research

A Galois connection between classical and intuitionistic logics. II: Semantics

Abstract

Three classes of models of QHC, the joint logic of problems and propositions, are constructed, including a class of subset/sheaf-valued models that is related to solutions of some actual problems (such as solutions of algebraic equations) and combines the familiar Leibniz-Euler-Venn semantics of classical logic with a BHK-type semantics of intuitionistic logic. To test the models, we consider a number of principles and rules, which empirically appear to cover all "sufficiently simple" natural conjectures about the behaviour of the operators ! and ?, and include two hypotheses put forward by Hilbert and Kolmogorov, as formalized in the language of QHC. Each of these turns out to be either derivable in QHC or equivalent to one of only 13 principles and 1 rule, of which 10 principles and 1 rule are conservative over classical and intuitionistic logics. The three classes of models together suffice to confirm the independence of these 10 principles and 1 rule, and to determine the full lattice of implications between them, apart from one potential implication.Comment: 35 pages. v4: Section 4.6 "Summary" is added at the end of the paper. v3: Major revision of a half of v2. The results are improved and rewritten in terms of the meta-logic. The other half of v2 (Euclid's Elements as a theory over QHC) is expected to make part III after a revisio

    Similar works

    Full text

    thumbnail-image

    Available Versions