109 research outputs found

    Topos Semantics for Higher-Order Modal Logic

    Full text link
    We define the notion of a model of higher-order modal logic in an arbitrary elementary topos E\mathcal{E}. In contrast to the well-known interpretation of (non-modal) higher-order logic, the type of propositions is not interpreted by the subobject classifier ΩE\Omega_{\mathcal{E}}, but rather by a suitable complete Heyting algebra HH. The canonical map relating HH and ΩE\Omega_{\mathcal{E}} both serves to interpret equality and provides a modal operator on HH in the form of a comonad. Examples of such structures arise from surjective geometric morphisms f:F→Ef : \mathcal{F} \to \mathcal{E}, where H=f∗ΩFH = f_\ast \Omega_{\mathcal{F}}. The logic differs from non-modal higher-order logic in that the principles of functional and propositional extensionality are no longer valid but may be replaced by modalized versions. The usual Kripke, neighborhood, and sheaf semantics for propositional and first-order modal logic are subsumed by this notion

    Categories for Dynamic Epistemic Logic

    Full text link
    The primary goal of this paper is to recast the semantics of modal logic, and dynamic epistemic logic (DEL) in particular, in category-theoretic terms. We first review the category of relations and categories of Kripke frames, with particular emphasis on the duality between relations and adjoint homomorphisms. Using these categories, we then reformulate the semantics of DEL in a more categorical and algebraic form. Several virtues of the new formulation will be demonstrated: The DEL idea of updating a model into another is captured naturally by the categorical perspective -- which emphasizes a family of objects and structural relationships among them, as opposed to a single object and structure on it. Also, the categorical semantics of DEL can be merged straightforwardly with a standard categorical semantics for first-order logic, providing a semantics for first-order DEL.Comment: In Proceedings TARK 2017, arXiv:1707.0825

    A Galois connection between classical and intuitionistic logics. II: Semantics

    Full text link
    Three classes of models of QHC, the joint logic of problems and propositions, are constructed, including a class of subset/sheaf-valued models that is related to solutions of some actual problems (such as solutions of algebraic equations) and combines the familiar Leibniz-Euler-Venn semantics of classical logic with a BHK-type semantics of intuitionistic logic. To test the models, we consider a number of principles and rules, which empirically appear to cover all "sufficiently simple" natural conjectures about the behaviour of the operators ! and ?, and include two hypotheses put forward by Hilbert and Kolmogorov, as formalized in the language of QHC. Each of these turns out to be either derivable in QHC or equivalent to one of only 13 principles and 1 rule, of which 10 principles and 1 rule are conservative over classical and intuitionistic logics. The three classes of models together suffice to confirm the independence of these 10 principles and 1 rule, and to determine the full lattice of implications between them, apart from one potential implication.Comment: 35 pages. v4: Section 4.6 "Summary" is added at the end of the paper. v3: Major revision of a half of v2. The results are improved and rewritten in terms of the meta-logic. The other half of v2 (Euclid's Elements as a theory over QHC) is expected to make part III after a revisio

    Generalized Topological Semantics for First-Order Modal Logic

    Get PDF
    This dissertation provides a new semantics for first-order modal logic. It is philosophicallymotivated by the epistemic reading of modal operators and, in particular, three desiderata in the analysis of epistemic modalities.(i) The semantic modelling of epistemic modalities, in particular verifiability and falsifiability, cannot be properly achieved by Kripke's relational notion of accessibility. It requires instead a more general, topological notion of accessibility.(ii) Also, the epistemic reading of modal operators seems to require that we combine modal logic with fully classical first-order logic. For this purpose, however, Kripke's semantics for quantified modal logic is inadequate; its logic is free logic as opposed to classical logic.(iii) More importantly, Kripke's semantics comes with a restriction that is too strong to let us semantically express, for instance, that the identity of Hesperus and Phosphorus, even if metaphysically necessary, can still be a matter of epistemic discovery.To provide a semantics that accommodates the three desiderata, I show, on the one hand, howthe desideratum (i) can be achieved with topological semantics, and more generally neighborhood semantics, for propositional modal logic. On the other hand, to achieve (ii) and (iii), it turns out that David Lewis's counterpart theory is helpful at least technically. Even though Lewis's ownformulation is too liberal---in contrast to Kripke's being too restrictive---to achieve our goals, this dissertation provides a unification of the two frameworks, Kripke's and Lewis's. Through a series of both formal and conceptual comparisons of their ontologies and semantic ideas, it is shown that structures called sheaves are needed to unify the ideas and achieve the desiderata (ii) and (iii). In the end, I define a category of sheaves over a neighborhood frame with certain properties, and show that it provides a semantics that naturally unifies neighborhood semantics for propositional modal logic, on the one hand, and semantics for first-order logic on the other. Completeness theorems are proved
    • …
    corecore