4 research outputs found

    Neighborhood Failure Localization in All-Optical Networks via Monitoring Trails

    Get PDF
    Shared protection, such as failure dependent protection (FDP), is well recognized for its outstanding capacity efficiency in all-optical mesh networks, at the expense of lengthy restoration time due to multi-hop signaling mechanisms for failure localization, notification, and device configuration. This paper investigates a novel monitoring trail (m-trail) scenario, called Global Neighborhood Failure Localization (G-NFL), that aims to enable any shared protection scheme, including FDP, for achieving all-optical and ultra-fast failure restoration. We firstly define neighborhood of a node, which is a set of links whose failure states should be known to the node in restoration of the corresponding working lightpaths (W-LPs). By assuming every node can obtain the on-off status of traversing m-trails and W-LPs via lambda monitoring, the proposed G-NFL problem routes a set of m-trails such that each node can localize any failure in its neighborhood. Bound analysis is performed on the minimum bandwidth required for m-trails under the proposed G-NFL problem. Then a simple yet efficient heuristic approach is presented. Extensive simulation is conducted to verify the proposed G-NFL scenario under a number of different definitions of nodal neighborhood which concern the extent of dependency between the monitoring plane and data plane. The effect of reusing the spare capacity by FDP for supporting m-trails is examined. We conclude that the proposed G-NFL scenario enables a general shared protection scheme, toward signaling-free and ultra-fast failure restoration like p-Cycle, while achieving optimal capacity efficiency as FDP

    Neighborhood Failure Localization in All-Optical Networks via Monitoring Trails

    Get PDF
    Shared protection, such as failure dependent protection (FDP), is well recognized for its outstanding capacity efficiency in all-optical mesh networks, at the expense of lengthy restoration time due to multi-hop signaling mechanisms for failure localization, notification, and device configuration. This paper investigates a novel monitoring trail (m-trail) scenario, called Global Neighborhood Failure Localization (G-NFL), that aims to enable any shared protection scheme, including FDP, for achieving all-optical and ultra-fast failure restoration. We firstly define neighborhood of a node, which is a set of links whose failure states should be known to the node in restoration of the corresponding working lightpaths (W-LPs). By assuming every node can obtain the on-off status of traversing m-trails and W-LPs via lambda monitoring, the proposed G-NFL problem routes a set of m-trails such that each node can localize any failure in its neighborhood. Bound analysis is performed on the minimum bandwidth required for m-trails under the proposed G-NFL problem. Then a simple yet efficient heuristic approach is presented. Extensive simulation is conducted to verify the proposed G-NFL scenario under a number of different definitions of nodal neighborhood which concern the extent of dependency between the monitoring plane and data plane. The effect of reusing the spare capacity by FDP for supporting m-trails is examined. We conclude that the proposed G-NFL scenario enables a general shared protection scheme, toward signaling-free and ultra-fast failure restoration like p-Cycle, while achieving optimal capacity efficiency as FDP

    How to Survive Targeted Fiber Cuts: A Game Theoretic Approach for Resilient SDON Control Plane Design

    Get PDF
    Software-defined optical networking (SDON) paradigm enables programmable, adaptive and application-aware backbone networks via centralized network control and management. Aside from the manifold advantages, the control plane (CP) of an SDON is exposed to diverse security threats. As the CP usually shares the underlying optical infrastructure with the data plane (DP), an attacker can launch physical-layer attacks to cause severe disruption of the CP. This paper studies the problem of resilient CP design under targeted fiber cut attacks, whose effectiveness depends on both the CP designer\u27s and the attacker\u27s strategies. Therefore, we model the problem as a non-cooperative game between the designer and the attacker, where the designer tries to set up the CP to minimize the attack effectiveness, while the attacker aims at maximizing the effectiveness by cutting the most critical links. We define the game strategies and utility functions, conduct theoretical analysis to obtain the Nash Equilibrium (NE) as the solution of the game. Extensive simulations confirm the effectiveness of our proposal in improving the CP resilience to targeted fiber cuts

    Network-wide localization of optical-layer attacks

    Get PDF
    Optical networks are vulnerable to a range of attacks targeting service disruption at the physical layer, such as the insertion of harmful signals that can propagate through the network and affect co-propagating channels. Detection of such attacks and localization of their source, a prerequisite for securenetwork operation, is a challenging task due to the limitations in optical performance monitoring, as well as the scalability and cost issues. In this paper, we propose an approach for localizing the source of a jamming attack by modeling the worst-case scope of each connection as a potential carrier of a harmful signal. We define binary words called attack syndromes to model the health of each connection at the receiver which, when unique, unambiguously identify the harmful connection. To ensure attack syndrome uniqueness, we propose an optimization approach to design attack monitoring trails such that their number and length is minimal. This allows us to use the optical network as a sensor for physical-layer attacks. Numerical simulation results indicate that our approach obtains network-wide attack source localization at only 5.8% average resource overhead for the attackmonitoring trails
    corecore