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Figure 3.9: Average charging cost in AS and proposed model
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Figure 3.10 illustrates the average waiting time during the peak PEV load period in

response to dynamic charging prices. As shown in the �gure, the higher price option

encourages many PEV users to go for either partial charging or to avoid charging during

the peak load period, making the average waiting time shorter. Since the ultimate decision

in relation to the choice of time to recharge PEVs belongs to owners, a service provider

cannot enforce a policy to not to serve/charge a PEV, even when it creates a problem

for the grid. But the behaviour of PEV users can be signi�cantly in�uenced by setting a

suitable price so that both the users and grid can bene�t.

As evident in Figure 3.11, in the proposed model, the average PEV load per charging

station is higher during the busiest hour compared to the AS model. This is because the

proposed model e�ciently uses the available PEV charging facilities by providing informa-

tion in relation to the queue length and price for the preferred charging options to PEV

users. The reduced average waiting time achieved by the proposed model also causes the

PEV load curve to decline at a faster rate, making energy management for the residential

load less challenging for the grid.
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Figure 3.10: Improvement in waiting time with price variation
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Figure 3.11: Average charging cost for the proposed model with price variation.
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As in the proposed model, the introduction of the recharge cost in the objective function

is capitalized, an extended overlap period between the PEV and residential peak periods

can be avoided by setting a higher recharge price in our model, which would then encourage

PEV users to perform partial charging at charging stations during busy hours and/or

complete the charging process at home/charging stations during o�-peak hours. It should

be noted that an optimum dynamic pricing model, which would have the greatest bene�t

for both the grid and PEV users, can be modeled as an optimisation problem. This,

however, is not within the scope of this work. In this work, in order to show the impact

of pricing on partial charging and the average waiting time during the peak load period,

two indicative maximum price levels, (i.e., US$ 0.46 vs 0.56 per kWh as the maximum

price) are used. In response to the higher charging price during the peak load period,

the partial charging coe�cient value for a PEV was assigned a value in the range of its

current SoC to the maximum SoC using a normal distribution. The mean value of this

distribution was assumed to decrease exponentially with increasing charging price. For

partial charging, there is a trade-o� between the recharge price and the delay at charging

stations. As shown in Figure 3.12, the average peak hour recharging cost with dynamic

pricing is relatively higher.
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Since the smart charging strategy is intended largely for PEV users, it is important to

have a solution that can be solved in real-time. This motivated us to investigate the time

complexity of the proposed ACO-based smart charging solution. Figure. 3.13 presents

the convergence test result for the proposed solution. This suggests that the ACO-based

approach converges to the optimal solution after 440 iterations for a �eet of 500 PEVs.

In real-time, ACO-based approach requires around 127s to �nd the best route for a PEV

(Figure 3.14). The computation time for each PEV remains relatively constant, even for a

large �eet of PEVs.

Table 3.1 summarizes the performance improvements of the proposed model over the

AS model for a �eet size of 1000 PEVs. The Table clari�es the reduction in the average

waiting time and the average travel time as well as the recharging cost.

Table 3.1: Summarized Simulation Results

Evaluation parameters With AS model With the proposed model Improvement
Average waiting time (min) 48.5 36.2 25.3%
Average travel time (min) 68.3 58.2 15%

Charging cost (US$) 8.9 7.5 16%

3.5 Concluding remarks

In this chapter, a smart charging strategy proposed for a PEV network that o�ers multi-

ple charging options at charging stations. Just as traditional gas stations have di�erent

capacities and pricing options, charging stations can have di�erent capacities and pricing

options, and the recharge price for each option can vary from one station to another. In

a scenario like this, it is important to adopt a charging strategy that identi�es the most

suitable charging station for a PEV user, so that the user can recharge at the minimum

cost and reach his/her destination without a signi�cant delay. Research challenge has mod-

eled as a multi-objective optimisation problem where the goal was to reduce the charging

time, travel time and charging cost. A queuing model is used to estimate the delay at

various charging stations. To mitigate the challenge of longer waiting times and the po-

tential overlap between the peak PEV and residential load periods, the concept of partial

charging also has introduced, which showed that pricing could be used as a useful tool to

encourage PEV drivers to choose the partial charging option during peak load hours. In

light of the signi�cant time complexity of the optimisation solution, research problem has
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been solved by introducing an ACO-based meta-heuristic solution. The simulation results

con�rm that the proposed solution signi�cantly reduces the average charging delay (up to

25%) and cost (up to 15%).
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Chapter 4

A COORDINATED DYNAMIC PRICING

MODEL FOR ELECTRIC VEHICLE CHARGING

STATIONS

In this chapter, a new coordinated dynamic pricing model is introduced to reduce the

overlap between the PEV and residential loads during the evening hours. The coordinated

pricing policy provides a price vector, that encourages a uniform distribution of PEV

loads across all charging stations so that the EV network can be utilized to its maximum

capacity. This leads to a reduction in PEV load during the evening hours. This however,

is not a trivial approach since charging cost is not the only in�uencing factor. EV owners

are in�uenced by other factors as well including driving distance and waiting time, which

is also considered in the proposed approach.

In summary, the major contributions are:1

• Introducing a new coordinated dynamic pricing model for temporal PEV load shifting

to reduce the overlap between loads associated with CS and residential networks.

• Formulating the research challenge as a constrained optimisation problem. Estima-

tion of demand in response to charging price variation is presented for each station

during various time slots. Considering the time complexity of the optimum solution,

a rule-based model to derive the appropriate price information is proposed.

• The proposed model signi�cantly reduces the overlap between the PEV peak load

period and the residential peak load period, which ultimately leads to a lower evening

peak demand. In order to quantify and benchmark the bene�ts, the proposed coordi-

1The presented chapter has been published as: Moghaddam, Z., Ahmad, I., Habibi, D., Masoum,
M.A.S, A Coordinated Dynamic Pricing Model for Electric Vehicle Charging Stations. IEEE Transactions
on Transportation Electri�cation,2019.
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nated dynamic pricing model is tested on the Washington green highway EV network

[4] and compare the results with the smart charging strategy of reference [5] which

uses an ant colony optimisation.

It should be noted that a pricing model has an impact on multiple parties including the

electricity utilities, PEV and CS owners. In this chapter, the potential grid stability issue

is considered which caused by an increase in peak demand during the evening peak hours

as the major challenge. As such, direct pro�t maximization of CS owners is not within the

scope of this work.

Assuming the utilities will enjoy the maximum bene�t from the reduction of the peak

load, they will need to provide necessary incentives (e.g., adjustment of selling price to

CSs, reward for contribution to the reduction of peak load etc. [115, 116]) to the CSs

to promote a dynamic pricing model. One can argue that increasing the capacity of the

utility during the evening peak hours can solve the problem, but this would require capital

investment and the high evening peak demand (i.e., the duck curve problem) would not

help with the economics of this decision (i.e., a low return on investment caused by the

high peak-to-average demand ratio).

4.1 Formulation of Proposed Dynamic Pricing Model

This section presents the proposed coordinated dynamic pricing model for EV charging

stations in terms of Eqs. 4.1- 4.20 that is used in Section IV to present a new EV charging

strategy to reduce the overlaps between residential and CS loads by inspiring temporal

PEV load shifting during evening peak load hours.

In EV smart charging, two entities, namely the PEVs and the electricity utility are

directly involved. The optimisation model included in Eqs. 4.1- 4.5 is intended for PEVs.

This model �nds the optimum CS for an electric vehicle so that the travel time, waiting time

and charging cost can be minimised. In the proposed model, charging price is highlighted

as an in�uential factor in the decision-making process of PEV owners, and the utility can

in�uence their behaviours (e.g., which CS to choose and when, and thereby time-shift the

load) by controlling the charging price at various charging stations.

Equations 4.6 - 4.9 constitute the main problem formulation in this chapter. This

formulation is intended for the utility where the goal is to �nd the price vector for various

time slots, which will ultimately reduce the amount of overlap between the PEV and

residential loads during evening hours. As a result, while the waiting time parameter is a
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key concern from PEV owners perspective, this parameter is not a direct concern for the

utility. Instead, the PEV load, which is a direct concern for the utility is estimated based

on a recursive least square approach (Eqs. 4.10 - 4.15 and Figure 4.2) and included in the

problem formulation.

4.1.1 Charging Station System Model

Assume a city with a set of CSs under di�erent ownership structures which buy the elec-

tricity from the power grid as shown in Figure 4.1. At each CS, there are multiple charging

options including AC level 2 charging, DC fast charging and battery swapping facilities.

In smart charging, both PEVs and the electricity utility are directly involved. In the

existing works [5, 6], smart charging strategies that have been designed for PEV owners

attempt to �nd the optimum charging station for a PEV by considering multiple factors

including driving time, waiting time and the price to charge at a CS. Mathematically, the

objective of such smart charging strategies can be given as [5]:

PEVs arrival

AC level 2 

queue

DC fast charging 

queue

Battery 

Swapping queue

:

:

:

PEVs depart

the station

Charging sockets

……….

Charging stations

Battery storage system Power grid
Solar panel

Figure 4.1: Architecture of the PEV charging station.

53



min[x(T drive(src, dst)) + yTwaitj (o)+zCrechargej (o)] (4.1)

where x, y and z are the positive coe�cients of the objective function. For a PEV,

T drive(src, dst) shows the total driving time from its current location src to the �nal

destination dst, while j shows the charging station along the way and Crechargej (o) indicates

the charging cost. In addition to the driving time, a PEV needs to stay in the queue at

a CS to access an available charging socket. As a result, the total waiting time (Twaitj (o))

at a charging station j depends on the waiting time in the queue (E(W o
j )) and the time to

recharge. Average waiting times for the three types of charging options at time t can be

estimated using the M/M/s/C and the Little law models [94]:

E(W o
j ) =

E(Loj)

λj(1− πRj )
∀o : (o = 1, 2, 3) (4.2)

Therefore, for the queue of the battery swapping facility at CSj , the mean waiting time

can be obtained[5]:

E(W 1
j ) =

µ1
j

λj(µ1
j − λj)(1− πRj )

(4.3)

Similarly, the mean waiting times for DC-fast and AC charging queues are:

E(W 2
j ) =

µ2
j

λj(µ2
j − λj)(1− πRj )

(4.4)

E(W 3
j ) =

µ3
j

λj(µ3
j − λj)(1− πRj )

(4.5)

In addition to the parameters such as driving time and waiting time, the other pa-

rameter that in�uences the decision of a PEV owner is the charging cost. Charging cost

depends on the charging prices at CSs. Existing works [5, 6] assume that all charging

stations use their own pricing models, which o�er no price coordination among CSs and

no price incentive to PEVs for selecting lightly loaded CSs during various hours of the

day. While this assumption causes no major problem for PEV owners, such an approach
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introduces a major concern for the electricity utility.

One risk associated with such charging strategies is that even when there are several

other lightly loaded CSs available nearby while a PEV waits at a heavily loaded CS located

at a hotspot area, the additional driving time and energy consumption would discourage

many PEV owners to use the lightly loaded CSs. The other risk associated with such

charging strategies is that many PEV owners may prefer partial charging at heavily loaded

CSs [5], [117], meaning these owners are likely to plug into the grid straightaway after they

reach home, which will increase the peak residential load.

The overall risk is that due to the non-uniform distribution of charging load, the maxi-

mum capacity of the charging network will not be fully utilized during the peak PEV load

period, meaning a fraction of this PEV load will shift and overlap with the residential

peak load. This is a major concern for the utility and a coordinated dynamic pricing

model can be useful here to in�uence PEV owners to select lightly loaded CSs. Next

section, shows how a coordinated time-varying pricing model can be represented as an

optimisation problem.

4.1.2 Proposed Optimisation Model for Temporal PEV Load Shifting

Assume a set of N CSs in an EV network. The price vector
−−→
P (t) ∈ RN indicates the

charging prices o�ered by the CSs in the network where pj(t) stands for the charging price

o�ered by the charging station j at t . The main objective of the proposed model is to

obtain an appropriate price vector
−−→
P (t) (i.e., decision variable) for the time slots during

the busy hours to minimise the overlap between the PEV load (dj(t)) and residential load

(r(t)). Mathematically, the objective function of the proposed optimisation model can be

given as (4.6):

minimise Z = r(t) +
N∑
j=1

dj(t) (4.6)

subject to:

pminj ≤ pj(t) ≤ pmaxj ∀j = 1, ..., N, ∀t (4.7)
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N∑
j=1

dj(t) ≤ Eca ∀t (4.8)

dj(t)[pj(t) + Ij(t)− cj(t)] ≥ φminj (t) ∀j = 1, ..., N, ∀t (4.9)

Constraint 4.7 de�nes the upper (pmaxj ) and lower bounds (pminj ) for the charging price

at a CS. Constraint 4.8 indicates that the aggregate PEV loads across all CSs (
∑N

j=1 dj(t))

should be less than the maximum capacity of the EV network (Eca). Constraint 4.9 ensures

that the price vector does not lead to revenue loss for charging stations. Ij(t) represents

the incentive [118], [119] provided to CSj by the utility for the time slot t in appreciation

of the contribution of the charging stations in reducing the peak load. cj(t) indicates the

electricity cost for the time slot t at the charging station j.

The PEV and residential load pro�les can vary from day to day (e.g., weekdays vs

weekends). The optimisation model however, can still �nd the optimum price vector,

which would lead to a reduction of overlap and peak load during the evening hours. In

cases when the overlap is not a signi�cant concern for the utility (e.g., low PEV load in the

afternoon hours during a public holiday), the period of interest can be adjusted to re�ect

this in the optimisation model.

The model is independent of the number of charging stations and distances between

the stations. The optimisation problem can be solved given that the impact of price vector

on PEV loads (i.e., fj(pj(t)) at various CSs (Eq. 4.10) can be quanti�ed. This is not a

trivial task since the demand is in�uenced by multiple factors including the locations of

CSs, their distances from PEVs, and the relative price di�erences in their o�ered charging

price.


d1(t)

d2(t)
...

dN (t)

 =


f1(p(t))

f2(p(t))
...

fN (p(t))

 (4.10)

Following section presents how a demand vector can be estimated in response to a

change in the price vector in an EV network.
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4.1.3 Temporal Demand Estimation at Charging Stations in response

to a Price Vector

Using the general demand function [120], PEVs demand is characterized based on the price

�uctuations. Therefore, charging demand function can be characterized by price variations

during di�erent time slots in a day, which can be given as:


d1(t)
...

dN (t)

 =



d1(t) = α1(t)− β1,1p1,k(t) + · · ·+ βN,1pN,k(t)

d2(t) = α2(t)− β2,1p2,k(t) + · · ·+ βN,1pN,k(t)

...

dN (t) = αN (t) + β1,Np1,k(t) + · · · − βN,NpN,k(t)

(4.11)

where [α1, . . . αN ] are factors other than price (e.g., distance, location, hourly aggregate

load) that a�ect charging demand, and [β1, . . . βN ] are the price coe�cients that in�uence

the demand. For demand estimation, the price coe�cients during various hours of the day

are needed.

Equation 4.11 de�nes a linear system of PEVs demand function, which is a�ected by

the price coe�cients of all the CSs in the EV network. The price elasticity coe�cients

of such a linear system can be estimated by the Recursive Least Square (RLS) algorithm

(Figure 4.2) [121]. RLS is an adaptive �lter algorithm that recursively �nds the price

coe�cients at di�erent time slots relating to the input parameters. For applying the RLS

algorithm, the following equations are required:

ej(t) = dj(t)−
−−→
βj(t)

−−→
pj(t) (4.12)

−−→
gj(t) =

−−→
pj(t)

−−−−−−→
Qj(t− 1)

ε+
−−−−−−→
Qj(t− 1)

−−→
pj(t)

(4.13)

−−→
βj(t) =

−−→
βj(t) + ej(t)

−−→
gj(t) (4.14)

−−−→
Qj(t) =

1

ε

−−−−−−→
Qj(t− 1)− 1

ε

−−→
gj(t)

−−→
pj(t) (4.15)
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Update algorithm

+

dj(t)

ej(t)

[p1(t),…,pN(t)]

[α1(t),…,αN (t)]

[β1 (t),…,βN (t)]

 

dj(t)  ˆ 

Figure 4.2: Dynamic state presentation of the price vector.

where ej(t) is the prediction error while 0 < ε ≤ 1 is the forgetting factor that helps us

to capture the last charging demands and ignore the old information and track charging

demand variation over time.
−−→
gj(t) is the gain vector and Q(t) is the inverse correlation

matrix of the input vector. In the RLS algorithm, for a given time slot, the price coe�cients

are derived, and the demand at a CS can be estimated for a given price vector. This demand

information is required to �nd the optimum solution of the optimisation problem.

The model described in the previous section is a non-convex NP-hard constrained

optimisation problem. Since the optimal solution is untraceable and computationally ex-

pensive, a sub-optimal solution is needed. Considering the need for a robust solution, the

problem is solved by introducing an iterative rule-based pricing model, which is described

in the following section.

4.1.4 Proposed Rule-Based Pricing Model

The rule-based instructions is introduced as shown in Table. 4.1 to obtain the spatial price

vector for all CSs at di�erent time slots. The rule-based model attempts to �nd a price

vector which encourages a uniform distribution of PEV loads across all CSs so that the

EV network can be utilized to its maximum capacity during the peak PEV load period.

The rule-based model starts with input parameters, which include the current time slot

t, current demand κj(t) at each CSj and the target demand vector
−−→
γ(t) in the EV network

obtained under the uniform distribution condition.
−−→
γ(t) at the time slot t can be derived

from a charging strategy by uniformly allocating the PEVs among all CSs according to

their capacities (i.e., sockets). It should be noted that the demand parameters in the

rule-based solution are expressed in terms of queue occupancy in contrast to the demand
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parameter in the optimisation model, which is expressed in terms of energy demand.

Table 4.1: Operation Rules of the Proposed Dynamic Pricing Model
Rule-Based Instructions

Rule 1: Input parameters: current price vector, estimated demand at
each CS in response to the current price vector during the next time
slot, current time t and the demand vector γ(t) under uniform load
distribution condition during the next time slot.

Rule 2: At each iteration, ∀j = 1, ..., N update the price vector
according to the following conditions:

if κj(t) ≥ γj(t) (4.16)

xj(t) = |κj(t)− γj(t)|,
σ =

pmax
j −pmin

j

κmax
j (t)−κmin

j (t)

pj(t) = pj(t) + σxj(t);
else

xj(t) = |κj(t)− γj(t)|, (4.17)

σ =
pmax
j −pmin

j

κmax
j (t)−κmin

j (t)

pj(t) = pj(t)− σxj(t);
Rule 3:

a) Use the updated price vector derived from Rule 2 and apply the RLS

algorithm to estimate the demand vector
−−→
κ(t) for the current time slot.

b) ∀j = 1, ..., N , ∀t

if dj(t)[pj(t) + Ij(t)− cj(t)] ≥ φminj (4.18)

Apply Rule 2 to update the price vector;
else

Keep the current price vector.

Rule 4: Test the goodness of the updated price vector using the
following equations:

χ2 =

∑
[κj(t)− γj(t)]2∑

γj(t)
(4.19)

if χ2
m(t) < χ2

m−1(t) (4.20)

update κj(t) with the new pj(t)
m = m+ 1;
Repeat Rules 2 to 4

else −−→
P (t) is the solution.

The rule-based model adjusts the price vector at the start of each time slot so that the
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corresponding demand vector, which is derived from the RLS algorithm moves closer to the

solution under the uniform distribution condition. In order to benchmark the proposed

dynamic pricing model, the proposed solution in a smart charging strategy modeled as

an ant colony optimisation, which is presented in the following section. The �owchart of

the charging strategy incorporating the proposed dynamic pricing model is illustrated in

Figure 4.3.

4.2 Charging Strategy Using the Proposed Dynamic Pricing

Model

As discussed in Section III, in order to �nd an optimum charging station for a PEV, a

charging strategy considers multiple factors including the total driving time, total waiting

time (queue and charging time) and the price to charge. In this section, the implementation

of a charging strategy is described using ant colony optimisation (ACO) [5] considering the

impact of the proposed pricing model on the grid and PEV owners. ACO is selected as

a meta-heuristic solution to provide a robust solution in real-time. Using this approach,

real-time information about the distance to a CS, waiting times at the CS and updated

pricing information for each time slot is included. This enables us to estimate the optimum

path in the CS network, using the proposed pricing model based on the following steps:

• Initialize the parameters including the CSs number and their attributes, number of

PEVs and their attributes and pheromone level as well as the evaporation rate of the

pheromone for the ACO approach in the EV network.

• Calculate P kij(u) in each iteration with respect to the heuristic values such as travel

time, waiting time and updated price at each charging station.

P kij(u) =
τij(u)α[(T drive(src, dst))Twaitj (k)pj(t)]

θ∑
l∈Nk

i
τij(u)α[(T drive(src, dst))Twaitj (k)pj(t)]θ

(4.21)

In Eq. 4.21 at each iteration u, using the updated information of pheromones and

attractiveness of the heuristic information in the model, a PEV k moves stochastically

to obtain the probability function of choosing the next node in a graph of charging

station.

• For the path constructions, the local and global pheromone are updated using the

new price coe�cient vector (Eqs. 4.16, 4.17) as follows [103]:
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τij(u+ 1) = (σ[(1− ρ)τ(u) + τ lij ]) ∀(i, j)] ∈ iterl (4.22)

τij(u+ 1) = (σ[(1− ρ)τ(u) + τ gij ]) ∀(i, j) ∈ iter
g (4.23)

where τ lij and τ gij are the incremental amounts of the local and global update at each

iteration, respectively.

Figure 4.3 shows the �owchart of the proposed dynamic pricing approach to minimise

the overlap between PEVs and residential loads.

begin

Update Price Vector

Apply Rule 2 (Table 1) of Proposed Dynamic Pricing Model

Using Eqs. 16 and 17, update the price vector for all CSs (Fig.3)

Estimate the Demand Vector

Apply Rule 3 (Table 1) of Proposed Dynamic Pricing Model
Using RLS algorithm (Eqs. 11-15), estimate the demand vector for the 

EV network

Apply Rule 4 (Table 1) of Proposed Dynamic Pricing Model

Test the uniform distribution condition of PEV loads (Eqs. 18, 19)

Initialize and Start ACO
Initialize PEVs parameters such as source and destination, current SoC, 

waiting time of CSs and price vector of CSs

Iteration= total number of PEVs?

Charging Strategy Using ACO
Calculate the probability function of ACO at each iteration with respect to 

the proper heuristic and pheromone values (Eq. 20-22)

end

No

Yes

Figure 4.3: Smart charging strategy using the proposed dynamic pricing model.

4.3 Simulation Results and Discussions

4.3.1 Simulation Model

The proposed solution is tested using a simulation based on the Washington City road

EV network, as shown in Figure 3.5. Each CS is equipped with two charging options (DC

fast charger and AC level 2 charger) and a battery swap facility. In the simulation a mix
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Table 4.2: Simulation Parameters
Description Value

Number of charging stations (N) 15

Number of PEVs (M) 500

Arrival rate at charging station j
(λj)

5 to 10 PEVs/hour

Service time of DC fast charging
socket to full-charge (µ2

j )
30 min

Service time of AC level II
charging socket to full-charge (µ3

j )
60 min

Service time of swap battery (µ1
j ) 3-5 min

State of charge for PEV (SoCPEV ) 10% ≤ SoC ≤ 90%

Charging price at peak hours in
the UP model, decided by CSj
using a uniform distribution (pj)

22 ~ 46 cents/kWh
([112, 114])

Pheromone evaporation in ACO (ρ
)

0 ≤ ρ ≤ 1

Weight of pheromones in ACO
(α, θ)

α = θ = 1

Pheromone intensity in ACO (τ) 0.97

of up to 500 PEVs comprising of Nissan Leafs (30 kWh), BMWs i3 (22 kWh) and Smart

Eds (16 kWh) is considered with uniform state of charge (SoC) distribution in the range

of 10%~90%. The PEV arrival at each CS is modeled as a Poisson distribution with the

arrival rate λj . The number of sockets for a charging option at a station is also distributed

uniformly in the range of 1~10. The fast DC is 50 kW [107] and the AC level II charging is

22 kW [108], while the average time to swap a battery is considered to be 3 minutes [122].

Simulation parameters are presented in Table 4.2. The charging prices for all CSs at each

time slot are generated based on the proposed pricing model of Section III. It should be

noted that the peak charging price at CSs is maintained below the peak residential price

(i.e., 55 cents/kWh). This is to encourage PEV owners to use CSs instead of charging

sockets at homes during evening hours since the load from too many PEVs charging at

the same time is likely to cause stress on local substations. Simulation results using the

MATLAB software package are presented in Figures 4.4 - 4.13, and summarized in Table

4.3. The price vector in the EV network (Eq. 4.14) is updated hourly using the proposed

pricing model as discussed in Section 4.2.
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Figure 4.4: Hourly electricity price of the charging stations.

4.3.2 Results and Discussion

In this section, the hourly electricity price, queue occupancy and the average waiting times

at CSs as well as the probability of overlap between PEV and residential loads are analyzed

with the proposed dynamic pricing model described in Section III. The proposed solution

is compared with existing studies that use an uncoordinated pricing (UP) model for all CSs

[5, 6]. In the UP model, charging stations independently choose their own charging price.

The discussion of the results begins with Figure 4.4 which shows the hourly electricity

prices provided by the proposed model for the 15 CSs in the EV network of Figure 3.5.

As the �gure suggests, charging prices at CSs are: i) moderate before 3 p.m. (to motivate

early PEV charging that could be supplied from BSSs and/or renewable energy resources,

ii) high from 3 p.m. to 4 p.m. due to the increase in demand, iii) low during the late

evening hours due to a drop in demand at CSs. The price trend corresponds to the PEV

load pro�le where the PEV peak load is observed at 4pm. If there is a change in the

PEV load pro�le (e.g., PEV peak load shifts left or right depending on days or there is an

increase in demand at CSs during the evening hours), the proposed dynamic pricing model

would follow the load trend and adjust the price at various hours accordingly.

The average queue occupancy at all CSs is investigated during di�erent times of the

day in Figure 4.5. Figure 4.5a presents the queue occupancy of the UP model. This shows
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that when there is no price coordination among charging stations, PEV demands remain

divergent during di�erent time of a day, while Figure 4.5b shows that changing the prices

at CSs using the proposed model in�uences the queue occupancy (i.e., load at a CS). As

shown in the �gure, the proposed model distributes the load among CSs more uniformly

so that the EV network can be utilized to its maximum capacity during the peak tra�c

period.
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Figure 4.5: Hourly queue occupancy of the charging stations in Figure , with; (a) the UP
model, (b) the proposed model
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Figure 4.6 shows the impact of the proposed coordinated price strategy on the PEVs

load during di�erent time slots. As it indicates, the PEV charging load during the peak

period decreases, resulting in uniform distribution of PEV loads across all CSs. As evident

in Figure 4.7 the net PEV load per CS is signi�cantly lower during the peak residential

load period (e.g., 6 P.M. to 8 P.M.) in the proposed model compared to the PEV load in

the existing UP model. This is because, the proposed model makes the best use of the

maximum capacity of the EV network during the peak PEV load period by encouraging

uniform load distribution through the implementation of a coordinated pricing model.

Figure 4.6 shows the impact of the proposed coordinated price strategy on the PEVs load

during di�erent time slots. As it indicates, the PEV charging load during the peak period

has decrease resulting in uniform distribution of PEV loads across all CSs.
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Figure 4.6: Impact of the proposed coordinated price model on the PEVs load.
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Figure 4.7: PEV charging loads comparing UP model and the proposed model( [5, 6])
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Figure 4.8: Probability of overlap between PEV and residential loads while comparing UP
model and the proposed model( [5, 6]).

As evident in Figure 3.11, the net PEV load per CS is signi�cantly lower during the
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peak residential load period (e.g., 6 p.m. to 8 p.m.) in the proposed model compared to

the PEV load in the existing UP model. This is because the proposed model makes the

best use of the maximum capacity of the EV network during the peak PEV load period

by encouraging uniform load distribution through the implementation of a coordinated

pricing model. Figure 4.8 shows that the average price at charging stations with the UP

model is higher than the proposed model during the day time and lower than the proposed

model during the afternoon hours. This is because in the proposed model, considering the

PEV demands at each time slot, price will change to encourage a uniform distribution of

PEV loads across all CSs.

Figure 4.9 presents the probability of an overlap between PEVs and residential loads

during di�erent time slots. As the PEVs loads decrease during the peak hours with the pro-

posed model, it is obvious that the probability of an overlap between PEVs and residential

loads will decrease signi�cantly.

In Figure 4.10, the average waiting time over the travel time for both models is nor-

malized. However, the result shows that, at �rst the waiting time in the proposed model is

higher than UP model, but it decreases signi�cantly during peak hours. This is because in

the proposed model, information in relation to the queuing delay for each charging option

at every CS is considered to update the price of the next time slot, which attracts the PEV

owners to start charging early due to the low charging price.
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Figure 4.9: Performance comparison of the UP model ([5, 6]) and the proposed model for
average PEV charging price
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Figure 4.11: Performance comparison of the UP model [5, 6] and the proposed model for a
typical weekend in NSW [7], [8]; (a) Weekend tra�c counts and residential load, (b) PEV
charging load of weekend.
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Figure 4.11a shows the PEV and residential loads during a typical weekend in NSW

[7], [8]. Note that the overlap between the PEV and residential loads during peak hours

(Figure 2.2) is lower in the weekend compared to weekdays. Figure 4.11b illustrates that the

proposed model maintains its superior performance in terms of the reduced load overlapping

during the weekend as well.

Considering the popularity of Tesla's PEVs, and DC fast charging stations, the pro-

posed coordinated dynamic pricing model is implemented in a scenario where PEVs were

considered to have the capacity equivalent to Tesla Model 3 PEVs (80.5 kWh battery ca-

pacity [38]) , and the AC charging sockets were replaced with DC fast charging sockets in

all CSs. Relevant results as shown in Figure 4.12, which indicates a similar trend observed

in Figures 4.7 and 4.8 where the proposed model was found to outperform the existing

model in terms of peak demand during the evening peak hours and the overlap period.

Since a smart charging strategy needs to be robust, a solution is desired in real time.

The real-time computation time (in sec) required by the proposed dynamic pricing model

is applied to provide a solution. As evident in Figure 4.13a , the computation time of

the rule-based model increases at a moderate rate with the number of CSs. Figure 4.13b

demonstrates the computation time for PEVs to �nd a charging station. As it shows, the

average computation time, remains relatively constant as the number of PEVs increases.

Although the proposed solution relies on the estimated PEV and residential loads,

the uncertainty in loads will have impacts on the outcomes. This uncertainty, however,

is captured in our simulation results where the PEV arrival process at source nodes is

implemented using Poisson distributions with arrival rate λ (Eqs. 4.2 - 4.5 and Table

4.2); hence the actual PEV load at various stations varies from the estimated load during

various time slots. As such, the results presented in Section V captured this uncertainty

in PEV load (Figures 4.4 - 4.12). For the residential load, data supplied by the utility and

assumed that their estimation error is not signi�cantly high.
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Figure 4.12: Performance comparison of the UP model ([5, 6]) and the proposed model
with high capacity batteries for PEVs and DC charging in CSs; (a) PEV charging loads,
(b) probability of overlap between PEV and residential loads.
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Figure 4.13: Computation time for the proposed charging strategy; (a) computation time
for the proposed rule-based model, (b) average computation time of ACO. (Computer
speci�cations include Intel i5 2.4 GHz CPU, 8 GB RAM.)
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Table 4.3 summarizes the performances improvements of the proposed dynamic pricing

strategy over the existing UP model, given a �eet size of 500 PEVs. This table clari�es

that the proposed model provides a signi�cant reduction of the overlap and the peak load

during the evening hours. It should be noted that the duck curve challenge motivated us

to investigate the overlap between the PEV and residential loads in this work. However,

the proposed model can be applied to reduce the overlap in other scenarios as well, for

example, PEV and commercial loads by changing the period of interest and load pro�le

in the optimisation and the rule-based model. Similarly, the proposed model would work

for di�erent PEV and residential load pro�les (e.g., weekend vs weekdays). However, the

period of interest can be di�erent depending on the load pro�les, and the utility would have

the option to adjust this period of interest. The proposed model works by providing price

incentives to EV owners to use less popular/underutilized CSs. As such, the impact of

the proposed solution would be more signi�cant for a large EV network since the disparity

in terms of load distribution is expected to be high in a large network. The proposed

solution would work well for a scenario where the price consideration enjoys the same level

of attention compared to other factors such as driving time, energy consumption. In cases

where the less popular/underutilized stations are located far from other stations, the price

incentive may not signi�cantly in�uence EV owners' behaviour because of the additional

driving time and energy consumption. As such, the impact of the proposed solution can

be limited in such networks.

Table 4.3: Summarized Simulation Results
Evaluation
Parameters

UP
Model
[5, 6]

Proposed
Model

Improvement
of
Proposed
Strategy

Average waiting
time

38.87
min

31.82
min

22.15%*

Probability of
overlap

0.044% 0.030% 46.7%*

Average PEV
load during
evening hours (6
p.m. to 8 p.m.)

1947
kW

639 kW 67.2% **

*) Percentage improvement of proposed coordination strategy compared with UP model
of[5, 6].

**) Percentage improvement of proposed coordination strategy compared with daily
residential load of[38].
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The work presented in this chapter is intended for the electricity utility. However,

since smart charging involves both the utility and the PEV owners, a real-time commu-

nication platform, such as mobile applications would be useful in maintaining real-time

communication between the two entities. The mobile application can capture any change

in the dynamic price information, which would in�uence the PEV owners' decisions. It

can also analyze historical data and provide useful information to the PEV owners such as

the period of a day or the day of a week when the charging price is low.

4.4 Concluding remarks

In this chapter, a new coordinated dynamic pricing model for vehicle charging in CS net-

works introduced, implemented and evaluated that will encourage temporal PEV load

shifting to reduce their overlaps with the residential peak load periods. The dynamic pric-

ing model was formulated as a constrained optimisation problem. The PEVs demand can

be estimated in response to charging prices at various CSs. a rule based heuristic solution

also presented to address the dynamic pricing challenge in real-time. The proposed solution

was included in a charging strategy, which was then implemented using an ACO model

for bench-marking. The �ndings of this study revealed signi�cant bene�ts to both the

consumers by minimising the waiting times at the CSs (by up to 22.15%) and the utilities

by shifting the charging demands to reduce their overlaps (by up to 46.7%) and average

PEV loads (by up to 67.2%) with peak residential loads and mitigate grid congestion.

In this work, all CSs is considered to cooperate with the utility, which would have a

direct in�uence in changing/controlling the charging prices at various CSs in the network.

In many cases, charging stations can be owned by independent entities, and the utility

may not have a direct control over how these independent entities choose/change their

prices. In such cases, a reward based model will be required where the utility will provide

rewards to CSs for their contributions in temporal PEV load shifting so that a potential

grid stability problem can be avoided.
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Chapter 6

CONCLUSION AND FUTURE WORK

Transportation electri�cation has a remarkable role in reducing CO2 emissions, fossil-fuel

dependency and also they are capable of being independent of power grid in terms of

using renewable energy sources. Due to the PEVs use-patterns in urban areas, they can

potentially operate as �exible electric loads, or even as storage, to support the operation of

power systems and the integration of renewable energies [6]. When the PEV penetration

level goes high, the charging demand will have greater impacts on the power grid [128],

[129]. The majority of the PEVs charging demands is synchronized with the daily driving

patterns and occur at the peak hours of the residential demand [39]. The PEV load

combined with the increasing residential load during the evening hours, commonly known

as the "duck curve" problem, o�ers a major challenge (i.e., high peak-to-average demand

ratio) for the energy industry.

This thesis presented new approaches of smart charging strategies in EV networks to

prevent the negative impacts of PEVs load on the power grid. The proposed charging

strategies alleviates the extra load stress from power grids during peak hours. The focus

of this thesis was mainly on issues as follows: (i) better management of PEVs charging

loads at hot-spot areas during peak hours; (ii) minimizing the overlap between the PEVs

and residential loads during peak hours; (iii) coordinating the charging prices of CSs to

have a uniform distribution of PEVs load during peak hours, (iv) an alternative option for

charging PEVs in the EV network to minimize the total waiting times at hot-spot areas

during peak hours, and (v) investigating of using BSS in charging stations, considering their

di�erent capacities to support the extra PEV loads during peak hours. These issues were

investigated, and di�erent solution approaches were proposed. This concluding chapter

summarizes the main �ndings and the contributions of this thesis. In addition, several

research directions for future works are suggested.
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6.1 Contribution of this thesis

The main contributions of this thesis are summarized as follows:

• Chapter 3 presented a smart charging strategy for EV networks that �rst suggests

multiple charging options, such as ac level 2 charging, dc fast charging and battery

swapping facilities at charging stations. Then, for a PEV requiring facilities, the issue

of �nding the optimal charging station is modeled as a multiobjective optimisation

problem, where the goal is to �nd a station that ensures the minimum charging

time, travel time, and charging cost. Then the model is extended to a methahuristic

solution in the form of an ant colony optimisation. Presented simulation results in

the last section of chapter 3, indicate that the proposed solution signi�cantly reduces

the average waiting time (up to 25%) during peak hours.

• Chapter 4 of this thesis, introduced a new coordinated dynamic pricing model for

electric charging stations in order to reduce the overlaps between residential and

CS loads by inspiring temporal PEV load shifting during evening peak hours. The

purpose of the proposed model is to dynamically adjust price incentives to drift

PEVs towards less popular/underutilized CSs. Then the challenge is formulated as

a constrained optimisation problem which have been solved by a heuristic solution.

Considering the obtained results in this chapter, it is recommended that using a

coordinated dynamic pricing model, there are signi�cant bene�ts to both users, by

minimizing waiting times of CSs and utilities, by shifting the charging demands

during peak hours.

• The network and coverage of FCSs are currently constrained by infrastructure costs.

As a result, FCSs are not as ubiquitous as traditional gas stations. In addition, as

PEVs require a reasonably long time to recharge, waiting times at public charging

stations can easily become overwhelming during busy tra�c hours. In chapter 5

through the smart management of portable charging stations (PCS), the above men-

tioned challenge has been addressed to a great extent. In particular, smart strategy

is proposed for dispatching/allocating PCS during various hours of the day to reduce

waiting times at public charging stations. This also helps to decrease overlap between

total PEV demand and peak residential load. First the research challenge of smart

management of PCS problem is formulated as a constrained optimisation problem.

Then a heuristic solution is introduced to solve the NP-hard problem. The corre-

sponding detailed simulation results show that this proposed model can signi�cantly
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reduce average PEV waiting times and decrease the PEV charging loads in FCSs at

peak hours by up 64% and 67% , respectively.

6.2 Future Work

The integration of the PEVs to the grid have connected the grid issues and transportation

sector. In this thesis some of the important challenges of a high penetration of PEVs for the

power grid are presented. Then, three di�erent smart charging strategies have proposed to

prevent the negative impact of PEVs charging for the utility. As the future work, proposed

charging strategies can be developed in the following directions:

• Implementing a reward -based model for the pro�t management of CSs in EV net-

work: this model explores price and non-price rewards for the required changes in

PEVs charging process under the smart charging strategy. Extending the smart

charging strategy into temporal, spatial and economic management in the EV net-

work can be a central point for the analyses of integrated transportation electri�cation

and power systems at the operational level.

• Developing a model for the best placement/sizing of FCSs in the EV network, con-

sidering the determination of minimum required number of PCSs: a novel method for

a real EV network can be proposed to answer the PEVs drivers' concerns in �nding

the best CSs at hot-spot areas. Then using the real-time information and consider-

ing di�erent e�ective parameters for estimating PEVs demand (such as PEVs travel

pattern, rate of charging price at each time slot a day, ... ) the optimum size/number

of PCSs can be determined.
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Appendix A

Ant Colony Optimisation as a Heuristic

Optimisation Technique

Heuristic optimisation techniques facilitate solving problems that were previously di�cult

or impossible to solve [130]. To avoid the high time complexity of solving di�cult problems,

alternative methods have been proposed, which are able to determine not perfectly accu-

rate, but with a good quality approximations to exact solutions [130]. These methods, are

known as heuristics solutions which explore the search space in a particularly convenient

way.

The main existing heuristic solutions are genetic algorithm (GA), particle swarm op-

timisation (PSO) algorithm, ant colony optimisation (ACO), stochastic di�usion Search

(SDS), Di�erential Evolution (DE), etc. The main aspect of these techniques is their �exi-

bility for solving the optimisation problems which have di�erent mathematical constraints.

There are two types of search strategies; uninformed and informed. Uninformed search

or blind search, also called unguided search, is a class of general purpose search algorithms.

The term 'uninformed' means that they have no additional information about states beyond

that provides in the problem de�nition. Since they do not take into account the target

problem, they can be applied to a variety of search problems. Some of the uninformed

search algorithms (non-heuristic) are Depth First Search (DeFS), Breadth First Search

(BrFS), or Uniform Cost Search (UnCS) [131, 132, 133].

Informed search strategies use problem-speci�c knowledge. Usually, this knowledge is

represented using an evaluation function that assesses either the quality of each state in

the search space, or the cost of moving from the current state to a goal-state, using various

possible paths. The famous informed search algorithms are Best First Search (BeFS), Beam

Search (BeS) , the A* Search (A*S) and Ant Colony Optimisation (ACO ) [130, 131].

Ant colony optimisation

The classic ACO algorithm, proposed by Marco Dorigo in 1992 [101], is inspired from

the natural behaviour of ants, which are able to �nd their way using pheromone trails.

111



ACO has raised a lot of interest in the scienti�c community. There are now hundreds of

successful implementations of the ACO metaheuristic applied to a wide range of di�erent

combinatorial optimization problems. The vast majority of these applications concern

NP-hard combinatorial optimization problems [101]. In many applications to NP-hard

combinatorial optimization problems, ACO algorithms perform best when coupled with

local search algorithms. Local search algorithms locally optimise the ants' solutions and

these locally optimized solutions are used in the pheromone update. The use of local search

in ACO algorithms can be very interesting as the two approaches are complementary.

In fact, ACO algorithms perform a rather coarse-grained search, and the solutions they

produce can then be locally �ne-tuned by an adequate local search algorithm. On the other

side, generating appropriate initial solutions for local search algorithms is not an easy task.

In practice, ants probabilistically combine solution components which are part of the best

locally optimal solutions found so far and generate new, promising initial solutions for the

local search. Experimentally, it has been found that such a combination of a probabilistic,

adaptive construction heuristic with local search can yield excellent results [134, 135, 136].

Despite the fact that the use of local search algorithms has been shown to be crucial for

achieving state-of-the-art performance in many ACO applications, it should be noted that

ACO algorithms also show very good performance when local search algorithms cannot be

applied easily [137, 138].

Heuristic Information

The possibility of using heuristic information to direct the ants' probabilistic solution

construction is important because it gives the possibility of exploiting problem speci�c

knowledge. This knowledge can be available a priori (this is the most frequent situation

in NP-hard problems) or at run-time (this is the typical situation in dynamic problems).

For most NP-hard problems, the heuristic information η can be computed at initialization

time and then it remains the same throughout the whole algorithm's run. An example is

the use, in the TSP applications, of the length dij of the edge connecting cities i and j

to de�ne the heuristic information ηij = 1/dij . However, the heuristic information may

also depend on the partial solution constructed so far and therefore be computed at each

step of an ant's solution construction. This determines a higher computational cost that

may be compensated by the higher accuracy of the computed heuristic values. It should

be noted that while the use of heuristic information is rather important for a generic ACO

algorithm, its importance is strongly reduced if local search is used to improve solutions.

This is due to the fact that local search takes into account information about the cost to

improve solutions in a more direct way.
Probability function of ACO and the required equations for pheromone update in a

path are have explained in Chapter 3.
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Appendix B

Queueing System Concepts

It is often necessary to make projections of performance on the basis of existing load

information or on the basis of estimated load for a new environment. In following section

two important types of queueing system is presented.
Before introducing the queue system structure, there are the following notations:

• λ =arrival rate; mean number of arrivals per second

• Ts =mean service time for each arrival; amount of time being served, not counting

time waiting in the queue

• ρ =utilization; fraction of time facility (server or servers) is busy

• w =mean number of items waiting to be served

• Tw =mean waiting time (including items that have to wait and items with waiting

time = 0)

• r =mean number of items resident in system (waiting and being served)

• Tr =mean residence time; time an item spends in system (waiting and being served)

The simplest queueing system is depicted in Figure B.1 The central element of the system

is a server, which provides services to items. Items from some population of items arrive

at the system to be served. If the server is idle, an item is served immediately. Otherwise,

an arriving item joins a waiting queue. When the server has completed serving an item,

the item departs. If there are items waiting in the queue, one is immediately dispatched to

the server. The server in this model can represent anything that performs some function

or service for a collection of items. Examples: a processor provides service to processes;

a transmission line provides a transmission service to packets or frames of data; an I/O

device provides a read or write service for I/O requests [9].
Items arrive at the facility at some average rate (items arriving per second) λ. At

any given time, a certain number of items will be waiting in the queue (zero or more);

the average number waiting is w, and the mean time that an item must wait is Tw. Tw
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Figure B.1: Single-server queue structure [9]

is averaged over all incoming items, including those that do not wait at all. The server

handles incoming items with an average service time Ts; this is the time interval between

the dispatching of an item to the server and the departure of that item from the server.

Utilization, ρ, is the fraction of time that the server is busy, measured over some interval

of time. Finally, two parameters apply to the system as a whole. The average number of

items resident in the system, including the item being served (if any) and the items waiting

(if any), is r; and the average time that an item spends in the system, waiting and being

served, is Tr; we refer to this as the mean residence time. If we assume that the capacity

of the queue is in�nite, then no items are ever lost from the system; they are just delayed

until they can be served. Under these circumstances, the departure rate equals the arrival

rate. As the arrival rate increases, the utilization increases and with it, congestion [9]. The

queue becomes longer, increasing waiting time. At ρ = 1, the server becomes saturated,

working 100% of the time. Thus, the theoretical maximum input rate that can be handled

by the system is:

λmax =
1

Ts

However, queues become very large near system saturation, growing without bound

when ρ= 1. Practical considerations, such as response time requirements or bu�er sizes,

usually limit the input rate for a single server to between 70 and 90% of the theoretical

maximum.

Figure B.2 shows a generalization of the simple model which can be considered for

multiple servers, all sharing a common queue. If an item arrives and at least one server

is available, then the item is immediately dispatched to that server. It is assumed that

all servers are identical; thus, if more than one server is available, it makes no di�erence

which server is chosen for the item. If all servers are busy, a queue begins to form. As soon
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Figure B.2: Multi-server queue [9]

as one server becomes free, an item is dispatched from the queue using the dispatching

discipline in force.

Figure B.3: Multiple Single-Server Queues [9]

With the exception of utilization, all of the parameters illustrated in Figures B.2, B.3

carry over to the multi-server case with the same interpretation. If we have N identical

servers, then u is the utilization of each server, and we can consider Nρ to be the utilization

of the entire system; this latter term is often referred to as the tra�c intensity, u. Thus,

the theoretical maximum utilization is N ∗ 100, and the theoretical maximum input rate

is:
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λmax =
N

Ts

The key characteristics typically chosen for the multi-server queue correspond to those

for the single-server queue. That is, we assume an in�nite population and an in�nite

queue size, with a single in�nite queue shared among all servers. Unless otherwise stated,

the dispatching discipline is FIFO. For the multi-server case, if all servers are assumed

identical, the selection of a particular server for a waiting item has no e�ect on service

time [9].
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