
Fault Localization in All-Optical
Mesh Networks

by

Mohammed Liakat Ali

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2013

c© Mohammed Liakat Ali 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144146555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Fault management is a challenging task in all-optical wavelength division multiplexing
(WDM) networks. However, fast fault localization for shared risk link groups (SRLGs)
with multiple links is essential for building a fully survival and functional transparent
all-optical mesh network.

Monitoring trail (m-trail) technology is an effective approach to achieve the goal,
whereby a set of m-trails are derived for unambiguous fault localization (UFL). However,
an m-trail traverses through a link by utilizing a dedicated wavelength channel (WL), caus-
ing a significant amount of resource consumption. In addition, existing m-trail methods
incur long and variable alarm dissemination delay.

We introduce a novel framework of real-time fault localization in all-optical WDM mesh
networks, called the monitoring-burst (m-burst), which aims at initiating a balanced trade-
off between consumed monitoring resources and fault localization latency. The m-burst
framework has a single monitoring node (MN) and requires one WL in each unidirectional
link if the link is traversed by any m-trail. The MN launches short duration optical bursts
periodically along each m-trail to probe the links of the m-trail. Bursts along different
m-trails are kept non-overlapping through each unidirectional link by scheduling burst
launching times from the MN and multiplexing multiple bursts, if any, traversing the link.
Thus, the MN can unambiguously localize the failed links by identifying the lost bursts
without incurring any alarm dissemination delay. We have proposed several novel m-trail
allocation, burst launching time scheduling, and node switch fabric configuration schemes.
Numerical results show that the schemes, when deployed in the m-burst framework, are
able to localize single-link and multi-link SRLG faults unambiguously, with reasonable
fault localization latency, by using at most one WL in each unidirectional link.

To reduce the fault localization latency further, we also introduce a novel methodology
called nested m-trails. At first, mesh networks are decomposed into cycles and trails. Each
cycle (trail) is realized as an independent virtual ring (linear) network using a separate pair
of WLs (one WL in each direction) in each undirected link traversed by the cycle (trail).
Then, sets of m-trails, i.e., nested m-trails, derived in each virtual network are deployed
independently in the m-burst framework for ring (linear) networks. As a result, the fault
localization latency is reduced significantly. Moreover, the application of nested m-trails
in adaptive probing also reduces the number of sequential probes significantly. Therefore,
practical deployment of adaptive probing is now possible. However, the WL consumption
of the nested m-trail technique is not limited by one WL per unidirectional link. Thus,
further investigation is needed to reduce the WL consumption of the technique.

iii

Acknowledgements

I would like to thank my thesis supervisor Dr. Pin-Han Ho for his advice, guidance,
encouragement, and unwavering support. Without his help, it would have been impossible
to complete this thesis.

I wish to thank the members of my PhD thesis committee: Dr. Johnny Wong and
Dr. Bin Ma of the David R. Cheriton School of Computer Science, Dr. Sagar Naik of
the Department of Electrical and Computer Engineering, and Dr. Martin Maier of the
Institut National de la Recherche Scientifique (INRS), Montreal, Canada for their advice
and guidance. I also wish to thank Dr. C. Perry Chou, chair of my thesis defense.

I would like to thank Mary McPherson of the Writing Center for her help to make the
thesis more understandable. I wish to thank Dr. Ahmad Dhaini for his advice regarding
thesis completion in time. My thanks go to Dr. Anna Lubiw for her discussion and valuable
comments. I also thank Dr. Bernard Wong, Dr. Craig Kaplan, Dr. Martin Karsten, Dr.
Srinivasan Keshav, and Dr. Douglas Stinson for their help.

I wish to thank my co-authors during my study at the University of Waterloo: Dr.
János Tapolcai for his advice, guidance, and cooperation, Dr. Basam Shihada and Dr.
Suresh Subramaniam for their helpful comments, and Dr. Bin Wu for his patience in
introducing me to the design of effective ILPs.

I would like to thank Maureen Jones of the Student Awards & Financial Aid office
for her advice about funding. I also thank Margaret Towell and Helen Jardine for their
help and cooperation. Thanks to my fellow students, staff, and teachers at the David R.
Cheriton School of Computer Science for their consultations, cooperation, and help.

I am grateful to my wife Salma for her sincere support and encouragement. Without
her help, this thesis work could never have been completed. My appreciation goes to my
sons, Rafi and Shwapneel, who gladly adjusted their schedules during my long period of
study whenever it was needed.

iv

Dedication

To my wife, Salma Kader Lovely

and

To my sons, Rafi and Shwapneel

v

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Dedication v

List of Tables xi

List of Figures xiii

List of Algorithms xvi

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 5

1.3 Statement of Problem . 6

1.4 Organization of the Thesis . 7

2 Literature Review 10

2.1 Introduction . 10

2.2 Single-Link SRLG Fault Localization . 12

vi

2.2.1 In-band Methods . 13

2.2.2 Probing Methods . 17

2.2.3 Out-of-band Methods . 17

2.2.4 Hybrid Methods . 25

2.2.5 Non-Alarm Disseminating Methods 26

2.3 Multi-Link SRLG Fault Localization . 28

2.3.1 In-band Methods . 28

2.3.2 Probing Methods . 29

2.3.3 Out-of-band Methods . 30

2.3.4 Non-Alarm Disseminating Methods 31

2.4 Fault Localization via M-Burst Framework 32

2.5 Conclusions . 33

3 The M-Burst Framework 35

3.1 Introduction . 35

3.2 Description of the Framework . 36

3.3 Problem Formulation . 40

3.3.1 M-Trail Allocation . 40

3.3.2 M-Burst Launching Time Scheduling 42

3.3.3 Node Switch Fabric Configuration Scheduling 42

3.4 Conclusions . 43

4 M-Burst on Single-Link SRLGs 44

4.1 Introduction . 44

4.2 Problem Analysis . 46

4.2.1 M-Burst Launching Time Scheduling 46

4.2.2 Node Switch Fabric Configuration Scheduling 48

4.3 Joint Optimization . 50

vii

4.3.1 ILP Formulation for Joint Optimization 50

4.3.2 Numerical Results . 57

4.4 Separate Optimization . 60

4.4.1 ILP Formulation for M-Cycle Allocation 61

4.4.2 ILP Formulation for M-Burst Launching Time Scheduling 61

4.4.3 Numerical Results . 64

4.5 Heuristic Algorithms . 67

4.5.1 M-Cycle Allocation Method . 67

4.5.2 M-Burst Launching Time Scheduling 69

4.5.3 Numerical Results . 72

4.6 Conclusions . 73

5 M-Burst on Multi-Link SRLGs 75

5.1 Introduction . 75

5.2 MCF: A Multi-Link SRLG Fault Localization Method 78

5.2.1 Theoretical Analysis . 78

5.2.2 ILP Formulation for the MCF Method 82

5.2.3 Heuristic Algorithm for M-Trail Allocation 86

5.2.4 Numerical Results . 89

5.3 DMCF: A Disjoint Path-Based Extension of the MCF Method 94

5.3.1 Theoretical Analysis . 96

5.3.2 ILP Formulation for the DMCF Method 97

5.3.3 Heuristic Algorithms for the DMCF Method 103

5.3.4 Numerical Results . 108

5.4 Conclusions . 111

viii

6 M-Burst using Nested M-Trails 113

6.1 Introduction . 113

6.2 Single-Link SRLG Fault Localization in Linear Networks 114

6.2.1 M-Trail Allocation in Linear Networks 118

6.2.2 M-Burst Launching Time Scheduling in Linear Networks 120

6.2.3 Node Switch Fabric Configuration Scheduling in Linear Networks . 123

6.2.4 Numerical Results . 124

6.3 Dual-Link SRLG Fault Localization in Ring Networks 125

6.3.1 M-Trail Allocation in Ring Networks 130

6.3.2 M-Burst Launching Time Scheduling in Ring Networks 132

6.3.3 Node Switch Fabric Configuration Scheduling in Ring Networks . . 135

6.3.4 Numerical Results . 137

6.4 Dual-Link SRLG Fault Localization in Mesh Networks 138

6.4.1 M-Trail Allocation for Dual-Link Fault Localization 141

6.4.2 M-Burst Launching Time Scheduling 142

6.4.3 Node Switch Fabric Configuration Scheduling 143

6.5 Multi-Link SRLG Fault Localization in Mesh Networks 144

6.5.1 M-Trail Allocation for Multi-Link Fault Localization 147

6.5.2 M-Burst Launching Time Scheduling 150

6.5.3 Node Switch Fabric Configuration Scheduling 152

6.6 ILP to Decompose Mesh Networks . 153

6.7 Heuristic to Decompose Mesh Networks 158

6.8 Numerical Results . 160

6.9 Application of Nested M-Trails in Adaptive Probing 162

6.9.1 Dual-Link SRLG Fault Localization in Mesh Networks 164

6.9.2 Multi-Link SRLG Fault Localization in Mesh Networks 166

6.10 Conclusions . 169

ix

7 Conclusions and Future Work 170

7.1 Introduction . 170

7.2 Contributions . 172

7.3 Publications . 174

7.4 Future Work . 175

7.5 Conclusions . 176

APPENDICES 177

A Simple Disjoint Path Algorithms 178

A.1 Introduction . 178

A.2 Theoretical Analysis . 179

A.3 Link-Disjoint Shortest Paths . 183

A.4 Node-Disjoint Shortest Paths . 186

A.5 Numerical Results . 190

A.6 Conclusions . 190

B Networks Used in the Experiments 191

References 196

x

List of Tables

3.1 Alarm Code Table (ACT) . 37

4.1 ACT using the Joint ILP . 59

4.2 The Performance of the Joint ILP in Additional Networks 60

4.3 M-Cycle Solution Set Provided by the M-Cycle Allocation ILP 64

4.4 ACT using the Separate ILPs . 65

4.5 The Comparative Performance of the Joint and Separate ILP Methods . . 67

4.6 The Comparative Performance of the Heuristic and the ILP Methods . . . 73

5.1 List of SRLGs in a Network with 7 Nodes and 12 Links 90

5.2 Alarm Code Table (ACT) . 92

5.3 Monitoring Delays along the M-Trails . 92

5.4 The Comparative Performance in Additional Networks 94

5.5 The Comparative Performance of the Heuristic and the ILP MCF Methods 95

5.6 Monitoring Delays along the M-Trails . 109

5.7 The Comparative Performance of MC-1, MCF, and DMCF Methods . . . 111

6.1 ACT for Single Link Fault Localization in a Linear Network with 7 Links 119

6.2 Fault Localization Latency T (ms) in Linear Networks 125

6.3 ACT for Dual-Link SRLG Fault Localization in a Ring Network with 4 Links 131

6.4 Fault Localization Latency T (ms) in Ring Networks 137

xi

6.5 ACT for Dual-Link SRLG Fault Localization in a Mesh Network with 4
Nodes and 6 Links . 142

6.6 ACT for Multi-Link SRLG Fault Localization in a Mesh Network with 5
Nodes and 8 Links, where d = 4 . 149

6.7 ACT for Multi-Link SRLG Fault Localization in a Mesh Network with 5
Nodes and 8 Links, where d = 3 . 151

6.8 The Performance of the ILP Method . 162

6.9 The Performance of the Heuristic Method 163

6.10 The Comparative Performance of the Methods, where d = 3 164

6.11 The Performance of Adaptive Schemes . 168

xii

List of Figures

3.1 Single-link SRLG fault localization. 36

3.2 Burst launching schedule from the MN. 38

3.3 Configuration of the switch fabric of node 1. 39

3.4 Configuration of the switch fabric of node 2. 39

4.1 M-cycle solution set provided by the joint ILP for a network with 9 nodes
and 14 links. 58

4.2 Schedule of link traversal by multiple m-bursts along the m-cycles provided
by the joint ILP. 60

4.3 M-cycle solution set provided by the separate ILPs for a network with 9
nodes and 14 links. 65

4.4 Schedule of link traversal by multiple m-bursts along the m-cycles provided
by the separate ILPs. 66

5.1 M-trail solution set and the ACT for a network with 3 node and 3 link. . 82

5.2 M-trail solution set for a network with 7 nodes and 12 links. 91

5.3 Collision-free link traversal by multiple m-bursts. 93

5.4 M-trail solution set for a network with 7 nodes and 12 links. 109

5.5 Schedule of m-bursts through selected unidirectional links. 110

6.1 Single-link SRLG fault localization in a linear network. 115

6.2 Single-link SRLG fault localization in a linear network from a single MN.
End node v0 is the MN. 115

xiii

6.3 Single-link SRLG fault localization from a single MN in each segment at
either side of the MN in a linear network. Intermediate node v2 is the MN. 117

6.4 Burst traversal in a linear network to localize single-link SRLG faults from
a single MN. L = 2δ. 122

6.5 Configuration of node switch fabric for single-link SRLG fault localization
when bursts are launched back-to-back in ascending order of the lengths of
corresponding m-trails. 124

6.6 Configuration of node switch fabric for single-link SRLG fault localization
when bursts are launched in descending order of the lengths of corresponding
m-trails. 124

6.7 Single-link SRLG fault localization in a ring network. 126

6.8 Single-link SRLG fault localization in a ring network from a single MN.
Node v0 is the MN. 126

6.9 Dual-link SRLG fault localization in a ring network from a single MN. Node
v0 is the MN. 129

6.10 Burst traversal in a ring network to localize dual-link SRLG faults from a
single MN. L = δ. 133

6.11 Burst traversal in a ring network to localize dual-link SRLG faults from a
single MN. L ≥ δ(|E| − 1). 135

6.12 Configuration of node switch fabric of intermediate node vi for dual-link
SRLG fault localization from a single MN in ring networks. Node v0 is the
MN. 136

6.13 Cycle cover for dual-link SRLG fault localization in a mesh network. . . . 141

6.14 Cycle cover for multi-link SRLG fault localization in a mesh network, where
d = 4. 148

6.15 Cycle cover for multi-link SRLG fault localization in a mesh network, where
d = 3. 150

6.16 Dual-link and Multi-link SRLG fault localization in the network with 9
nodes and 14 links. Node v0 is the MN. 161

6.17 Application of nested m-trail in adapting probing. 167

A.1 An example of a negative cycle created during search of 3rd node-disjoint
shortest path from node 4 to node 0. 183

xiv

B.1 Tetrahedron: A network with 4 nodes and 6 links. 191

B.2 Network A: A network with 5 nodes and 8 links. 191

B.3 Network B: A network with 6 nodes and 9 links. 192

B.4 Octahedron: A network with 6 nodes and 12 links. 192

B.5 Network C: A network with 7 nodes and 12 links. 192

B.6 Cube: A network with 8 nodes and 12 links. 193

B.7 Network D: A network with 9 nodes and 14 links. 193

B.8 CERNet: A network with 10 nodes and 16 links. 193

B.9 CERNet + 1 link: A network with 10 nodes and 17 links. 194

B.10 SmallNet: A network with 10 nodes and 22 links. 194

B.11 NSFNet + 2 links: A network with 14 nodes and 23 links. 194

B.12 Bellcore + 1 link: A network with 15 nodes and 29 links. 195

xv

List of Algorithms

4.1 The M-Cycle Allocation Method for Single-Link SRLG Fault Localization . 68

- Function FindMCycle(Aj) . 69

4.2 M-Burst Launching Time Scheduler . 71

- Function FindMaxDelay(P , sq) . 72

5.1 The MCF M-Trail Allocation Method . 87

- Function FindMTrail(Aψ, ψ, a, b) . 88

5.2 The DMCF M-Trail Allocation Method . 106

- Function RemoveRedundantMTrails(M, A) 107

6.1 M-Trail Allocation in Linear Networks . 118

6.2 Dual-Link SRLG Fault Localization in Ring Networks 128

6.3 M-Trail Allocation in Ring Networks . 131

6.4 Nested M-Trail Method for Dual-link SRLG Fault Localization 140

6.5 Nested M-Trail Method for Multi-Link SRLG Fault Localization 146

6.6 The Cycle Set Derivation Method . 159

6.7 Dual-Link SRLG Fault Localization using Adaptive Probing 165

A.1 Link-Disjoint Path Finding Method . 184

- Function Bellman-Ford-for-Link-Disjoint-Shortest-Path(Gst, s, t) 185

A.2 Node-Disjoint Path Finding Method . 187

- Function Bellman-Ford-for-Node-Disjoint-Shortest-Path(Gst, s, t, color) . 188

xvi

Chapter 1

Introduction

1.1 Background

In optical networks, each lightpath is set up between a source and a sink node before the
start of data transmission from the source node through the lightpath. In all-optical net-
works, data remain in the optical domain during transportation through the network. Data
conversions are needed only twice in each lightpath: E/O data conversion at the source
node and O/E data conversion at the sink node. Slow and costly O/E/O data conversions
are not needed at the intermediate nodes of the lightpath. As a result, all-optical technol-
ogy has ushered in an era of phenomenal growth of data transmission rates. In addition,
transparent all-optical networks can accommodate different data formats, protocols, or
bit-rates at the same time.

Optical networks in general are built as fault tolerant systems. The survivability of
optical networks is realized using failure detection and traffic protection/restoration tech-
niques [41]. Therefore, high availability of an optical network is ensured. After detecting
a failure event, protection/restoration techniques restore user traffic using spare capacity
of the network. However, protection/restoration techniques may or may not localize link
faults. Link protection/restoration schemes have to localize link faults, but path protec-
tion/restoration schemes may not localize link faults. By localizing link faults, however,
performance of the path protection/restoration schemes can be enhanced significantly.
Thus, fast fault localization schemes that identify faulty links unambiguously will help to
reduce huge data loss during fault events in all-optical networks. Consequently, the fault
localization schemes will improve QoS provided by the network.

1

Moreover, prompt recovery of the faulty links ensures high throughput of the network.
Since fault localization is the very first step in bringing faulty links back into service
again, fast and precise link fault localization in all-optical WDM mesh networks is needed
for speedy recovery of faulty links. Thus, fast and unambiguous link fault localization is
essential for building fully survival transparent all-optical mesh networks that operate with
high throughput.

Network components are becoming more reliable with time, but component failures are
inevitable in the long run. However, in this study we consider all network components
except fiber links as invulnerable. Due to greater environmental exposure of optical cables,
link faults such as fiber cuts happen much more frequently.

Link faults can be localized at various layers of the protocol stack of the network. Any
link fault will trigger alarms in upper layers in due course of time and may cause an alarm
storm if the fault is not localized and bypassed fast enough [15]. An alarm storm will
make fault localization much more difficult. In fact, fault localization from the alarms that
spread over various layers in a communication network is proven NP-complete in [24] by
showing equivalence between the problem of finding the best explanation of the received
alarms and the set cover problem. Thus, fast and unambiguous fault localization at the
optical layer is desirable and crucial.

In opaque optical networks, link fault localization is comparatively easy because of
electronic terminations of lightpaths at their intermediate nodes. Hence, data overhead
bits are available at both end nodes of each link. Thus, link failures can be detected,
correlated, and localized unambiguously at the end nodes of the faulty links by using
performance metrics such as the bit error rate (BER) that can be derived from the overhead
bits. As fault localization can be done on a single hop basis, single-link or multi-link shared
risk link group (SRLG) fault localization becomes straightforward.

On the other hand, in all-optical networks, data overhead bits are not available at the
intermediate nodes of a lightpath due to lack of electronic terminations. As a result, link
failures can only be detected at intermediate nodes of a lightpath by using techniques such
as loss of light (LOL) that need additional expensive monitoring equipment. Moreover, as
failure indication propagates downstream through each lightpath traversing a faulty link,
fault detection and fault localization schemes become separate processes [33], and fault
localization turns into a multi-hop process. Therefore, link fault localization becomes a
challenging task in all-optical networks.

Fault localization schemes in all-optical networks use traffic carrying user lightpaths
or dedicated supervisory lightpaths (S-LPs) to detect link failures. Dedicated S-LPs are
provisioned temporarily or permanently. To detect link failures at intermediate nodes of

2

lightpaths, dedicated monitors are used.

Link-based monitoring is widely used in the current commercial carrier backbones. An
in-band link fault localization scheme is incorporated in the Link Management Protocol
(LMP) [33], which is a new link management protocol introduced by Generalized Multi-
Protocol Label Switching (GMPLS). The LMP detects LOL at each intermediate node of
user lightpaths.

Link fault localization via in-band monitoring is based on the working status of user
lightpaths. The schemes that utilize link failure detection only at the destination node of
the lightpaths can use overhead bits of the data as in [29][44][74]; hence, the schemes need
no additional expensive monitors for LOL detection or estimation of parameters like the
signal-to-noise ratio (SNR). On the other hand, link failure detection at the intermediate
nodes is based on techniques such as LOL detection or electronic processing of the signal
tapped from the incoming/outgoing ports of the nodes by dedicated monitors; in this case,
the schemes need O(|E|) dedicated and expensive monitors. Fault localization with a
reduced number of monitors is dealt with in [37][47].

In a probing scheme, temporary S-LPs instead of user lightpaths are set up periodically
as per design requirements. A probe signal is sent through a temporary S-LP. If the probe
signal arrives at the receiving node, there is no faulty link in the temporary S-LP route.
Otherwise, there is at least one faulty link in the path. The temporary S-LP is torn down
as soon as the on-off status of the traversed links is determined from the probing result
[21][57]. In adaptive probing schemes [57], the next probing region is selected based on
the result of the current probe. The probing process continues until all faulty links, if any,
are localized. As probing is done sequentially, the adaptive probing schemes incur long
and variable fault localization latency. Moreover, the number of monitors |M | required
by the adaptive probing schemes to detect link failures is in O(|E|). In non-adaptive
probing schemes [21], all the temporary S-LPs needed to localize link faults are set up
simultaneously.

An out-of-band link-based fault localization scheme can be devised by using a single
WL in each undirected link as a dedicated S-LP. Thus, the scheme needs O(|E|) WLs,
where |E| is the number of links in the network. The required number of monitors |M | of
the link-based scheme is also in O(|E|) [2][34][54][63][64][66].

Link fault localization via out-of-band monitoring is based on working status of dedi-
cated permanent S-LPs. A set of permanent S-LPs are launched, and each S-LP is moni-
tored at its receiver [1][2][51][54][61][63][64][66][70][71][72][73]. To reduce the required num-
ber of monitors |M | in the order of the logarithm to the number of SRLGs, simple/non-
simple m-cycles and m-trails are investigated in [54][60][61][63]. The S-LP allocation prob-

3

lem of these studies is a topology coding process: each SRLG is assigned a unique SRLG
code. When an SRLG fails, each S-LP traversing any link of the SRLG is disrupted; as
a result, the monitor at the receiver of the affected S-LP raises an alarm and the alarm
is broadcast in the control plane. The network controller derives an alarm code based on
the alarming and non-alarming monitors after collecting all the flooded alarms; then, the
controller localizes the failed SRLG by matching the alarm code with an SRLG code [54].

The first concern during set up of a fault localization scheme is the time complexity
of finding a set of lightpaths and/or locations of monitors such that link faults can be
localized unambiguously as per the design requirement. There are two more major con-
cerns regarding each fault localization scheme in all-optical networks: monitoring resource
consumption and fault localization latency.

Usually, two types of monitoring resources are considered: the number of monitors
|M | and the number of dedicated wavelength channels (WLs) Λ. Monitors in all-optical
networks are costly; in addition to their hardware and software costs, alarm management
cost increases disproportionately as the number of monitors increases. On the other hand,
dedicated supervisory WLs cannot be used for user data transportation. The trade-off
between the two kinds of resources is defined in the literature as follows, where cost ratio
γ determines the relative importance of the resources [54][63][65][66][73].

“Monitoring cost = γ ∗monitor cost+ bandwidth cost

= γ ∗ number of monitors+ cover length in number of WLs”

= γ ∗ |M |+ Λ (1.1)

In-band schemes that detect link failures only in destination nodes of the lightpaths
incur insignificant monitoring cost. The link based and sequential probing schemes incur
high monitor cost but minimum bandwidth cost. High bandwidth cost is a common concern
of out-of-band schemes. Monitoring cost of the m-trail schemes deployed in the m-burst
framework is reduced significantly.

Once a fault event occurs, a fault localization scheme incurs fault localization latency
for failure detection, alarm dissemination, and alarm correlation. The fault localization
latency can be expressed as follows.

Fault localization latency = failure detection delay

+ alarm dissemination delay

+ alarm correlation delay

T = Tfd + Tad + Tac (1.2)

4

All fault localization schemes incur failure detection delay, Tfd, that is more or less
deterministic except in the adaptive probing schemes. The adaptive probing schemes are
subject to long and variable failure detection delays. Reducing Tfd is the main concern of
the schemes developed in this thesis.

In most fault localization schemes, alarms have to be flooded in the control domain
since a monitor may be located at any node of the network, and each monitor may not be
collocated with the network controller or the routing entities. The network controller or
the routing entities can localize the fault only after collecting all the alarms. Thus, alarm
dissemination delay, Tad, is incurred. All fault localization schemes except a few incur
alarm disseminate delays, but the problem is severe in some in-band schemes where each
alarm has to traverse the affected lightpath that triggers the alarm, and in all adaptive
probing schemes where alarms are generated sequentially. The alarm dissemination delay
Tad of the schemes developed in this thesis will be 0 because the schemes monitor the
network from a single MN.

For successful deployment of fault localization schemes, the required computation to
localize faults after collection of all the alarms should be done in real time. In other words,
minimum alarm correlation delay Tac is desired. This is a major concern of the fault
localization schemes that need coordination among MNs. Alarm correlation delay Tac of
the schemes that utilize topology coding and alarm code table (ACT) look up is in O(1).

In this thesis, we deal with both single-link and multi-link SRLG fault localization. We
consider a single link and/or multiple links up to d links as an SRLG. Thus, each failure
event may involve a single link or up to d links. However, the context will make clear
whether we are dealing with single-link or multi-link SRLG fault localization. We shall be
explicit whenever needed.

1.2 Motivation

Fault localization is not studied as thoroughly as protection/restoration schemes in all-
optical networks. Even optical channel monitoring (OCM) and optical performance mon-
itoring (OPM) are more thoroughly investigated. It is probably due to the idea inherited
from opaque optical networking that fault localization is easy, but it turns out that fault
localization in all-optical network is really challenging.

At this point, single-link SRLG fault localization in all-optical networks is well studied
in the literature. Many optimal and near optimal, in terms of monitoring cost γ ∗ |M | +

5

Λ, single-link SRLG fault localization schemes are proposed. These schemes achieve the
number of monitors |M | in the order of the logarithm to the number of links |E|.

On the other hand, only a few efficient multi-link SRLG fault localization schemes
have been proposed so far. The efficient schemes are available only for networks with
special topology with high connectivity [21]. In general, the upper bound of the number
of monitors |M | for multi-link SRLG fault localization in an arbitrary all-optical network
is in the order of O(|Ψ|2), where |Ψ| is the number of SRLGs under consideration [1].
Monitoring resource requirements in terms of the number of monitors |M | and the number
of WLs Λ are high. Moreover, alarm dissemination delay Tad remains an issue for almost
all the multi-link SRLG fault localization schemes in all-optical networks.

To deal with the issues, Wu et al. [61] recently proposed an out-of-band method called
the local unambiguous failure localization (L-UFL) scheme, which uses several monitoring
nodes (MNs). Failure detection delay Tfd of the scheme is deterministic based on prop-
agation delay along affected m-trails. The scheme avoids alarm dissemination delay Tad
altogether by enabling each MN to localize link faults. Moreover, alarm correlation delay
Tac of the scheme after collecting the alarms is in O(1) because the scheme uses ACT look
up. However, the scheme needs WLs per link Λavg = 2 to localize multi-link SRLG faults
among 6 SRLGs in a 10-node topology. The required Λavg is considered high for localizing
faults among such a small set of SRLGs.

We believe that there is scope to decrease monitoring resources further in terms of both
the number of monitors |M | and the number of WLs Λ while keeping fault localization
latency T within acceptable limits at the same time for multi-link SRLG fault localization.
Moreover, we want a balanced trade-off between consumed monitoring resources and fault
localization latency.

1.3 Statement of Problem

To reduce the number of monitors |M | and the required WLs Λ for fault localization,
we propose a novel framework called the monitoring burst (m-burst) in this thesis. The
m-burst framework has a single monitoring node (MN) and uses at most a single WL in
each unidirectional link of the network. M-trail monitoring structure is utilized to detect
link failures in the framework. As both the launched and received monitoring signals are
available at the MN, significantly simplified hardware and software design of the monitors
is possible [73]. The m-burst framework will be deployed to localize single-link and/or
multi-link SRLG faults in all-optical mesh networks.

6

As a first step, a set of m-trails that provides a unique code for each SRLG under consid-
eration is identified as a solution of the m-trail allocation problem. Then, the MN launches
short duration optical bursts called monitoring bursts (m-bursts) repeatedly. Burst col-
lision is avoided altogether by scheduling burst launching times from the MN and multi-
plexing multiple bursts, if any, traversing a unidirectional link of the network. In other
words, the m-burst framework has to deal with three relevant problems: 1) to find a set of
m-trails as a solution of the m-trail allocation problem, 2) to find the burst starting time
from the MN of the m-burst along each m-trail in the solution such that no burst overlaps
another in the network, and 3) to configure in real time the switch fabrics of the nodes to
multiplex multiple bursts, if any, through the monitoring WL in each unidirectional link.

The MN launches one m-burst along each m-trail of the solution to probe the links
traversed by the m-trail and wait for the complete return of all the m-bursts; once all the
m-bursts return to the MN completely, it launches the next set of m-bursts. A monitoring
period is defined as the duration of time from the launching of any m-burst from the MN
to the complete return to the MN of that m-burst and of each m-burst launched once along
each of the remaining m-trails in the solution. In other words, the monitoring period is
the failure detection time Tfd needed by the MN.

During a fault event, the MN forms an alarm code based on which burst returns to the
MN in due course of time and which one fails to return. The MN localizes the fault by
matching the alarm code with an SRLG code.

The framework will completely avoid alarm dissemination. Thus, there will be no alarm
dissemination delay, i.e., Tad is 0. In addition, the alarm correlation delay Tac will be in
order of O(1) because ACT look up will be used to correlate alarms to faulty link(s). Thus,
the fault localization latency T in the framework consists of mainly failure detection time
Tfd needed by the MN.

This thesis mainly explores using at most a single dedicated WL per unidirectional link
of an all-optical mesh network to localize single-link, or single-link and multi-link SRLG
faults from a single MN with reasonable fault localization latency.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows.

Chapter 2 provides related work on fault localization in all-optical networks. The exist-
ing methods are primarily classified on the number of simultaneous faulty links: single-link

7

and multi-link SRLGs. The single-link SRLG fault localization methods are again classi-
fied into five groups: in-band, probing, out-of-band, hybrid, and non-alarm disseminating.
Similarly, the multi-link SRLG fault localization methods are classified into four groups:
in-band, probing, out-of-band, and non-alarm disseminating. The review provides a com-
parative study of the complexity of setting up the fault localization schemes, monitoring
cost, and fault localization latency of the existing and the proposed methods.

Chapter 3 describes the proposed m-burst framework in detail. As stated earlier, the
m-burst framework has three relevant problems: m-trail allocation, burst launching time
scheduling and node switch fabric configuration scheduling. The problems are formulated
in the chapter. The methods proposed in the subsequent chapters provide solutions to the
problems.

Chapter 4 provides an implementation of the m-burst framework for single-link SRLG
fault localization in all-optical mesh networks. The m-trail allocation and burst launching
time scheduling problems are formulated as joint and separate optimization problems via
Integer Linear Programs (ILPs). Two corresponding heuristic algorithms are also devised
to solve the problems in large networks. The burst launching time scheduling schemes
ensure that the arrival times of two bursts to the sending node of a unidirectional link
are separated by L ms if the bursts traverse the link, where L is the burst length in ms.
The burst launching time scheduling methods developed in the chapter are used in other
chapters directly or indirectly. Node switch fabric configuration scheduling related issues
are also discussed.

Chapter 5 presents an implementation of the m-burst framework for multi-link SRLG
fault localization in all-optical mesh networks, where an SRLG can have at most d links.
A novel m-trail allocation scheme called the M-Trail Cover against the Faults (MCF)
method is proposed. For each faulty SRLG, the MCF m-trail allocation method ensures
that each remaining undirected link is traversed by at least one m-trail that is disjoint
from the faulty SRLG. The MCF m-trail allocation scheme and the burst launching time
scheduling problems are formulated as a joint optimization problem via an ILP, where
the ILP takes a set of enumerated unique m-trails as the input. A heuristic algorithm is
also devised to implement the MCF m-trail allocation scheme in large networks by finding
an unaffected shortest path from the MN to each link. To avoid m-trail enumeration in
ILP formulation and to reduce fault localization latency, an extension of the MCF m-trail
allocation scheme called the Disjoint path-based M-Trail Cover against the Faults (DMCF)
method is also proposed in the chapter. The DMCF m-trail allocation method ensures that
each undirected link is traversed by (d + 1) otherwise link-disjoint m-trails. The DMCF
m-trail allocation scheme is formulated as an optimization problem via an ILP. Another
heuristic algorithm is also devised to implement the DMCF m-trail allocation scheme in

8

large networks by finding link-disjoint shortest paths from the MN to each link.

Chapter 6, first provides an implementation of the m-burst framework for single-link
SRLG fault localization in all-optical linear networks. Then the chapter provides an im-
plementation of the m-burst framework for dual-link SRLG fault localization in all-optical
ring networks. It is shown both theoretically and experimentally that the m-trail allo-
cation, burst launching time scheduling, and node switch fabric configuration scheduling
problems of the m-burst frameworks for linear and ring networks can be solved by inspec-
tion. Next, the techniques are used for an implementation of the m-burst framework for
dual-link SRLG fault localization in all-optical mesh networks. Then, the techniques are
used for another implementation of the m-burst framework for multi-link SRLG fault local-
ization in all-optical mesh networks. A mesh network is decomposed into trails and cycles
that serve as virtual linear and ring networks, respectively. Then, single-link and dual-link
SRLG faults are localized in the virtual linear and ring networks using nested m-trails de-
rived in the respective networks by inspection. As the sets of nested m-trails are deployed
independently in the m-burst framework for linear or ring networks, the m-trail allocation,
burst launching time scheduling, and node switch fabric configuration scheduling problems
of the m-burst framework for mesh networks can be solved by inspection as well. An ILP is
formulated to decompose mesh networks for dual-link and multi-link SRLG fault localiza-
tion in mesh networks. A heuristic algorithm is also provided for network decomposition.
Thorough theoretical analysis of the m-trail allocation, burst launching time scheduling,
and node switch fabric configuration scheduling problems in the m-burst frameworks for
SRLG fault localization in linear, ring, and mesh networks is conducted. Application of
nested m-trails in adaptive probing is also investigated in the chapter.

Chapter 7 describes contributions of the thesis, provides the list of the publications
based on the thesis, outlines future work, and draws conclusions.

Appendix A provides two simplified disjoint path algorithms. These algorithms avoid
network transformation, link direction reversal, and vertex splitting.

Appendix B shows all the networks used in the numerical experiments in this thesis.

9

Chapter 2

Literature Review

2.1 Introduction

In this chapter, we discuss the related work on fault localization in all-optical networks to
place our work in this thesis in an appropriate context. The underlying failure-indication
propagation model, stated or implied, in all-optical networks is that failure indication
will propagate downstream along the lightpaths established through each faulty link of the
network. This deterministic propagation model is based on the optical signal flow model in
all-optical networks. The propagation model helps to overcome the problems related with
the inability to access data overhead bits at intermediate nodes of lightpaths, simplifies
alarm correlation techniques, and facilitates devising numerous fault localization schemes
in all-optical networks. We discuss single-link SRLG fault localization and multi-link SRLG
fault localization in separate sections. The fault localization schemes are classified in each
section. The main classification criterion is the kind of lightpaths used for failure detection.
The other classification criteria are structures of S-LPs, ways of alarm dissemination, and
use of monitors at intermediate nodes of user lightpaths.

Traffic protection/restoration techniques are deployed to ensure high availability of op-
tical networks [41]. However, the performance of a traffic protection/restoration method
depends on the relevant failure detection and fault localization schemes. An efficient and
precise fault localization scheme in all-optical WDM mesh networks enables fast and au-
tomatic failure-dependent restoration in the event of any SRLG failure and is essential for
high network throughput.

In an optical network where data go through O/E/O conversions in each node, failure
detection and fault localization schemes can utilize data overhead bits. In SONET, the

10

end nodes of a faulty link localize the fault using the overhead bits and suppress the
redundant alarms in both directions. On the other hand, in all-optical networks, failure
detection and fault localization schemes cannot access the overhead bits at the intermediate
nodes of a lightpath. As a result, the end nodes of a faulty link cannot localize the fault
using bit-based schemes [30]. In fact, a failure detection scheme in all-optical networks
needs additional expensive monitoring equipment at the intermediate nodes only for link
failure detection. Moreover, as failure detection and fault localization schemes are separate
processes in all-optical networks [33], fault localization schemes are to be built on top of
failure detection schemes.

In 1997, Li and Ramaswami [35] proposed a Finite State Machine (FSM) based scheme
for fault detection, isolation and recovery in broadcast-and-select and wavelength-routed
all-optical networks. In wavelength-routed networks, one WL, called λ0, is designated as
a control channel that goes through O/E/O conversion in each amplifier. Each link is
managed by two FSMs located at the end nodes. On the other hand, the FSM located at
each amplifier controls two FSMs located at the two far ends of the link segments connected
with the amplifier using λ0. Moreover, router and converter faults are also managed by
using FSMs. The method needs too many FSMs to be practically useful.

As we have described in [7], fault management is defined in the GMPLS as a set of
real-time tasks performed sequentially right after the occurrence of any fault [39]. The
tasks include fault localization and notification that are defined as a series of electronic
signaling mechanisms. In all-optical networks, each downstream node of a failed user
lightpath is subject to loss of light (LOL). By applying the Link Management Protocol
(LMP) [32] coupled with a signaling protocol such as the resource reservation protocol with
traffic engineering (RSVP-TE), the downstream node will send an alarm to its upstream
node on the affected lightpath. After receiving the alarm, the upstream node checks
the corresponding input port and forwards the alarm to farther upstream if the node
itself is subject to LOL too. Otherwise, the downstream link is the faulty link, and the
upstream node initiates protection/restoration procedures. Guo and Kuo [19] proposed an
enhancement of the LMP scheme to expedite the fault localization process: whenever a
node detects LOL in a lightpath, it sends alarms to both upstream and downstream nodes
on the affected lightpath.

As we have identified in [7], the GMPLS-based approaches have three major weaknesses.
First, multiple downstream nodes issue alarms simultaneously. The number of lightpaths
traversing through the faulty link determines the number of alarms; in fact, the total
length of the lightpaths measured in terms of the number of WLs determines the number
of alarms. Such a large number of alarms could easily lead to an alarm storm in the
control plane, and the alarm storm may crash the network. Second, the approaches cannot

11

handle multi-link SRLG failure events unambiguously because a node can only be aware
of a faulty link if the link is a downstream link of any lightpath traversing the node, but
the node has no way to know the status of a link if all lightpaths traversing the node are
link-disjoint from the link. Therefore, when a multi-link SRLG fails, a node may only be
able to identify a subset of the faulty links in the SRLG and may select a protection path
for restoration that includes some of the faulty links. Third, due to extensive electronic
signaling mechanism and nodal processing, the approaches may incur delay in hundreds
of milliseconds just for the fault localization/notification process, and the delay is added
to the overall restoration time. Note that a slow restoration not only causes data loss but
also has negative impacts on the upper layer protocols such as OSPF and TCP.

To improve the GMPLS-based approaches, link-based monitoring [2][34][54][63][64][66]
has been considered such that every link is exclusively monitored via a single-hop super-
visory lightpath (S-LP). Once a failure occurs, each monitor subject to LOL will localize
the upstream link as a faulty link and notify the network controller or the corresponding
decision nodes (e.g., edge routers) for subsequent restoration processes.

The link-based schemes can localize faults that involve up to |E| links, while the proba-
bility of faults in large number of links simultaneously is very low [16]. Although an effective
solution to the problems of conventional GMPLS-based approaches, the link-based moni-
toring approach requires |E|WLs along with |E| transmitters/monitors that are considered
precious resources in optical networks. Moreover, like the GMPLS-based approaches, link-
based monitoring strongly relies on electronic signaling for failure notification, which leads
to considerable control complexity and long restoration time. Thus, numerous schemes
based on sophisticated designs and various assumptions were extensively reported in the
past decades.

In this thesis, we are interested mainly in multi-link SRLG fault localization in all-
optical networks. Thus, attack monitoring in general or fault localization only in WL
granularity will not be discussed. Moreover, fault localization in discrete optical elements
other than links or nodes is beyond the scope of the thesis. We will discuss exiting single-
link and multi-link SRLG fault localization methods in Section 2.2 and Section 2.3, respec-
tively. Fault localization using the m-burst framework is discussed in Section 2.4. Section
2.5 concludes the chapter.

2.2 Single-Link SRLG Fault Localization

The single-link fault localization schemes can be classified mainly based on the kind of
lightpaths utilized for link failure detection: user lightpaths and supervisory lightpaths

12

(S-LPs). The schemes are classified broadly as in-band, probing, out-of-band, hybrid, and
non-alarm dissemination methods. The non-alarm disseminating fault localization schemes
are identified as a separate group because the methodology offers a very promising way to
decrease fault localization latency significantly; in addition, all fault localization methods
to be developed in this thesis will avoid alarm dissemination altogether.

2.2.1 In-band Methods

In-band methods utilize only user lightpaths for link failure detection. Each in-band
method monitors lightpaths at their destination nodes. Whenever an in-band method
detects link failure at intermediate nodes of lightpaths, the method needs additional ex-
pensive monitoring equipment. The in-band methods can be further classified based on
whether a method needs failure detection at intermediate nodes or not.

Methods Detecting Failures at intermediate Nodes

In 2002, Stanic et al. [47] outlined a single network component fault localization method
in transparent optical networks. The fault propagation model of the method is that fault
indications propagate downstream of traffic lightpaths established through the faulty com-
ponent, and each downstream active monitor traversed by at least one affected lightpath
will raise an alarm. It is assumed that aggregate power monitors are pre-installed in each
input port of network nodes. Thus, the number of monitors is in O(|E|). The method
activates the optimal number of monitors to localize a single faulty component.

At first, an alarm-matrix is created where each row represents a component of the
network, and each column represents a monitor. An entry of the alarm-matrix is 1 if the
monitor raises an alarm when the component becomes faulty and 0 otherwise. Each row
is the alarm vector of the corresponding network component. In pre-processing, each row
with zero alarm vector is deleted, and all rows having identical alarm vectors are combined
together to form a single row. Then, redundant monitors are deleted from the alarm-
matrix such that the resultant alarm-matrix has no zero alarm vectors, and all alarm
vectors remain distinct. The authors prove in [45] that minimizing active monitors by
deactivating redundant monitors is NP-complete using a polynomial time transformation
of the Exact Three Cover (X3C) problem to the decision version of the problem addressed
in the paper, called the Redundant Monitor Deactivation Problem (RMDP).

The authors formulate an ILP with constraints to ensure that each row vector is unique
and non-zero, and propose a heuristic algorithm called the Greedy Min. The heuristic

13

method checks each monitor once if it can be deleted from the alarm-matrix. Monitors
are selected in descending order of the total number of alarms raised for all faults by each
monitor. The time complexity of the Greedy Min method is given in [48] as O(n2k), where
n is the number of fault vectors, and k is the number of monitors in the pre-processed
alarm-matrix. The method uses a fault localization tree to localize a single component
fault after getting all alarms of a fault event and, consequently, needs O(m) steps for
alarm correlation, where m is the number of monitors in the optimized alarm-matrix; on
the other hand, m-trail based methods need only O(1) steps for alarm correlation.

In 2004, Sichani and Mouftah [43] proposed the Rolling Back Signaling Protocol (RBSP)
to localize single-link faults in all-optical networks. Whenever the destination node of a
lightpath does not receive an expected data stream, the node sends an alarm called Rolling
Back Alarm (RBA) through the control channel OSC to its upstream node in the affected
lightpath. An RBA recipient node checks whether it is receiving data or not through
the affected lightpath. If the node is not receiving data, the node passes the RBA to its
upstream node in the affected lightpath because the link between the RBA recipient node
and its downstream node in the affected lightpath is not faulty. Otherwise, if the RBA
recipient node is receiving data, it sends a fault ACK signal to its downstream node in
the affected lightpath, indicating that the link between the RBA recipient node and the
downstream node is faulty. After receiving an ACK signal, the downstream node starts
a link restoration process and floods the network with fault location information. The
minimum number of monitors required by RBSP is in O(|E|).

In 2008, Khair, Zheng, and Mouftah [27] extended the limited-perimeter vector match-
ing (LVM) [44] method for multi-domain all optical networks. Each domain edge node
is equipped with additional monitors. When a link becomes faulty, the destination node
of each lightpath traversing the faulty link and each edge node traversed by at least one
affected lightpath detect the failure. The nodes exchange alarm messages to localize the
faulty link.

If an ingress node of a domain detects the failure but its upstream egress node of
the adjacent domain does not, the inter-domain link between the egress and the ingress
nodes is faulty. Otherwise, if the destination node of each affected lightpath in a domain
and each egress node of the domain traversed by at least one affected lightpath, and the
corresponding upstream ingress nodes of the domain traversed by the affected lightpaths
detect the failure, the fault is not within the domain. On the other hand, if the destination
node of each affected lightpath in a domain and each egress node of the domain traversed by
at least one affected lightpath detect the failure, but no ingress nodes of the domain detect
the failure, the fault is within the domain. The faulty link is localized by using the LVM
that utilizes only nodes and links of the faulty domain. The LVM considers each ingress

14

(egress) node traversed by an affected lightpath as a virtual source (sink) of the lightpath if
it is not a real source (sink) of the lightpath. The minimum number of additional monitors
required by the method is in O(|Eid|), where Eid is the set of inter-domain links.

Methods Detecting Failures Only at Destination Nodes

In 2005, Zeng, Vukovic, and Huang [74] proposed an end-to-end fault localization scheme.
The source node of each lightpath sends hello packets to the destination node periodically
through the lightpath. If a fixed number of consecutive hello packets are lost during
a pre-defined detection interval, the destination node will send an alarm to the network
management system (NMS) and notify the affected nodes of the lightpath using the control
plane. If path restoration is used, only the source node of the lightpath will be notified to
initiate traffic recovery process. On the other hand, all upstream nodes will be notified if
link restoration is used. After collecting all alarms, the NMS will localize the fault based
on alarm distribution in multiple lightpaths and network topology. An optional traffic
reinstatement process can start only after the faulty element is repaired. The method
incurs long failure detection delay Tfd because the detection interval has to be large enough
in order to avoid spurious alarm generation.

In 2007, Sichani and Mouftah [44] proposed the limited-perimeter vector matching
(LVM) fault localization protocol. The LVM limits the fault localization process to within
a small area of the network. Each destination node of the lightpaths passing through the
faulty link detects link failure and floods the network with a message comprising the length
of the affected lightpath and the ID of the node. If a node is the destination of more than
one affected lightpath, the length of the shortest affected lingthpath is used in the message.
The node with the shortest affected lightpath will be selected as the executive node; in case
of a tie, the node with the lowest node ID will be selected. The executive node will form
a link vector called the affected link vector (ALV) using its shortest affected lightpath and
multicast the ALV to all the nodes in the ALV and their neighbors. These nodes define an
area with a limited perimeter.

Each node of the area will form a link vector using nodes of the lightpath terminated
at the node. Then, the node compares links of the link vector with that of the ALV to
form a binary vector that consists of the same links as the ALV and a status bit. If the
lightpath terminated at the node is affected by the fault, the status bit is assigned 0; each
matched and each non-matched link is assigned 1 and 0 in the binary vector, respectively.
Otherwise, the status bit is assigned 1; each matched and each non-matched link is assigned
0 and 1 in the binary vector, respectively. The binary vector is send to the executive node.
The executive node localizes faults by performing logical AND operation on all the received

15

binary vectors. If a fault cannot be localized unambiguously, the executive node expands
the perimeter of the area by including adjacent nodes of each node in the current area.

In 2008, Khair, Zheng, and Mouftah [25][28] extended the LVM again for single-link
fault localization in multi-domains without using monitors at domain edge nodes. When
the sink of an affected lightpath detects failure, the LVM is run within the domain of
the sink; each ingress node of the domain traversed by an affected lightpath is considered
as the virtual source of the lightpath. If the faulty link is within the domain, the LVM
localizes the fault. Otherwise, each ingress node traversed by an affected lightpath sends
relevant message to its upstream egress node of the adjacent domain. Each such egress
node independently runs the LVM in its domain; again, each ingress node of the domain
traversed by an affected lightpath is considered as the virtual source of the lightpath. The
process will continue until the faulty intra-domain link is localized or the LVM is run in
all the domains of the sources of the affected lightpaths. In the later case, the faulty link
is an inter-domain link. During inter-domain link fault localization, the egress node of the
source domain of each affected lightpath is considered as a virtual sink and each domain is
considered as a node connected by inter-domain links. The LVM is run in the transformed
network to localize the faulty inter-domain link.

In 2009, Khair et al. [26] proposed two ILP-based schemes to enhance the performance
of the LVM method. It is observed that the LVM is able to localize a single-link fault
unambiguously if at least two distinct lightpaths traverse the faulty link. In the first ILP,
traffic distribution is optimized to satisfy static traffic demand such that the probability
of fault localization is maximized. In the second ILP, the average hop length is minimized
to reduce fault localization latency. The authors also propose a heuristic algorithm to
optimize traffic distribution and to minimize fault localization latency by manipulating
link cost. For each request, the cost of each link of the network is updated based on all
previous WL assignments. Then, the shortest path between the s-d node pair of the request
is found by using Dijkstra’s shortest path algorithm. Link cost manipulation ensures
traffic distribution optimization, and shortest path based lightpaths ensure minimum fault
localization latency.

Discussion

The in-band methods that detect link failure only at the destination nodes of lightpaths
can utilize data overhead bits, but most of the in-band methods that detect link failure at
intermediate nodes of lightpaths need O(|E|) additional monitors. In-band fault localiza-
tion schemes except the method proposed in [74] do not incur any bandwidth cost; in fact,
the method in [74] uses an insignificant amount of bandwidth resources for hello packets.

16

Failure detection delay Tfd of the schemes except the method in [74] is deterministic
and short. The method in [74] incurs a predetermined but long failure detection delay Tfd.
However, the in-band schemes incur long and variable alarm dissemination delay Tad and
alarm correlation delay Tac.

2.2.2 Probing Methods

Probing schemes utilize dedicated S-LPs temporarily for link failure detection. As soon as
the status of an S-LP is determined, the S-LP is torn down.

In 2007, Harvey et al. [21] provided outlines of non-adaptive probing schemes based
on combinatorial group testing (CGT). A network is probed periodically, but the set of
probes is launched simultaneously in a non-adaptive probing scheme. The sets of probes
for single-link fault localization in all-optical linear, complete, 2-D and tree networks are
identified. In the linear networks, dn

2
e probes are required where n is the number of nodes

of the network. The authors also provide an upper bound on the number of probes required
to localize single-link faults in complete, 2-D, tree, and any arbitrary networks as O(log2 n),
O(log2 n), min{O(D log2 n), O(D + log2 n)}, and O(D + log2 n), respectively, where D is
the diameter of the network.

2.2.3 Out-of-band Methods

Out-of-band fault localization methods utilize S-LPs only for link failure detection. The
methods are further classified based on the structure of the used S-LPs: m-cycle, m-trail,
and m-tree methods. An m-cycle is a non-simple cycle and can traverse a node multiple
times but a link only once. The transmitter, the receiver, and the monitor of an m-cycle
are collocated at any on-cycle node. An m-cycle is considered as an m-trail. Typically,
an m-trail is a non-simple trail and can traverse a node multiple times but a link only
once. However, if an m-trail in the proposed m-burst framework traverses a link, it has to
traverse the link from both directions. An m-tree can traverse a node multiple times but
a link only twice, once in each direction. The receiver and the monitor of an m-trail or an
m-tree are collocated at the sink of the S-LP.

M-cycle Methods

In 2004, Zeng et al., in a milestone paper [72], introduced the monitoring cycle, later re-
named the m-cycle, for failure detection and path performance monitoring in all-optical

17

mesh networks. Two heuristic algorithms are proposed to find cycle covers of the network:
Heuristic Depth First Search (HDFS) and Shortest Path Eulerian Matching (SPEM). How-
ever, the methods do not localize link faults unambiguously.

In the HDFS, all the nodes and links are initially marked uncovered, and m-cycles are
formed by using Depth First Search (DFS) iteratively. Heuristic parts of the method are in
the process of selection of the starting link of a DFS and next nodes/links during each DFS.
Each starting link of a DFS has to be an uncovered one. If possible, an uncovered node/link
is selected as the next node/link during a DFS. Otherwise, the largest and smallest node
numbers are used alternatively during successive searches. Once a node/link is included
in a cycle, the node/link is marked as covered. When a search reaches a previously visited
part, an m-cycle is formed. Then a new DFS will be started if there is at least one uncovered
link.

In a Eulerian graph, the SPEM can find a cycle cover easily because there exists a
Eulerian cycle that cover all the links of the graph. Moreover, a set of m-cycles can be
formed by traversing the Eulerian cycle end to end. Whenever a node is revisited, an
m-cycle is formed and the links of the m-cycle are deleted from the Eulerian cycle. Link
traversal of the Eulerian cycle continues until all the links are traversed and the starting
node is reached. The set of m-cycles formed in this way will be a cycle cover of the network,
and the m-cycles will have no common link. If the network is not a Eulerian graph, the
SPEM transforms it into a Eulerian graph by adding links between odd degree node pairs
such that the total number of added links is minimized. Then the SPEM identifies m-cycles
in the modified network as if it is a real Eulerian graph but avoids those cycles that are
formed with only two links. The m-cycles of a cycle cover in a non-Eulerian graph have
some common links due to the added links. Performance of the SPEM is reported as better
than that of the HDFS in terms of WL consumption.

In 2005, Zeng, Huang, and Vukovic [70] proposed another heuristic algorithm called
Heuristic Spanning Tree (HST) to find a cycle cover of the network. The HST uses the
breath first spanning tree (BFST) construction technique. Heuristic parts of the algorithm
are in the process of selection of the root node and next nodes to be expanded in order
to add links to the tree. At first, the node with maximum nodal degree is selected as the
root of the tree T, and all links incident on the node are added to T . The method iterates
until nodal degree labels of all the nodes in T become zero.

In the beginning of each iteration, nodal degree label of each node in T is updated
by excluding all links incident on the node that has both end nodes in T . Next, node u
with maximum nodal degree label among all nodes in T is selected as the next node to
be expanded. Then each link incident on u that does not connect u with any node in T

18

is added to T . At the end of the iterative phase, T becomes a spanning tree. For each
non-tree link called chord, an m-cycle is formed by using the cord and links in the tree
called trunks. The HST constructs total (|E| − |V |+ 1) m-cycles for a cycle cover.

In 2006, Wu and Yeung [64] proposed M2-CYCLE algorithm to localize single-link faults
in all-optical networks based on enumeration of all minimum-length m-cycles (m2-cycles)
through each link of the network. The method has three phases. In the initialization phase,
all the links are marked as uncovered, enumerated m2-cycles are sorted on ascending order
of their lengths, and the sorted m2-cycles are assigned to the list θ. The expansion phase
iterates as long as there is any uncovered link. Let F and T be two sets of links. In
the beginning of each iteration, F and T are made empty. Now, θ is searched to find an
m2-cycle that traverses at least one uncovered link. If such an m2-cycle is found, all the
uncovered links traversed by the m2-cycle is added to set F and an inner loop starts.

In the inner loop, each link in F is selected once: one link in each iteration. If any
m2-cycle derived from the selected link traverses any uncovered link, the m2-cycle is added
to tentative solution B, all uncovered links traversed by the m2-cycle are marked as covered
and newly covered links are added to set T . If T is not empty at the end of the inner loop,
the links of F are replaced by the links of T , T is made empty, and the inner loop starts
again with the new links in F . Otherwise, the method exits the inner loop and a new
iteration of the expansion phase is started.

In the refinement phase, at first, an alarm code table (ACT) is constructed. Next,
each column of the ACT is selected to check if the corresponding m2-cycle can be deleted
from B without violating two constraints: no link code should become zero, and two or
more unique link codes should not become identical after deletion of the m2-cycle. If the
constraints are satisfied, the m2-cycle is deleted from B. Finally, each link pair is checked
whether their link codes are identical or not. If any link pair with identical link code is
found, the shortest m2-cycle among m2-cycles derived from the links is added to B. At the
end of the refinement phase, B has a set of m-cycles that can localize single-link faults. It
is claimed that the M2-CYCLE method outperforms the HST method “no matter how the
spanning tree is constructed”.

In 2007, Wu and Yeung [65] proposed a method called the heuristic ILP (HILP) [66] to
solve the m-cycle design problem with minimum cost. The cost is defined as monitor and
bandwidth costs, i.e., Cost = Monitor cost+β∗Bandwidth cost = number of Monitors+
β ∗ cover length in number of WLs, where β is a cost ratio. The method incorporates
a trade-off between monitor and bandwidth costs. Moreover, the HILP allows the more
versatile non-simple m-cycles in the solution.

In the HILP, cycles are defined with flow constraints only; in fact, only requirement of

19

the flow constraints for each cycle in the ILP solution and each node of the network is that
the cycle is either node-disjoint from the node or only even number of on-cycle links should
be connected with the node. Thus, the cycle definition is weak. As a result, the HILP
provides cycle-sets instead of cycles in the solution; a cycle-set may contain more than one
cycle. Thus, monitor counting in the objective function is not possible. Hence, the sum
of link codes is used as heuristic measure of the monitor cost instead of monitor counting.
The method provides a unique decimal code for each link or each segment of the network
based on the cycle-sets traversing the link or the segment. Thus, the method is able to
localize single-link faults unambiguously. It is claimed that the method outperforms the
HST and M2-CYCLE methods with a significant performance gain.

In 2007, Zeng and Vukovic [73] proposed a heuristic algorithm for unambiguous single-
link fault localization called variant Constraint Cycle Cover Problem (vCCCP) that min-
imize monitoring cost while keeping cycle length within the given limit. The monitoring
cost is defined as αM +

∑
ei∈E βixi where αM is the cost of monitors, xi is the number of

m-cycles traversing link ei, and βi is the cost coefficient to reserve a WL in link ei. The
vCCCP method has two phases: shortest-path candidate-cycle construction (SPCC), and
branch and bound (B&B) search.

In the SPCC, candidate cycles are enumerated as follows. ∀(u, v) ∈ E,∀w ∈ V : u 6=
w 6= v, the method finds shortest paths between nodes u and w, and nodes v and w after
removing link (u, v) temporarily. Then it forms a cycle using the link and two shortest
paths. Next, non-simple cycles, two link cycles and cycles exceeding the given length
limit are removed from the candidate cycle set, and the remaining cycles are sorted based
on the cycle cost. If the candidate cycle set is not enough to localize single-link faults
unambiguously, the SPCC adds more cycles to the set to enable UFL.

In the B&B search, a full binary tree is constructed. The root of the tree represents a
virtual cycle with zero cost. One candidate cycle is assigned to all nodes of a level of the
binary tree. Cycles are assigned from the root to the leaf in ascending order of cycle costs.
Each node of a level is labeled either 0 or 1. Each non-leaf node is connected with two
children nodes labeled 0 and 1. Each route/sub-route from the root to a leaf represents
a combination of candidate cycles where a particular candidate cycle is included only if
the route visits any label 1 node of the candidate cycle. Thus, the route/sub-route can
be a tentative solution. The depth-first search is conducted in the tree to find solutions.
At each level, link coverage and condition of UFL are checked. Once a route/sub-route
satisfies link coverage and condition of UFL, the route/sub-route is taken as a new solution
and sub-tree, if any, rooted at the node is pruned because adding more cycle from the sub-
tree to the new solution will increase cost. Then monitoring cost of the new solution is
calculated. If the cost is less than that of the current solution, the new solution is taken

20

as current solution. At the end of tree traversal, the current solution is taken as the near
optimal solution.

In May 2009, Wu, Yeung, and Ho in another milestone paper [66] proposed an optimal
ILP based method to localize single-link faults in all-optical networks. To solve the mon-
itor counting problem in the formulated ILP, additional flow constraints among on-cycle
nodes are introduced to keep each cycle-set a single structure. Though the additional flow
constraints are complex, the technique is a significant development toward formulation of
simplified ILPs such that each monitoring structure remains a single connected component.

In August 2009, Ahuja, Ramasubramanian, and Krunz proposed a heuristic algorithm
called Monitoring Cycle Problem with Multiple Monitoring Locations (MC-M) to localize
single-link faults in three-edge-connected all-optical networks from a given set of monitor-
ing locations, which are also known as monitoring nodes (MNs). The MC-M is the second
algorithm proposed in [2]. To apply the MC-M to an arbitrary network, the minimum num-
ber of MNs and their locations can be derived by using the monitor placement algorithm
proposed in the paper.

The MC-M finds a set of monitoring cycles (MCs), which are simple m-cycles, as a
solution of the fault localization problem. The MC-M has two modes of operation. In
the MC-M with information exchange mode, each link of the network is traversed by a
unique subset of m-cycles in the solution. Monitors of m-cycles traversing a faulty links
raise alarm in the control plane. A routing entity can localize a single faulty link after
collecting all the alarms. On the other hand, in the MC-M without information exchange
mode, each MN can localize independently a single faulty link in its cloud without alarm
dissemination.

The MC-M has two phases. In first phase, one cloud is formed for each MN. Each link
of the network is included to the cloud of its nearest MN. In second phase, each MN is
considered in turn. All links not in the cloud of the current MN are assigned large weights
to avoid them in cycle formation as much as possible. Next, m-cycles are added to the
solution by running the MC-1 method from the current MN until each link of the cloud
of the current MN is traversed by a unique set of m-cycles: each m-cycle derived for the
current MN traverses the MN. The MC-1 is described in Section 2.2.5. In the MC-M with
information exchange mode, each link of a cloud is traversed by a unique set of m-cycles
considering all m-cycles added to the solution so far; but in the MC-M without information
exchange mode, each link of a cloud is traversed by a unique set of m-cycles that does not
include any m-cycles derived for other clouds. To enhance performance of the method, a
technique called cloud transfer is introduced. If a non-cloud link is traversed by a unique
set of m-cycles when a new m-cycle is added to the solution, the link is transferred to the

21

cloud of the current MN.

M-trail Methods

In 2008, Wu, Ho, and Yeung in another milestone paper [62] proposed the monitoring
trail (m-trail) to localize single-link faults unambiguously in the presence of two-edge cuts
without using any additional link-based monitor. Like an m-cycle, an m-trail needs a
transmitter, a receiver, and a dedicated S-LP but has no cycle constraint. The authors
formulated an ILP to find a set of m-trails with minimum monitoring cost to localize single-
link faults unambiguously. Monitoring cost is defined as monitor cost + bandwidth cost
= γ * number of monitors + cover length, where γ is a cost ratio. The method ensures a
unique decimal code for each undirected link of the network. As a unique code represents a
unique set of m-trails, each link of the network will be traversed by a unique set of m-trails.

M-trails are defined with flow and voltage constraints. With only flow constraints, an
m-trail can have at most two odd degree nodes and may consist of multiple connected
components. Voltage constraints are introduced in the paper to supplement the weak
cycle/trail definition provided by flow constraints and to ensure that each m-trail in the
ILP solution is a single connected component that traverses the sink of the m-trail. The
voltage constraint for the jth m-trail in an ILP solution at each node u is defined as
rju +

∑
(u,v)∈E(qjuv − qjvu) ≥ λ zju, where λ is a predefined small constant, binary variable

rju is 1 if u is the sink of the m-trail and 0 otherwise, voltage variable qjuv can take any
non-negative fractional value if u → v is an on-trail vector of the m-trail, and binary
variable zju is 1 if the m-trail visits u and 0 otherwise. Voltage constraints stipulate that
voltages of outgoing on-trail links should be equal to or greater than that of incoming
on-trail links of each node except the sink of each m-trail in the solution. It is proved
that if any connected component of an m-trail does not traverse the sink of the m-trail,
the component will encounter a voltage conflict. The concept of voltage constraints is a
significant development to simplify ILP formulation of out-of-band monitoring schemes.

In April 2009, Tapolcai, Wu, and Ho [54] proposed an efficient heuristic algorithm for
finding an m-trail solution set in logarithmic order of the number of links |E| in the network
to localize single-link faults unambiguously. The method solves the m-trail design problem
in large networks and has three modules: 1) Random Code Assignment (RCA), 2) Cost
evaluation, and 3) Random Code Swapping (RCS). The method maintains a unique alarm
code for each link all the time.

In the RCA, each link is assigned a unique alarm code. Thus dlog2(|E| + 1)e linksets
are formed but each linkset may not be an m-trail. If the jth binary bit of the code of a

22

link is 1, the link is in linkset Lj. The cost evaluation is done once after the RCA. Next,
the RCS and cost evaluation are done one after the other as long as there is any possibility
of monitoring cost reduction. Before every cost evaluation, however, valid m-trails are
formed by splitting or merging linksets if necessary. The RCS is performed independently
on each linkset Lj in each round to reduce number of odd-degree nodes in the linkset by
swapping link codes of a link pair randomly. If alarm codes of two links are identical in all
bit positions except in the jth bit, they can be swapped. Thus, swapping will change links
of linkset Lj and their connection pattern only.

It is proved in [54] that a ring network with more than four links needs d |E|
2
e m-trails,

any two-connected network needs at most d |E|
2
e m-trails and a fully meshed network needs

6 + dlog2(|E|+ 1)e m-trails for UFL. In [55], the upper bound for fully meshed network is
improved to 4 + dlog2(|E| + 1)e m-trails for UFL. It is found that the number of m-trails
is upper bounded by dlog2(|E| + 1)e + #degree-2 nodes

2
when cost of a monitor is very high

compare to that of a WL.

In August 2009, Ahuja, Ramasubramanian, and Krunz proposed a heuristic algorithm
called the Monitoring with Paths and Cycles (MPC) to localize single-link faults in three-
edge-connected all-optical networks from a given set of monitoring locations, which are
also known as monitoring nodes (MNs). The MPC is the third algorithm proposed in [2].
To apply the MPC to an arbitrary network, minimum number of MNs and their locations
can be derived using the monitor placement algorithm provided in the paper.

The MPC uses network transformation and finds a set of monitoring paths (MPs) and
monitoring cycles (MCs) in the transformed network. MPs and MCs are simple trails and
cycles, respectively. Thus, MPs and MCs are simple m-trails.

In the MPC, each MN is split into two virtual MNs, and each link connected to the MN
is also split to connect the virtual MNs with the link’s other end node. All virtual MNs
are connected to a virtual super MN J using auxiliary connectors. Now a modified MC-1
is applied to the transformed graph. The MC-1 is described in section 2.2.5. The modified
MC-1 finds a unique set of cycles for each link of the network considering the transformed
graph as a flow network to avoid self-loops. If a cycle traverses both the virtual MNs of
an MN, it will be a cycle. Otherwise, it will be a trail.

In 2010, Haddad, Doumith, and Gagnaire [20] proposed a heuristic algorithm called
the meta-heuristics for monitoring trail assignment (MeMoTA) to solve the m-trail design
problem. Initially, the number of m-trails T is equal to dlog2(|E|+ 1)e, and the MeMoTA
uses Tabu search technique iteratively to find a solution that has T m-trails as described
below.

23

In the beginning of a Tabu search, the MeMoTA assigns a unique link code that is
chosen randomly from 1 to 2T − 1 to each link of the network, modifies the corresponding
linksets into initial m-trails and adds the initial m-trails to an empty ACT. Whenever
a linkset becomes an m-trail, the MeMoTA maintains the structure of the linkset as an
m-trail all the time. Then, it selects an m-trail tj from the ACT randomly and reshape
the m-trail by adding and removing links starting from the highest ambiguity reducing
group without violating the full link coverage constraint. The full link coverage constraint
ensures that each link of the network is traversed by at least one m-trail. If all reshaped
m-trails lead to high monitoring cost, tj is added to Tabu list ξ. The m-trail remains in
the Tabu list until monitoring cost improves due to reshaping of another m-trial. When
all the m-trails are added to ξ, the search is terminated and the new solution in the ACT
is evaluated.

If the new solution is an optimal solution, the MeMoTA terminates. Otherwise, if
the new solution is better than the reference solution, the new solution is taken as the
reference solution. Now, If the search does not return the reference solution nr times or
does not terminate ni times without improvement, a new Tabu search is conducted without
increasing T . On the other hand, if the search returns the reference solution nr times or
terminates ni times without improvement, the MeMoTA checks the reference solution.
If the reference solution achieves UFL, the MeMoTA terminates. Otherwise, next Tabu
search is conducted with incremented T .

M-tree Methods

In 2010, Tapolcai, Rónyai, and Ho [53] investigated application of the monitoring tree (m-
tree) structure. The upper bound on the number of m-trees to achieve unambiguous single-
link fault localization in the chocolate bar graphs is derived as d0.42 + log2(|E|+ 2)e. The
upper bound on the number of m-trees to achieve unambiguous single-link fault localization
in two dimensional lattice networks is derived as 3 + dlog2(|E|+ 1)e by using chocolate bar
graphs.

In 2010, Doumith, Zahr, and Gagnaire [17] proposed a new construction of a monitoring
tree (m-tree) in ILP to localize single-link faults unambiguously. The m-tree uses a single
WL per undirected link of the network. Thus, bandwidth cost Λ is equal to |E|. The
m-tree has a single transmitter at the root node that sends a single supervisory signal
along a head link. At each node, the received supervisory signal is terminated, forwarded
along another link, or sent over two or more outgoing links. If the signal is terminated or
forwarded along a single link, one monitor is needed at the node. If a link becomes faulty,

24

all the downstream monitors will raise alarms. The minimum number of monitors required
is d |E|+1

2
e.

Discussion

An out-of-band fault localization scheme is a very convenient way to handle link fault local-
ization in the optical layer. However, when m-cycle [72] monitoring structure was proposed
in 2004, it was intended only for the failure detection and the performance monitoring in
all-optical networks. It turns out that m-cycles can be deployed for link fault localization
as well. However, an m-cycle based method has a major weakness: a fault in a two-edge
cut cannot be localized unambiguously by using only m-cycles. To deal with the problem,
m-trail [62] monitoring structure is proposed. As stated earlier, an m-trail has no cycle
constraints. In m-tree monitoring structure, routing constraints are further relaxed.

It becomes apparent soon after the introduction of m-cycles that real number of m-
cycles |M| required for unambiguous single-link fault localization is in O(| log2(E + 1)|)
[65]. For each m-cycle/m-trail/m-tree, the out-of-band methods require one WL in each
unidirectional link traversed by the monitoring structure. Hence, bandwidth cost Λ for
single-link SRLG fault localization is reasonable, but the cost is too high for multi-link
SRLG fault localization.

The failure detection delay Tfd of the out-of-band methods is deterministic and short,
but the methods incur long and variable alarm dissemination delay Tad. As most of the
methods use ACT look up, the alarm correlation delay Tac is in O(1).

2.2.4 Hybrid Methods

In 2011, Stanic and Subramaniam [46] proposed a fault localization method using both
user lightpaths and dedicated S-LPs. At first an alarm matrix is constructed with the user
lightpaths. Each row of the matrix represents an element of the network and each column
of the matrix represents a monitor. Then k-shortest paths/cycles between all node-pairs
are enumerated excluding all the established user lightpaths. The authors formulate an
ILP and propose a heuristic to choose a minimum set of S-LPs from the set of enumerated
shortest paths/cycles for UFL.

Both the ILP and the heuristic utilize the alarm matrix and the set of enumerated
shortest paths/cycles as input. The ILP chooses a minimum set of S-LPs from the set
of enumerated shortest paths/cycles such that the final alarm matrix constructed with

25

the user lightpaths and the chosen S-LPs will have no zero row or identical rows. In the
heuristic, a minimum cost S-LP from the set of enumerated shortest paths/cycles is selected
one at a time until UFL is achieved. The cost of choosing an S-LP is the number of zero
rows and the number of identical rows of the enhanced alarm matrix if the S-LP is added
to the existing alarm matrix.

2.2.5 Non-Alarm Disseminating Methods

Non-alarm disseminating fault localization schemes also utilize dedicated S-LPs only for
link failure detection. In fact, a non-alarm disseminating fault localization scheme is a
special kind of out-of-band fault localization scheme. In a typical out-of-band fault local-
ization scheme, whenever a monitor detects any link failure, the monitor broadcasts an
alarm in the control plane with the highest priority in order to enable the controller for
localizing link faults. However, any alarm dissemination process makes the design of the
control plane complicated and is a source of variable fault localization latency. Obviously,
a non-alarm disseminating fault localization scheme avoids both the problems.

In August 2009, Ahuja, Ramasubramanian, and Krunz [2] proposed a single-link fault
localization method in three-edge-connected all-optical networks using monitoring cycles
(MC), which are simple m-cycles. The method can localize single-link faults without alarm
dissemination from a single monitoring location, which is also known as monitoring node
(MN). The upper bound of the number of m-cycles is given as |E|(|E|−1)

2
+ 1, i.e. O(|E|2).

An ILP that takes enumerated cycles as input is formulated with two constraints. The
first constraint is that for each link pair, at least one m-cycle traverses one of them but
not both. The second constraint is that each link of the network must be traversed by at
least one m-cycle.

A heuristic algorithm called the Monitoring Cycle Problem with One Monitoring Loca-
tion (MC-1) is also proposed. The first phase of the MC-1 method is to get a cycle cover.
For each uncovered link, an m-cycle consisting of the link and two link-disjoint shortest
paths from the MN to the end nodes of the link is added to the solution. In second phase,
each group of links traversed by the same set of m-cycles is considered iteratively until
each link of the network is traversed by a unique set of m-cycles. A link from the group is
selected randomly. The weights of the remaining links of the group are assigned very large
values temporarily. Next, an m-cycle consisting of the selected link and two link-disjoint
shortest paths from the MN to the end nodes of the selected link is added to the solution.
The worst-case complexity of the MC-1 method is O(|E|2(|V | log2 |V |+ |E|)).

In 2010, Wu et al. [61] proposed a single-link fault localization method in all-optical

26

networks such that multiple given MNs are able to localize faults without any alarm dis-
semination altogether. Each MN detects status of each m-trail passing through the MN
by signal tapping. To enable status checking by multiple MN, m-trails in the method are
closed structures. An ILP is formulated with constraints to derive a unique code for each
link of the network in each MN. The number of constraints is in O(m|E|2) where m is the
number of the given MNs. Each MN localizes single-link faults using its local alarm code
table (LACT).

In 2011, He et al. [22] proposed a greedy algorithm to localize faults from a given set of
MNs. Each MN detects LOL by signal tapping from the m-trails traversing the MN and
can localize single-link faults independently without any alarm dissemination. The method
selects m-trails based on Min Wavelength Max Information principle. Information gain of
an m-trail is defined as η =

∑
i δi/ω, where δi is the number of unique codes added to the

LACT of the ith MN by the m-trail and ω is the length of the m-trail in the number of
hops. The method considers each MN once. The method selects an MN randomly and
iterates as described below until the LACT of the current MN has unique codes for all
links of the network. Once the current LACT achieves unique link codes, it is ensured that
no link code of the current LACT is 0 and there are no redundant m-trails in the current
LACT.

A unique link code for each link adjacent to the current MN is derived indirectly by
randomly generating trail codes, which identify link traversal by m-trails. Then, link
codes for the remaining links are assigned randomly and reshuffled among them. Next, all
connected components (CCs) of each linkset are considered in sequence. Each CC that
does not pass though the current MN is discarded. If a CC is a valid m-trail, it is saved
as a trail candidate (TC). Otherwise, valid m-trails that pass through the current MN are
searched from arbitrarily selected odd-degree node pairs of the CC. If any valid m-trail is
found, it is saved as a TC. Finally, each TC is refined by splitting and looping to ensure
that if the TC visits multiple MN, it must be a closed structure. Otherwise, it must be
terminated at the current MN.

Now, if a refined TC achieves a preset information gain, it is processed further to
enhance its information gain by flipping each bit of its trail code. Then, the TC is added
as a new m-trail to the LACT of each MN that is traversed by the TC.

The failure detection delay Tfd of the non-alarm disseminating fault localization meth-
ods is deterministic and short. The methods incur no alarm dissemination delay. i.e., Tad
is 0. As the methods in [22][61] use ACT look up, the alarm correlation time Tac of the
methods for alarm correlation is in O(1).

27

2.3 Multi-Link SRLG Fault Localization

The multi-link SRLG fault localization schemes can also be classified mainly based on the
kind of lightpaths utilized for link failure detection. The schemes are classified broadly
as in-band, probing, out-of-band, and non-alarm dissemination methods. The non-alarm
disseminating SRLG fault localization schemes are identified as a separate group again.

2.3.1 In-band Methods

In 1993, Deng, Lazar, and Wang [16] proposed an in-band Bayesian network based proba-
bilistic method to localize multiple node faults in an early transparent all-optical network,
called the Linear Lightwave Network (LLN). The method is based on power measurement
of user lightpaths, inference model trimming and belief function updates to localize mul-
tiple faults via a multi-stage process. The worst case complexity is O(Z|V |Z) where |V | is
the number of nodes and Z is the numbers of incorrect output power values at egress of the
network. The algorithm is modified to achieve complexity in O(Z|V |d) and O(Z|V |T+1)
for node faults involving up to given d nodes and unknown T nodes, respectively. As it is
needed to measure input and output powers of the node with the largest belief whenever
the belief value is less than 1, the method needs 2|E| monitors and incurs long and variable
fault localization latency.

In 2005, Mas, Tomkos, and Tonguz [37] introduced one of the earliest fault localization
methods in all-optical networks to localize dual optical component faults. The method has
to deal with the problem of optimal alarm set placement, which is shown to be NP-complete
[42]. Alarm domains of single and dual components traversed by the user lightpaths are
determined. A binary tree is created using all alarms in the system where leafs are either
an alarm domain or empty. This part is pre-calculated every time there is a change in user
lightpaths; tree construction is avoided in [38]. After a failure event, the binary tree is
traversed by using the set of ringing alarms to reach a leaf, which may points to multiple
components. Hence, the method may not localize faulty component(s) unambiguously.
Moreover, it needs O(|A|) steps for alarm correlation, where |A| is the number of alarms,
but m-trail based schemes need O(1) steps for the purpose.

In 2009, Khair, Zheng, and Mouftah [29] proposed a method, called the Parallel Lim-
ited Perimeter Vector Matching (P-LVM), for multi-link fault localization in all-optical
networks. Once a link failure event occurs, which interrupts some lightpaths, the sink
nodes of the disrupted lightpaths will flood the network with messages that include link
set of the lightpaths. After receiving the messages, the nodes build lightpath queues, called

28

Executive Route Queues (ERQs). Each ERQ represents a single-link fault event. The sink
of the shortest lightpath of each ERQ becomes the Executive Sink (ES) of the ERQ. Each
ES conducts remaining fault localization activities independently using the LVM [44], a
single-link fault localization method. The P-LVM has many advantages of a typical dis-
tributed method, but has to deal with loss and delay of messages; consequently, the P-LVM
incurs long and variable fault localization latency. The P-LVM is applied to multi-domain
scenario in [68].

2.3.2 Probing Methods

In 2005, Wen, Chan, and Zheng [57] proposed an adaptive run-length probing scheme in
all-optical networks based on probabilistic link failure model. All network links are probed
sequentially in a probing session to localize all faulty links. Maximum probing length K is
derived based on approximately equal probabilities of a single-link fault and no fault in a
fiber segment of a Eulerian trail. An optical signal is sent through maximum K links each
time. If there is no fault in a fiber segment, the probe arrives at the remote end node. Oth-
erwise, the leftmost faulty link of the segment is localized by using 2m-splitting and probing
techniques repeatedly. The method needs d log2K + |E|−d+1

K
+ (d− 2) probes to identify d

faulty links and can localize up to |E| faulty links. The method needs |E| monitors and
typically incurs very long fault localization latency due to sequentially probing.

To localize node and link failures, the authors in [58] utilize a network transformation
that maps both undirected links and nodes of the network into directed arcs of a directed
graph. Then, the directed graph is probed to localize link and node faults by using the
run-length scheme. The authors in [59] extend the run-length scheme for non-Eulerian
networks by converting non-Eulerian networks into a Eulerian network using the Disjoint-
Trail Decomposition and the Path-Augmentation approaches.

In 2007, Harvey et al. [21] outlined two non-adaptive probing schemes based on Com-
binatorial Group Testing (CGT). The methods find fault-free link sets in a network G and
identify probes to localize faulty links using each link set as a hub. The first method is for
the network topologies that can accommodate at least (d+1) edge-disjoint spanning trees.
The upper bound of the minimum number of probes L∗(G, d) to localize up to d link fail-
ures is O

(
d ∗ T ∗(|E|, d)

)
, where T ∗(|E|, d) is the minimum number of non-adaptive group

tests needed to identify up to d failed elements among |E| elements. The upper bound
of T ∗(|E|, d) is O(d2 log2 |E|). Thus L∗(G, d) is in O(d3 log2 |E|). The second method is
for the network topologies that have at least d edge-disjoint spanning trees {T1, . . . , Td}.
Now, L∗(G, d) is in O

(
d ∗ T ∗(|E|, d) +

∑d
i=1 L

∗(Ti, d = 1)
)
. Obviously, the second method

29

needs more probes. The schemes are for highly connected networks and cannot be applied
in networks with limited connectivity to achieve the bounds on L∗(G, d).

2.3.3 Out-of-band Methods

In 2008, Ahuja, Ramasubramanian, and Krunz [1] outlined a multi-link SRLG failure
localization method in arbitrarily connected networks to localize faults involving up to
d links. The authors define the feasibility of the S-LP routing problem in terms of the
network topologies and deal with the problem of MN selection. The method requires that
each component found after removal of any (d + 1) links have at least one MN. Once
all MNs are identified, all MNs are merged to a central MN J . The transformed graph
becomes (d + 2)-edge connected. The method finds a set of m-trails in the transformed
network running the modified heuristic MC-1 from MN J . The modified MC-1 is described
in section 2.3.4.

In 2010, Wu et al. [60] provided an approach for optimally allocating m-trails to achieve
unambiguous SRLG failure localization using ILP where decimal alarm codes of each pair of
SRLGs are kept dissimilar. Thus the number of constraints is in O(|Ψ|2) which is reduced
to O(|E||Ψ|) in Section 5.2. Similar ideas of [60] are further explored on bi-directional
monitoring trails (bm-trails) in [51]. A bm-trail is a non-simple cycle/path that can traverse
any node multiple times but a link at most twice: one time in each direction. Initially, each
SRLG with up to d arbitrary links is assigned a unique code from generated non-adaptive d̄-
separable CGT codes. Then code pairs are swapped keeping code uniqueness of the SRLGs
using the Greedy Code Swapping (GCS) method to form bm-trails in each bit position of
the SRLG codes in such a way that the overall cost of failure localization is minimized.
The worst-case complexity of the method is O

(
d4|V ||E|2 log2 |E|(1 +h∆)

)
, where h∆ is the

difference between maximum and minimum Hamming weight of the generated CGT codes.
The method is applied in a dense-SRLG scenario.

In 2011, Babarczi, Tapolcai, and Ho [10] introduced an algorithm, called the Adjacent-
Link Failure Localization (AFL), that deals with sparse-SRLGs. The set of SRLGs includes
all single-link and some adjacent-link SRLGs. Since the code of each dual-link SRLG is
bit-wise OR of its constituent single-link codes, there are code dependencies. The code de-
pendencies are removed by graph partitioning. Then the Random Code Assignment (RCA)
and the Random Code Swapping (RCS) methods [54] are applied to each partition to find
codes for single-link faults. A unique code for each SRLG is derived by direct summing
of the single-link codes of all the partitions. Complexity of AFL is O(∆2|V ||E|3 log2 |E|),
where ∆ is maximal nodal degree of the graph. The worst-case complexity is improved to

30

O
(
(|E|+ 1)d(|V | log2 |V |+ |E|)

)
in Section 5.2 where d is 2 for all single-link and adjacent-

link SRLGs.

2.3.4 Non-Alarm Disseminating Methods

In 2008, Ahuja, Ramasubramanian, and Krunz [1] proposed a multi-link SRLG failure lo-
calization method using monitoring cycles (MCs), which are simple m-cycles. The method
can localize faults involving up to d links from a single monitoring location, which is also
known as MN. The authors prove that to localize up to d simultaneous link faults in a
network from a single MN using m-cycles, the network must be (d+ 2)-edge connected.

An ILP is formulated based on enumerated cycles. The first constraint of the ILP is
that for each SRLG pair, at least one m-cycle traverses one SRLG but not both. The
second constraint of the ILP is that each SRLG under consideration must be traversed by
at least one m-cycle.

Another version of the heuristic algorithm MC-1 is also proposed in [1] for multi-link
SRLG fault localization from a single MN. Initially, the tag value for each SRLG is set
to 0. Then, a pair of SRLGs having the same tag value is considered iteratively until the
tag value of each SRLG becomes unique. In each iteration, the MC-1 randomly selects a
link that is in only one SRLG of the pair, and all links of the other SRLG are removed
temporarily. Next, an m-cycle consisting of the selected link and two link-disjoint shortest
paths from the MN to the end nodes of the selected link is added to the solution. The
weight of each link traversed by the m-cycle is increased by a large value, and tag value of
each SRLG traversed by the m-cycle is updated. At the end of the iterative phase, if an
SRLG is not traversed by any m-cycle, a new m-cycle consisting of one link of the SRLG
and two link-disjoint shortest paths from the MN to the end nodes of the link is added to
the solution. The complexity of the method is O(|Ψ|2|V | log2 |V |) where |Ψ| is the number
of SRLGs under consideration. The required number of m-cycles |M| is upper bounded
by O(|Ψ|2), which is the same as O

(
(|E|+ 1)2d

)
; the upper bound is reduced to O(|Ψ|) in

Section 5.2 and to (d+ 1)|E| in Section 5.3.

In 2011, He et al. [23] proposed a heuristic method, called the MNUFL, to localize multi-
link SRLG faults from a given set of MNs. Each MN detects LOL using signal tapping
from the m-trails traversing the MN and can localize link faults involving up to d links
independently without any alarm dissemination. The MNUFL selects m-trails based on
Enhanced Min Wavelength Max Information principle. Let m be the number of distinct
SRLG codes in the set of SRLG codes C and the number of SRLGs having Ci as their
SRLG code be |Ci|. Thus

∑m
i=1 |Ci| = |Ψ|, where |Ψ| is the total number of SRLGs under

31

consideration. The entropy of C is defined as H(C) =
∑m

i=1−pi log pi, where pi = |Ci|
|Ψ| .

Information gain is defined as the difference between entropies of the set of SRLG codes
before and after addition of a new m-trail to a solution.

The MNUFL derives MN-valid m-trails and adds them to the solution iteratively until
each SRLG code becomes unique. An m-trail becomes MN-valid if it traverses all the
designated MNs. As described below, the MNUFL maximizes information gain during the
search for each new MN-valid m-trail.

The MNUFL derives a new trail by adding links as long as the entropy can be increased.
If the new trail is not an MN-valid m-trail, an info-gaining event group with respect to
the new trail is chosen. (An info-gaining event group with respect to an m-trail is a set of
SRLGs having the same code, but the code of a subset of the SRLGs changes to a different
value when the m-trail is added to the solution.) Next, an SRLG that is link-disjoint from
the new trail is selected from the chosen info-gaining event group. Then for each pair of
connected components (CCs) in the new trail, a set of links that is link-disjoint from the
selected SRLG but connects the pair of CCs is stored as the pair’s hyperedge. Finally, the
MNUFL adds new links to the new trail iteratively until the new trail becomes an MN-valid
m-trail; in each iteration, a link that provides maximum info-gain among the links of an
arbitrarily selected hyperedge is added to the new trail.

2.4 Fault Localization via M-Burst Framework

As we have stated in [7], the proposed m-burst framework aims at solving a number of
legacy problems inherent in the context of fault localization in all-optical mesh networks.
First, the m-burst framework overcomes the limitations of link-based monitoring, which
serves as an alternative to the state-of-the-art industry solution. Second, the conventional
m-trail based approaches may consume a huge amount of monitoring resources that make
them impractical for deployment. For example, the authors in [61] show that on average
2 WLs along each link are needed in order to localize 6 SRLGs in a 10-node topology.
Moreover, the authors in [51] show that more than 10 WLs along each link are needed
to localize any faulty SRLG with up to 3 links in randomly generated large topologies.
The m-burst framework makes those conventional m-trail based approaches more feasible
due to significantly reduced resource consumption achieved by multiplexing in the time
domain the traversing multiple m-trails, if any, in each unidirectional link. Third, since
the switch fabric of each network node is configured periodically as per the switching
schedule determined in advance, there will be no real-time control complexity and signaling

32

overhead. The resultant failure monitoring system is truly all-optical, signaling-free, and
deterministic.

In m-burst framework, the number of monitors |M | and the number of m-trails |M|
are no longer the same. As each m-burst is launched from the single MN along a single
WL in an outgoing link and the burst returns to the MN via a single WL in an incoming
link, transmitters, receivers, and monitors of m-trails can be shared. In fact, the number
of required monitors |M | in m-burst framework is less than or equal to the nodal degree of
the MN. Hence, the number of m-trails |M| has no significance from the monitoring cost
perspective, and the monitor cost γ ∗ |M | is determined by the nodal degree of the MN.
Moreover, the bandwidth cost Λ is in O(|E|) because at most one WL in each unidirectional
link is used.

When an m-burst fails to return, the MN has to wait for a monitoring period before it
correlates alarms. Thus, unlike any other fault localization method, the failure detection
delay Tfd in the m-burst framework is significantly large; in fact, Tfd is equivalent to
the fault localization latency T as the alarm dissemination delay Tad is 0 and the alarm
correlation delay Tac is in O(1).

As the number of monitors |M | is determined by the nodal degree of the MN and the
bandwidth cost Λ is in O(|E|), it turns out that reducing monitoring period or equivalently
Tfd is the primary objective in the m-burst framework.

2.5 Conclusions

In-band fault localization schemes incur minimum monitor cost if monitors are not used at
the intermediate nodes of lightpaths to detect LOL. Almost all in-band schemes incur no
bandwidth cost. On the other hand, the performance of an in-band scheme in a network
heavily depends on the current traffic matrix of the network, a source of great uncertainty
in fault localization. Moreover, the in-band schemes are subject to long and variable
alarm dissemination delays. Adaptive probing based fault localization schemes also incur
long and variable alarm dissemination delays, but the schemes are able to localize all
faulty links. The performances of out-of-band fault localization schemes are stable and
predictable, but the schemes incur high monitoring cost. Although not as severe as in
in-band or adaptive probing based schemes, alarm dissemination delays remain an issue
with out-of-band schemes except in non-alarm dissemination schemes.

At this point, many efficient methods, in terms of monitoring resource utilization, are
proposed for single-link SRLG fault localization in all-optical networks. However, the

33

scenario is quite different with multi-link SRLG fault localization in all-optical networks.
The existing multi-link SRLG fault localization methods need considerable amount of
monitoring resources; therefore, multi-link SRLG fault localization in all-optical networks
is still an open problem for investigation.

34

Chapter 3

The M-Burst Framework

3.1 Introduction

In this thesis, we develop single-link and multi-link SRLG fault localization schemes in all-
optical mesh networks. The schemes are to be deployed within a novel fault localization
framework called the monitoring burst (m-burst). The framework has one given MN and
uses one dedicated WL in each unidirectional link of the network if the link is traversed by
an m-trail. The MN is the source and sink of the S-LP of each m-trail and sends a short
duration optical burst through the S-LP periodically. The MN detects link failure in an
m-trail if the burst along the m-trail fails to return to the MN in due time.

As mentioned earlier, the m-burst framework has three components: 1) an m-trail allo-
cation scheme for single-link or multi-link SRLG fault localization, 2) an m-burst launching
time scheduler, and 3) a node switch fabric configuration scheduler. The fault localization
scheme provides a set of m-trails as a solution such that each SRLG under consideration
will be traversed by a unique subset of the m-trails. The m-burst launching time scheduler
will determine the burst starting time from the MN along each m-trail in each monitoring
period such that bursts remain non-overlapping in any link of the network. The node
switch fabric configuration scheduler will specify switching times for each node in order to
multiplex multiple m-bursts, if any, in the time domain, through each unidirectional link
in each monitoring period. The switching times for each node are derived from the m-trail
routes and the burst launching times. Burst collision is avoided altogether with the help
of two schedulers.

The MN sends the schedule for node switch fabric configuration to every node of the
network once in the beginning of fault monitoring using a signaling protocol such as the

35

Resource Reservation Protocol with Traffic Engineering (RSVP-TE). Each node periodi-
cally configures its switch fabric at the reference time instant, according to the assigned
schedule, without relying on any additional signaling from the MN prior to every switch-
ing activity, since the m-trail deployment depends only on the network topology, which is
considered rather static. The schedule is usually updated after pre-defined long intervals.

In this chapter, we describe the construction and working principles of the m-burst
framework. We also formulate three relevant problems in the m-burst framework: m-
trail allocation, m-burst launching time scheduling, and node switch fabric configuration
scheduling problems.

The rest of the chapter is organized as follows. Section 3.2 provides a detailed descrip-
tion of the m-burst framework. In Section 3.3, three problems of the m-burst framework
are formulated individually. Section 3.4 concludes the chapter.

3.2 Description of the Framework

Figure 3.1 shows a network with six nodes and nine links to explain how the proposed
m-burst framework works. Node 0 is the MN. We deal with single-link fault localization.
Each undirected link of the network is a single-link SRLG; thus, there are nine SRLGs.

0

4

5

1

2

3

m0

m1

m2

m3

MN

Figure 3.1: Single-link SRLG fault localization.

A set of four m-cycles is a solution for the problem of identifying the single-link SRLG
faults. Each m-cycle starts from and returns to the MN. Each SRLG is traversed by a
unique set of m-cycles. Each SRLG code is derived from the corresponding set of m-cycles
traversing the SRLG. Each binary bit of the SRLG code represents an m-cycle. If the
jth m-cycle traverses the SRLG, the corresponding bit of the SRLG code is assigned 1;
otherwise, it is 0 [54]. SRLG codes are the decimal values of the binary codes. Formation

36

of the SRLG codes is shown in Table 3.1. The MN maintains an alarm code table (ACT)
that is the mapping between SRLG codes and the SRLGs.

Table 3.1: Alarm Code Table (ACT)

SRLG m3 m2 m1 m0 SRLG Codes
(0, 1) 1 1 1 0 14
(0, 4) 0 1 0 1 5
(0, 5) 1 0 1 1 11
(1, 2) 0 0 1 0 2
(1, 3) 1 1 0 0 12
(2, 3) 1 0 0 0 8
(2, 5) 1 0 1 0 10
(3, 4) 0 1 0 0 4
(4, 5) 0 0 0 1 1

To derive burst launching times from the MN, let us assume that propagation delay δ is
the same along each link and burst length L is several times larger than δ. We try to find
the launching time of each burst as early as possible, avoiding collision with other bursts.
The m-bursts along m-cycles m0 and m2 can be launched in the beginning of a monitoring
period because they do not use any unidirectional link of the network that is being used
by another m-cycle. Thus, the burst launching times s0 and s1 are 0.

As both m-cycles m1 and m3 use unidirectional links (0, 5), (5, 2) and (1, 0), only
one burst along the m-cycles can be launched in the beginning of a monitoring period.
However, if we launch a burst along m-cycle m3 in the beginning of a monitoring period,
we will get the least monitoring period. Thus, the burst launching time s3 is 0. In that
case, the burst along m-cycle m1 must be launched at least after L ms from the beginning
of each monitoring period to avoid collision in links (0, 5) and (5, 2). To avoid collision in
link (1, 0), the burst along m-cycle m1 should not reach node 1 before (4δ+L) ms from the
beginning of a monitoring period. Thus, the earliest burst launching time along m-cycle
m1, i.e., s1 should be (4δ + L− 3δ) = (δ + L) ms in order to avoid all burst collisions. As
a result, the m-burst along m-cycle m1 will reach nodes 5, 2 and 1 after the m-burst along
m-cycle m3 completely passes through each of the three nodes.

The time required by the jth m-burst to return to the MN avoiding collisions is T j =
sj+tpj+L, where sj, tpj and L are the burst launching time along the jth m-cycle from the
MN in ms, the total propagation delay of the burst in ms along the jth m-cycle, and the
burst length in ms, respectively. Thus, T 0 = 0 + 3δ+L = 3δ+L, T 1 = (δ+L) + 4δ+L =
5δ + 2L, T 2 = 0 + 4δ + L = 4δ + L and T 3 = 0 + 5δ + L = 5δ + L. Within (5δ + 2L) ms,
every burst will return to the MN completely. Thus, the monitoring period is (5δ + 2L)

37

ms.

As each m-cycle is probed once every (5δ + 2L) ms, burst launching times s0, s2,
and s3 along m-cycles m0, m2, and m3, respectively, will be t0 = k ∗ (5δ + 2L), where
k is a non-negative integer. Similarly, burst launching time s1 along m-cycle m1 will be
t1 = (δ + L) + k ∗ (5δ + 2L). In the example, t1 always lags t0 by (δ + L) ms. Burst
launching times are shown in Figure 3.2.

0

t0

δ + L

t1

5δ + 2L

t0

6δ + 3L

t1

10δ + 4L

t0

11δ + 5L

t1

Time

Figure 3.2: Burst launching schedule from the MN.

Now the only remaining issue is the real time configuration of the switch fabric of each
network node in each monitoring period. Note that at most one WL is used along any
unidirectional link in the m-burst framework. If two or more bursts are arriving through
one incoming link to a node and leaving through another outgoing link from the node,
the connection between the incoming and outgoing links need not be changed at all. On
the other hand, if two or more bursts are arriving through the same incoming link to a
node and leaving through different outgoing links from the node, or two or more bursts are
arriving through different incoming links to a node and leaving through the same outgoing
link from the node, the corresponding connections of the switch fabric of the node has to be
changed in each monitoring period as per the burst arrival schedule. In our example, the
connections of the switch fabrics of only nodes 1 and 2 have to be changed every monitoring
period to allow the bursts along m-cycles m1 and m3 to pass the nodes without collision.

Figure 3.3 shows the node switch fabric configuration of node 1. The node has to enable
a connection for L ms from node 3 to node 0 at every time instant 4δ+k(5δ+2L) and from
node 2 to node 0 at every time instant (4δ+L)+k(5δ+2L) for m-bursts along m-cycles m3

and m1, respectively. Similarly, Figure 3.4 shows the node switch fabric configuration of
node 2. The node has to enable a connection for L ms from node 5 to node 3 at every time
instant 2δ+k(5δ+2L) and from node 5 to node 1 at every time instant (3δ+L)+k(5δ+2L)
for m-bursts along m-cycles m3 and m1, respectively.

There are three switching strategies. First, each node can start changing its config-
uration at the instant each m-burst reaches the node to allow the m-burst to traverse

38

3

2

1 0

(a) at t = 4δ + k(5δ + 2L)

3

2

1 0

(b) at t = (4δ + L) + k(5δ + 2L)

Figure 3.3: Configuration of the switch fabric of node 1.

5 2

3

1

(a) at t = 2δ + k(5δ + 2L)

5 2

3

1

(b) at t = (3δ + L) + k(5δ + 2L)

Figure 3.4: Configuration of the switch fabric of node 2.

the node; for instance, node 1 in Figure 3.3 can start switching at 4δ + k(5δ + 2L) and
(4δ + L) + k(5δ + 2L). In a fault-free network state, the leading edge up to ts ms of each
burst will be affected, where ts is the switching time of each node, and the last (L− ts) ms
of the burst will remain intact.

Second, each node can start changing its configuration ts ms before the instant an m-
burst completely passes through the node, to allow the next m-burst to traverse the node;
e.g., node 1 can start switching at (4δ+L)+k(5δ+2L)− ts and (4δ+2L)+k(5δ+2L)− ts.
In a fault-free network state, (L − ts) ms of the leading edge of each burst will remain
intact, and the last ts ms of each burst will be distorted.

Third, each node can start changing its configuration at the instant an m-burst com-
pletely passes through the node, to allow the next m-burst to traverse the node; e.g., node
1 can start switching at (4δ + L) + k(5δ + 2L) and (4δ + 2L) + k(5δ + 2L). In a fault-free
network state, the leading edge of the next burst will be affected if the burst reaches the
node within ts ms of the start of switching. In a fault-free network state, at most the first
ts ms of the next burst will be distorted, and at least the last (L− ts) ms of the burst will
remain intact.

39

Let us assume that each node will start switching at the instant an m-burst completely
passes through the node. Consequently, intact burst sizes will be increased. Note that
each burst carries minimal data such as the identity of the m-burst. It is to be ensured
only that the last (L − ts) ms of each burst is sufficient to identify the m-burst. Let ts
be 10 ms [14][41][67]. If burst length L is 20 ms, at least the last 10 ms of each m-burst
will reach the MN intact. During normal operation of the network as shown in Figure 3.1,
all bursts except the m-burst along m-cycle m1 will reach the MN intact. Only the last
(20 − 10) = 10 ms of the m-burst along m-cycle m1 will return to the MN intact. On
the other hand, if link (1, 2) becomes faulty, the m-burst along m-cycle m1 will be lost
completely.

Now if bursts along m-cycles m0, m1 and m3 fail to return to the MN within a mon-
itoring period due to a failure event, the generated decimal alarm code will be 20+21+23

= 11. The MN can identify link (0, 5) as the faulty single-link SRLG from the ACT given
in Table 3.1, using 11 as an index.

3.3 Problem Formulation

3.3.1 M-Trail Allocation

Like any out-of-band monitoring structure allocation problem, an m-trail allocation prob-
lem in the m-burst framework is to find a sequence of connected unidirectional links in the
network G = (V,E). As stated or implied in every monitoring structure allocation prob-
lem in the literature, an m-trail in the m-burst framework can be described as a sequence
of unidirectional links. In other words, “(v0, v1), (v1, v2),. . . , (vn−2, vn−1), (vn−1, vn)” is an
m-trail where vj ∈ V : vj is the jth node of the m-trail for j = 0, . . . , n and “(vi, vi+1) ∈ E
for i = 0, . . . , n− 1” provided that “(vi, vi+1) 6= (vj, vj+1) if i 6= j” [54].

Every monitoring structure has to satisfy certain constraints based on specific design
requirements. The m-burst framework enforces the following constraints. First, each m-
trail has to traverse a designated node, which is the MN. Second, as m-bursts are launched
from the MN and returned to the MN, each m-trail has to be a closed loop; consequently,
v0 = vn. Third, if an m-trail is a trail and traverses a unidirectional link (u, v), it has
to traverse the unidirectional link (v, u); but if the m-trail is a cycle and traverses a
unidirectional link (u, v), it cannot traverse the unidirectional link (v, u). Moreover, an
m-trail is a non-simple path that can visit a node multiple times. Note that every m-trail
in the m-burst framework is in fact a virtual entity because no WL is exclusively reserved
for it nor is any persistent optical flow going through it.

40

In the m-burst framework, an SRLG failure is defined as the failure of all the links
contained in the SRLG, but an SRLG is considered traversed by an m-trail if one or more
links contained in the SRLG is traversed by the m-trail.

The solution of the m-trail allocation problem in the m-burst framework consists of
a set of m-trails M = {m0,m1, . . . , m(J−1)} where J = |M|. Let ∀(u, v), (v, u) ∈ E,
the set of m-trails traversing through the undirected link (u, v) be denoted as ϕ(u,v). If
m0, m1 and m2 traverse through an undirected link (w, x), and m2, m3 and m4 traverse
through an undirected link (y, z), we have ϕ(w,x) = {m0,m1,m2} and ϕ(y,z) = {m2,m3,m4},
respectively. Again, let the set of m-trails traversing SRLG ψi be denoted as ϕψi

. The
set of m-trails traversing a single-link SRLG is obviously the set of m-trails traversing
through the only link of the SRLG. Now, if a SRLG ψj = {(w, x)}, we have ϕψj

= ϕ(w,x) =
{m0,m1,m2}. On the other hand, the set of m-trails traversing a multi-link SRLG is the
union of the sets of m-trails traversing through the links of the SRLG. Here, ∀ψi ∈ Ψ: ψi is
a multi-link SRLG, ϕψi

=
⋃
∀(u,v)∈ψi

ϕ(u,v). Now, if a multi-link SRLG ψk = {(w, x), (y, z)},
we have ϕψk

= ϕ(w,x) ∪ ϕ(y,z) = {m0,m1,m2,m3,m4}.

To localize single-link or multi-link SRLG failures unambiguously, the set of m-trails
traversing each SRLG should be unique. To fulfill the condition, the m-trail allocation
problem will be considered as a topology coding process, where each SRLG is assigned a
unique SRLG code.

A binary link code is defined as “an ordered sequence of binary bits [b(J−1) · · · b1 b0]
where each m-trail in M has a fixed bit position. Specifically, m-trail mj occupies the jth
bit position of link codes. If m-trail mj traverses link (u, v), bj will be 1 in the link code
of link (u, v); otherwise, bj will be 0” [54]. An SRLG code is defined similarly. The SRLG
code of an SRLG is derived by bitwise logical OR operation on the link codes of the links
in the SRLG. An alarm code table (ACT) maintains the mapping between SRLG codes
and the set of SRLGs.

By properly designing a set of m-trails with respect to the SRLGs under consideration,
it is ensured that the on-off status of the monitors of m-trails during a failure event will
define a valid alarm code. The MN maps the failure event to a particular SRLG by matching
the alarm code with an SRLG code in the ACT. Therefore, if each single-link or multi-link
SRLG is assigned a unique SRLG code equivalently each SRLG is traversed by a unique
set of m-trails, any single-link or multi-link SRLG failure can be localize unambiguously
by identifying the set of disrupted m-trails.

41

3.3.2 M-Burst Launching Time Scheduling

The m-burst scheduling problem is to find m-burst launching time sj along each m-trail
mj ∈M during a monitoring period so as to minimize the fault localization latency T while
avoiding any burst collision altogether in the network. Let pjuv be the burst propagation
delay from the MN to node u incurred by the burst along m-trail mj until it is about
to traverse unidirectional link (u, v). Thus, the burst along m-trail mj reaches node u at
(sj + pjuv).

Now, ∀(u, v) ∈ E and ∀mk,ml ∈ M: mk and ml traverse directional link (u, v), the
burst scheduler at the MN has to ensure that |(sk + pkuv)− (sl + pluv)| ≥ L, where L is the
burst length, to avoid burst collision in the directional link (u, v) including its end nodes u
and v. In other words, the absolute difference between the arrival times of each burst pair
at any node while traversing the same outgoing link from the node must be at least equal
to the burst length L.

As the propagation delay along an m-trail is determined by the route of an m-trail
from the MN to node u, the burst arrival time pjuv to node u is fixed for m-trail mj that is
traversing link (u, v). Therefore, the burst scheduler can adjust only sj to ensure separation
of the bursts in time domain if m-trail allocation and burst scheduling are done separately.

Moreover, the burst scheduler has to minimize fault localization latency T . Now, T ≥
T j = sj + tpj + L, ∀mj ∈M, where tpj is the end-to-end propagation delay along m-trail
mj. Clearly, with a set of m-trails determined a priori, the burst scheduler can adjust only
sj to minimize T as well.

3.3.3 Node Switch Fabric Configuration Scheduling

Once the set of m-trails as the solution of the fault localization problem is identified and
the burst starting time along each m-trail is derived, the MN calculates burst arrival times
to each node of the network. Now, ∀u ∈ V , ∀(u, v) ∈ E, and ∀mj ∈M, the burst arrival
time to node u is sj + pjuv if m-trail mj visits the node and next hop node of the m-trail
is v. Then, the MN informs each node the monitoring period, the route of each m-trail
traversing the node, and the burst arrival time along the m-trail using the RSVP-TE.

As stated earlier, if each burst that arrives to node u through the incoming link (t, u)
is leaving through the same outgoing link (u, v), the node has to provide the connection
from node t to node v but need not change the connection during fault monitoring. On the
other hand, if more than one bursts arrive to node u through the incoming link (t, u) but
leave through different outgoing links or more than one bursts arrive to the node through

42

different incoming links but leave through the same outgoing link (u, v), the node has to
configure its switch fabric during every monitoring period.

Let us assume that switch fabric configuration starts after each burst passes through
a node completely. In other words, when the burst along m-trail mj passes through the
node completely, i.e., at sj + pjuv + L, the node starts changing its switch fabric to allow
traversal of the next burst. Thus, at least (L − ts) ms of each burst will remain intact,
where ts is the switching time of the node.

3.4 Conclusions

In m-burst framework, S-LPs are multiplex in the time domain to reduce WL usage for
monitoring. The S-LP for an m-trail is utilized only during its burst traversal along the
m-trail. Thus, S-LP multiplexing is equivalent to fast lightpath set up and tear-down.

The schedule for node switch fabric configuration depends only on the routes of m-trails
in the solution and burst starting times along the m-trails. Thus m-trail allocation and
m-burst scheduling problems completely determine the timing to change the configuration.
Actual calculation of the timing to change the configuration is routine, simple, and easy.
Thus, we will not discuss the node switch fabric configuration scheduling problem at length.
For all practical purposes, the problems we are dealing with in this thesis are the m-trail
allocation and m-burst launching time scheduling problems.

43

Chapter 4

M-Burst on Single-Link SRLGs

4.1 Introduction

A network operator is committed up to 99.999% (five 9s) availability of connections as a
part of service level agreements with its customers [41]. A high availability of network back-
bone is ensured by using fault detection, fault localization and traffic protection/restoration
techniques. Instantaneous and precise failure localization in all-optical WDM mesh net-
works is essential in enabling fast and automatic failure-dependent restoration in the event
of the failure of any shared risk link group (SRLG), which in turn serves as a key functional
block in achieving an efficient and effective fault management system.

In the absence of the electronic data processing at the intermediate nodes, one of the
most common methods in the literature for achieving instantaneous failure localization
in all-optical WDM networks is via out-of-band monitoring, whereby a set of supervisory
lightpaths (S-LPs) are launched and closely monitored at the receivers. A monitor broad-
casts an alarm in the control plane with the highest priority as soon as any irregularity
such as loss-of-light (LoL) is detected. By collecting all the alarms issued, the network con-
troller or routing entities are expected to come up with a valid alarm code that uniquely
indicates an SRLG failure event. Note that the alarm dissemination should take place
in the network control plane in real-time right after the occurrence of each failure, which
not only takes a significant amount of network resources of the control plane during fault
events, but also introduces additional fault localization latency and control complexity.

Some studies suggest monitoring a set of m-trails terminated at a single monitoring
node (MN), which can completely remove the alarm dissemination complexity [1][2][61].

44

In particular, the studies in [61] further suggest that a node obtain the on-off status of
a lightpath by tapping the optical signal, by which the fault localization decision can be
made locally at the node. However, with the signaling complexity resolved, every link
needs to consume a single wavelength channel (WL) to support the traversal of an m-trail,
which leads to significant increase of the resource consumption. According to an early
assessment [51], a feasible unambiguous failure localization (UFL) solution takes 10 or
more wavelength channels on average along each link when all the SRLGs with up to 3
links are considered.

To reduce monitoring resource consumption, time division multiplexing (TDM) of S-
LPs at intermediate nodes could be used. But that would require expansive O/E/O con-
version of S-LPs at the intermediate nodes. Moreover, it would go against transparent
characteristics of the all-optical network.

This thesis aims to solve the abovementioned problem of high monitoring resource
requirement by introducing a novel framework of all-optical failure localization, called the
monitoring burst (m-burst). With the m-burst framework, a single MN is allocated with
a set of close-loop S-LPs, also known as m-cycles. The MN launches optical bursts along
the m-cycles to detect their on-off status. Due to the close-loop shape of an m-cycle, the
launched optical burst will be received by the MN if all the links along the m-cycle are
working properly, and the burst will be lost if any link along the m-cycle has failed. Thus,
different from the scenario of local unambiguous failure localization (L-UFL) defined in
[61] where an MN relies on the on-off status of each traversing S-LP to determine each bit
in the alarm code, the MN of the m-burst framework determines each bit of the alarm code
based on whether the corresponding burst is received at the expected time instant or not.

Since each m-burst is a short-duration optical flow, we no longer need to reserve stati-
cally a whole wavelength channel (WL) in each link traversed by an m-cycle; on the other
hand, multiple optical bursts can be multiplexed in the time domain on the same WL,
which is expected to reduce significantly the consumed monitoring resources. Such saving
of monitoring resources, nonetheless, cannot be achieved without additional complications
and overhead. Due to lack of optical buffers, an optical burst has a deterministic arrival
and departure time instants at each intermediate node once it is launched from the MN.
Thus, it is possible that two m-bursts will collide at any unidirectional link traversed by
two corresponding m-cycles. Note that the proposed m-burst framework has an essential
prerequisite that any burst loss should be due only to link failure instead of any other rea-
son such as burst collision, otherwise the MN would be subject to a false alarm or an illegal
alarm code. Provided with k wavelengths (full wavelength convertibility assumed) along
each unidirectional link for supporting the failure localization system, burst collision can
be avoided only if no more than k bursts have their traversal time periods overlapped with

45

those of others along any unidirectional link. Therefore, an immediate problem stemming
from the proposed m-burst framework is how to completely avoid any burst collision.

In this chapter1, we set our goal so as to explore the feasibility of the proposed m-burst
framework by formulating the burst collision avoidance task as a burst scheduling problem.
In order to avoid completely any possible burst collision, our strategy is to manipulate the
timing of launching each optical burst at the MN. The chapter focuses on the scenario
of single-link SRLGs with a single MN, where each unidirectional link requires one single
supervisory WL if the link is traversed by any m-cycle for the failure localization system.
Note that three relevant problems of the m-burst framework—the m-cycle allocation, m-
burst launching time scheduling, and node switch configuration scheduling problems—are
formulated in Section 3.3 of Chapter 3.

The rest of this chapter is organized as follows. Two problems, the burst launching time
scheduling for getting non-overlapping bursts in each unidirectional links of the network
and the signaling for switching to multiplex bursts in the time domain, are discussed in
Section 4.2.

In Section 4.3, an integer linear program (ILP) is formulated to solve jointly the m-
cycle allocation problem and to obtain collision-free burst scheduling under the proposed
framework. Numerical experiments on small networks are conducted, and the results are
given in the section.

In Section 4.4, two ILPs are formulated to solve separately the m-cycle allocation and
burst scheduling problems. Numerical results are compared in the section.

Section 4.5 provides heuristic algorithms to solve separately m-cycle allocation and
burst scheduling problems in large networks. Numerical results are also compared in the
section. The heuristic burst scheduling algorithm will be used in Chapter 5 and Chapter
6 as well.

Section 4.6 concludes the chapter.

4.2 Problem Analysis

4.2.1 M-Burst Launching Time Scheduling

An immediate problem raised under the m-burst framework is the timing for launching
the burst for each m-cycle, such that there is not any collision (or burst contention in the

1The content of this chapter has been published as a workshop paper [9]

46

context of OBS) in the process of resource reservation. A burst collision simply yields an
incorrect monitoring and failure location result. Note that the MN is the only sender and
receiver of the bursts for all the m-cycles. Therefore, a well-designed scheduling scheme
for the time instant of launching the bursts from the MN is expected to nicely resolve any
collision at any link. Without the scheduling effort, collisions may occur among the bursts
of any k+ 1 m-cycles that traverse through a common link having k reserved wavelengths.

There are two extreme cases in the scheduling problem. One is that each link contains
sufficient wavelength channels for monitoring, such that the MN can launch all the optical
bursts at the same time without any collision. In this case, the monitoring delay is simply
the delay along the longest m-cycle. The other extreme is that the MN conservatively
keeps no more than one burst on-the-fly in the network, where an optical burst is launched
after confirming the probing result of the previously launched burst. This obviously can
avoid any collision under any circumstance, at the expense of taking the longest possible
monitoring delay, which is the sum of the delays of all the m-bursts.

In the m-burst framework, at most a single WL channel is used for monitoring in
each unidirectional link. Given the m-cycle solution set M of the single-link SRLG failure
localization problem, monitoring delay can be minimized by finding the earliest burst
launching time from the MN along each m-cycle in M and at the same time avoiding burst
collisions throughout the network. Each link is considered unidirectional for scheduling
m-bursts.

Lemma 4.2.1. The necessary and sufficient condition for avoiding burst collision through-
out a network is that ∀(u, v) ∈ E and ∀mi,mj ∈ M : mi and mj traverse unidirectional
link (u, v), the interval between the burst arrival times to node u along m-cycles mi and mj

is greater than or equal to the burst length L; i.e., |(si + piuv) − (sj + pjuv)| ≥ L, where si

and sj are the burst launching times from the MN along m-cycles mi and mj, piuv and pjuv
are the burst propagation delays from the MN to node u of the m-bursts along m-cycles mi

and mj, respectively.

Proof. If each burst pair arrives at the sending node of each unidirectional link at least
L ms apart, two bursts cannot collide with each other in the unidirectional link including
its end nodes because the second burst arrives to the sending node only after the first
burst passes through the node completely. Therefore, there will be no burst collision in
the network. This proves the sufficient condition. On the other hand, if there is no burst
collision in the network, it means that there is no burst collision in any unidirectional link,
including its end nodes. It implies that each burst pair arrives at the sending node of each
unidirectional link at least L ms apart. This proves the necessary condition.

47

In ILP formulation, as joint optimization for single-link SRLG fault localization, we
deal with burst separation in each unidirectional link using two constraints and an addi-
tional binary variable gijuv for each pair of bursts along m-cycles mi and mj that traverse
a unidirectional link (u, v). The first constraint is (si + piuv) − (sj + pjuv) ≥ (1 − (N +
1) ∗ gijuv) ∗ L + (eiuv + ejuv − 2) ∗ N and the second constraint is (sj + pjuv) − (si + piuv) ≥
(gijuv−N∗(1−gijuv))∗L+(eiuv+e

j
uv−2)∗N . The binary variable gijuv is 1 if (si+piuv) < (sj+pjuv)

and 0 otherwise.

In heuristic burst scheduling, we deal with burst separation in each unidirectional link
by finding the earliest possible collision-free burst launching time sj from the MN for the
burst along each m-cycle mj that provide minimum fault localization latency.

Obviously, in joint optimization, both the burst launching times and propagation de-
lays to the sending node of each unidirectional link can be manipulated to achieve non-
overlapping bursts in each unidirectional link. However, in separate optimization, only the
burst launching times can be manipulated for the purpose.

4.2.2 Node Switch Fabric Configuration Scheduling

With the proposed m-burst framework, the MN is given and a set of m-cycles are identified,
where an optical burst with a fixed length is launched along each m-cycle in order to
determine if there is any failed link along the m-cycle. With the short-duration bursts,
the monitoring resources can be reduced by multiplexing bursts of multiple m-cycles in the
time domain along some wavelength links. Therefore, the proposed m-burst is expected to
significantly improve the performance reported by the previous studies where static S-LPs
are employed.

With such saving of monitoring resources, m-burst is subject to longer monitoring
delay and larger signaling overhead. The longer monitoring delay is due to the discrete
time instants on burst return to the MN and any possible mechanism for ensuring that a
burst loss is merely due to link failure instead of any other reason. The larger signalling
overhead, on the other hand, is caused by the signalling effort for real-time configuration
of switch fabrics for the m-cycles. Therefore, a careful design is required to mitigate the
above two issues.

Here, the monitoring delay is defined as the shortest duration starting when the MN
launches the first burst until it can come up with a valid alarm code (including the code
00· · · 0 showing no failure). With m-bursts, monitoring delay is an index for how fast
the MN can respond to any failure event considered in the m-cycle deployment, while the

48

number of m-cycles and their total cover length concern the amount of signaling overhead
in the node switch fabric configuration.

Different from the case with static S-LPs, the proposed m-burst framework should be
supported by a specific resource reservation scheme. We suggest in [9] to use the Just-
Enough-Time (JET) [40] scheme that takes advantage of tell-and-go signaling and delayed
reservation scheme. With delayed reservation, the source node sends the control packet
first in order to reserve the switching time in the switch fabric at each intermediate node of
the route, and the optical burst is launched after an offset time. With tell-and-go, the offset
time is minimized by sending the optical burst without waiting for the acknowledgement;
thus, the offset time can be as short as simply the sum of nodal processing time at each
intermediate node. Thus, JET has each node specified with the exact time instants when
the optical burst will arrive and depart, respectively, such that the switch fabric of the
node will be reserved only when the optical burst traverses through the node, and will be
released after the departure of the burst without any further signaling notice.

In the m-burst framework, MN can be considered as only edge node and all other nodes
of the network as core nodes in the context of OBS [36]. Most of the activities of traditional
OBS are done as preprocessing in the framework. Burst assembling become trivial because
bursts are fixed length optical signals. At most one monitoring wavelength channel at each
direction of each link is reserved. The routes of the m-cycles are found as the solution of
the m-cycle allocation problem. Contention for resources across the network is resolved
by scheduling m-burst launching times from MN. As the routes of the bursts are known
and stable, calculation of burst offsets from their respective control packets also becomes
trivial. The launching time of a control packet is calculated by deducting the corresponding
offset from the burst launching time.

The remaining main functions for MN are sending control packets and bursts, which
can be considered as routine work. The only remaining work for the core nodes is resource
scheduling. The estimated set-up and estimated release scheme for resource reservation
can be used because burst size is fixed and control packets carry offset information.

Although we initially wanted to use the same resource reservation mechanism as JET,
a non-trivial difference exists between the two in the aspect of design premises and im-
plementations. The bursts in the proposed m-burst framework are taken as a means of
out-of-band monitoring that inspects the on-off status of the m-cycles. Instead of bearing
any significant modulated information bit for data transfer as in OBS, m-bursts are fixed
length optical signals carrying minimal information such as identification of m-cycles. In
this regards, a much more relaxed requirement on time precision and optical signal quality
can be expected, which makes the proposed framework easily implementable.

49

In the m-burst framework, one m-burst is launched from the MN along each m-cycle
every T ms. Each m-burst will traverse on-cycle unidirectional links along a particular
m-cycle. Within T ms, every burst returns to the MN if there is no faulty SRLG in the
network. Each m-burst will arrive to on-cycle nodes periodically, exactly after each T ms
from its last arrival time. Thus, after much deliberation, we have come to the conclusion
that we need not send a control packet ahead of each m-burst. Instead of that, if each
burst arrival time, the corresponding m-cycle route, and the value of T are communicated
to each node once at the beginning of the monitoring and after long intervals, the node
will be able to configure its switch fabric correctly for burst multiplexing.

4.3 Joint Optimization

This section2 formulates an ILP to solve jointly the m-cycle allocation and m-burst schedul-
ing problems of the m-burst framework. The ILP is given in subsection 4.3.1. Numerical
experiments on small network are conducted to investigate feasibility of the application of
the m-burst framework for single-link SRLG fault localization. The results are provided in
subsection 4.3.2.

4.3.1 ILP Formulation for Joint Optimization

The ILP will take a network and a single MN in the network as inputs. The ILP will
find a set of m-cycles and derive burst launching times from the MN along the m-cycles
at the same time. The set of m-cycles provided by the ILP as a solution will be used to
localize single-link SRLG faults in the network. A single monitoring wavelength channel
(WL) in each unidirectional link will be assigned if the link is traversed by any m-cycle in
the solution.

Notation List

G The network, G = (V,E), where V is the set of nodes and E is the set of unidirectional
links of the network.

MN The monitoring node in the network, MN ∈ V .

2The content of this section has been published as a workshop paper [9]

50

r1, r2 Predefined cost ratios.

J Predefined maximum number of allowed m-cycles in an ILP solution.

j, k Indices of m-cycles j, k ∈ {0, 1, 2, . . . , J − 1}.

mj Binary variable, it is equal to 1 if the jth m-cycle is in an ILP solution and 0 otherwise.

dju Binary variable, it is equal to 1 if node u is the sink of the jth m-cycle and 0 otherwise.
Note that only the MN can be the sink of an m-cycle in an ILP solution.

ejuv Binary variable, it is equal to 1 if the jth m-cycle traverses unidirectional link (u, v)
and 0 otherwise.

δ Predefined small positive constant. It is the minimum voltage increase along an
m-cycle, |E|−1 ≥ δ > 0.

qjuv Fractional variable, it is defined as the voltage of the vector u→ v for unidirectional
link (u, v). It assumes an arbitrary positive value if the jth m-cycle traverses the link
and 0 otherwise.

zju Binary variable, it is equal to 1 if the jth m-cycle visits node u and 0 otherwise. The
predefined constant δ and the variables zju and qjuv help to keep each m-cycle in an
ILP solution a single connected component.

αuv Integer variable, the unique decimal alarm code of the undirected link (u, v).

β Predefined small positive constant, 2−J ≥ β > 0.

fxyuv Binary variable, it is equal to 1 if αuv > αxy and 0 if αuv < αxy. The predefined
constant β and the variable fxyuv help to find unique decimal alarm code for each
undirected link of the network.

n Integer variable, it is the maximum number of m-cycles in an ILP solution traversing
through any unidirectional link of the network.

N A large predefined number representing ∞.

L Predefined constant burst length in ms.

cuv Predefined burst propagation delay in ms through unidirectional link (u, v).

sj Real variable, the burst launching time in ms from the MN along the jth m-cycle.

51

T Real variable, total monitoring delay or the fault localization latency in ms.

hjMNv Binary variable, it is equal to 1 if unidirectional link (MN, v) is the head link of the
jth m-cycle and 0 otherwise.

rjtMN Binary variable, it is equal to 1 if unidirectional link (t,MN) is the tail link of the
jth m-cycle and 0 otherwise.

wjtuv Binary variable, it is equal to 1 if the jth m-cycle traverses unidirectional link (t, u)
immediately before traversing unidirectional link (u, v) and 0 otherwise. This is the
link continuity variable. It helps to calculate properly burst propagation delays from
the MN to the on-cycle nodes along non-simple m-cycles.

tpj Real variable, the total round trip burst propagation delay in ms along the jth m-
cycle.

pjuv Real variable, the burst propagation delay in ms along the jth m-cycle from the MN
to on-cycle node u when the next hop node from node u along the m-cycle is node v
and N otherwise.

gjkuv Binary variable, it is equal to 1 if the burst along the jth m-cycle arrives to node u
before the burst along the kth m-cycle, i.e., (sj + pjuv) < (sk + pkuv) and 0 if the burst
along the jth m-cycle arrives to the node after the burst along the kth m-cycle, i.e.,
(sj + pjuv) > (sk + pkuv). It helps collision-free burst propagation through network
links.

ILP for M-Cycle Allocation and Burst Scheduling

The specific ILP formulation is provided as follows.

Objective:

Minimize {T + r1 ∗
∑
j

mj + r2 ∗ n} (4.1)

Subject to the following constraints:

The constraints (4.2) to (4.15) and their variables are related with m-cycle formation
and mostly taken from the method in [63]; please refer to the paper for a thorough ex-
planation of the constraints and the variables. The constraint (4.16) is for finding the

52

maximum number of m-cycles traversing through any unidirectional link of the network.
The constraints (4.17) to (4.35) are related with collision-free m-burst scheduling.

A single sink is allowed for an m-cycle.∑
u∈V

dju ≤ 1, ∀j (4.2)

Only the MN can be the sink of an m-cycle.

djMN =
∑
u∈V

dju, ∀j (4.3)

A sink can be assigned only to an m-cycle in an ILP solution.

mj ≥ djMN, ∀j (4.4)

The indices of the m-cycles in an ILP solution are lower than the indices of the m-cycles
not in the solution.

mj ≥ mj+1, ∀j : j ≤ J − 2 (4.5)

A lower bound on the number of m-cycles in a solution is given to help the ILP solver to
find the optimal solution faster.∑

j

mj ≥ blog2 |E|c+ 1 (4.6)

An m-cycle can traverse an undirected link in one direction only.

ejuv + ejvu ≤ 1, ∀(u, v) ∈ E : u < v, ∀j (4.7)

This is the flow conservation defined for each node of the network. It enforces that each
monitoring structure consists of cycle(s).∑

(u,v)∈E

(ejuv − ejvu) = 0, ∀u ∈ V, ∀j (4.8)

A node is visited by an m-cycle if any adjacent link of the node is traversed by the m-cycle.

zju ≥ ejuv + ejvu, ∀u ∈ V : (u, v) ∈ E,∀j (4.9)

53

Voltages of the vectors corresponding to on-cycle links can be assigned non-zero values.

qjuv ≤ ejuv, ∀(u, v) ∈ E,∀j (4.10)

This is node voltage constraint. It ensures that each m-cycle in an ILP solution is a single
connected component. If a simple or non-simple m-cycle traverses a node except the sink,
the sum of the vector voltage values for the node’s outgoing links traverses by the m-cycle
will be greater than the sum of the vector voltage values for the node’s incoming links
traverses by the m-cycle. However, as stated in [63], “the specific vector voltage values for
the links are not important.”

dju +
∑

(u,v)∈E

(qjuv − qjvu) ≥ δ ∗ zju, ∀u ∈ V, ∀j (4.11)

All decimal link alarm codes must be positive integers.

αuv ≥ 1, ∀(u, v) ∈ E : u < v (4.12)

The decimal alarm code of an undirected link is based on the m-cycles traversing the link.

αuv =
∑
j

2j ∗ (ejuv + ejvu), ∀(u, v) ∈ E : u < v (4.13)

The constraints (4.14) and (4.15) ensure a unique decimal alarm code for each undirected
link of the network. ∀(u, v), (x, y) ∈ E : u < v, x < y, and (u, v) 6= (x, y),

β + β ∗ (αuv − αxy) ≤ fxyuv (4.14)

β + β ∗ (αxy − αuv) ≤ 1− fxyuv (4.15)

The calculation of the maximum number of m-cycles traversing through any unidirectional
link of the network.

n ≥
∑
j

ejuv, ∀(u, v) ∈ E (4.16)

54

The constraint assigns lower and upper bounds of burst launching times. Burst starting
times of only m-cycles in an ILP solution can be assigned positive values.

0 ≤ sj ≤ mj ∗N, ∀j (4.17)

The calculation of total round trip burst propagation delay along the jth m-cycle.

tpj =
∑

(u,v)∈E

cuv ∗ ejuv, ∀j (4.18)

The calculation of collision-free total monitoring delay or the fault localization latency that
is equal to the largest elapse time for any m-burst from the start of the monitoring period
to the return of the burst back to the MN.

T ≥ sj + tpj + L, ∀j (4.19)

An on-cycle link from the MN can be the head link of the jth m-cycle.

hjMNv ≤ ejMNv, ∀j (4.20)

Only an m-cycle in an ILP solution has a head link from the MN.∑
(MN,v)∈E

hjMNv = mj, ∀j (4.21)

An on-cycle link to the MN can be the tail link of the jth m-cycle.

rjtMN ≤ ejtMN, ∀j (4.22)

Only an m-cycle in an ILP solution has a tail link to the MN.∑
(t,MN)∈E

rjtMN = mj, ∀j (4.23)

The constraints (4.24), (4.25), (4.26), and (4.27) identify a unique on-cycle incoming link
to a node for each on-cycle out-going link from the node and allow calculation of burst
propagation delays to the node properly along non-simple m-cycles in an ILP solution.

55

Each link continuity variable of the jth m-cycle through node u can be assigned 1 if the
corresponding incoming link to the node is an on-cycle link of the m-cycle.

wjtuv ≤ ejtu, ∀u ∈ V : (t, u) ∈ E,∀j (4.24)

Only one link continuity variable is allowed to be 1 for an on-cycle incoming link for the
jth m-cycle to node u.∑

(u,v)∈E

wjtuv = ejtu, ∀u ∈ V : (t, u) ∈ E,∀j (4.25)

Only one link continuity variable is allowed to be 1 for an on-cycle outgoing link for the
jth m-cycle from node u.∑

(t,u)∈E

wjtuv = ejuv, ∀u ∈ V : (u, v) ∈ E,∀j (4.26)

The link continuity variable for the incoming tail link to the MN and outgoing head link
from the MN of the jth m-cycle is ensured to be 1.

wjtMNv + (1− rjtMN) ≥ hjMNv,∀(MN, v) ∈ E,∀j (4.27)

The lower and upper bounds of the burst propagation delay to node u through the jth
m-cycle.

0 ≤ pjuv ≤ N, ∀(u, v) ∈ E,∀j (4.28)

The burst propagation delay to node u along the jth m-cycle is infinity if the unidirectional
link (u, v) is not traversed by the m-cycle.

pjuv ≥ (1− ejuv) ∗N, ∀(u, v) ∈ E,∀j (4.29)

The burst propagation delay at the MN toward the first link of the jth m-cycle from the
MN is assigned as 0. The constraint acts as a base case for the recursive burst propagation
delay calculations as per constraints (4.31) – (4.33).

pjMNv ≤ (1− hjMNv) ∗N, ∀(MN, v) ∈ E,∀j (4.30)

56

When node u is not the MN and the next hop node along the jth m-cycle is v, the constraint
is for the calculation of the burst propagation delay along the m-cycle from the MN through
the head link of the m-cycle to node u.

pjuv ≥ pjtu + ctu − (1− wjtuv) ∗N,∀(u, v), (t, u) ∈ E : u 6= MN,∀j (4.31)

When node u is the MN and the next hop node along the jth m-cycle is v, the constraint is
for the calculation of the burst propagation delay along the m-cycle from the MN to itself.
The burst propagation delay increases by the propagation delay of the incoming link if the
outgoing link is not the head link of the m-cycle. Thus, ∀(MN, v), (t,MN) ∈ E,∀j,

hjMNv ∗N + pjMNv ≥ pjtMN + ctMN − (1− wjtMNv) ∗N (4.32)

The total burst propagation delay of the jth m-cycle is the burst propagation delay up to
the MN through the tail link of the m-cycle.

tpj ≥ pjtMN + ctMN − (1− rjtMN) ∗N,∀(t,MN) ∈ E,∀j (4.33)

The constraint (4.34) and (4.35) enforce difference between arrival times of any two m-
bursts along the jth and kth m-cycles to node u that are traversing same outgoing link (u, v)
from the node to the burst length L. Thus, they ensure collision-free burst propagation
through any link of the network. They are the key constraints for collision-free burst
scheduling. Thus, ∀u ∈ V : (u, v) ∈ E,∀j, k : j 6= k,

(sj + pjuv)− (sk + pkuv) ≥ (1− (N + 1) ∗ gjkuv) ∗ L+ (ejuv + ekuv − 2) ∗N (4.34)

(sk + pkuv)− (sj + pjuv) ≥ (gjkuv −N ∗ (1− gjkuv)) ∗ L+ (ejuv + ekuv − 2) ∗N (4.35)

The objective (4.1) aims at minimizing total monitoring delay or the fault localization
latency T . It also minimizes the number of m-cycles

∑
jm

j and the maximum number of
m-cycles traversing through any unidirectional link n. Relative importance of the objectives
is manipulated with the help of cost ratios r1 and r2.

4.3.2 Numerical Results

We have developed a model of the ILP for joint optimization in the modeling language
GNU MathProg and translated the MathProg model using the GLPK solver glpsol into
an MPS file for each network to run the program in ILOG CPLEX 11.1.

57

We assume that the burst length L is 20 ms and the propagation delay cuv through any
unidirectional link (u, v) is 2 ms in the numerical experiment. We have also assumed that
one supervisory wavelength channel (WL) will be assigned in each unidirectional link for
monitoring purposes if the link is traversed by any m-cycle. We conducted the experiment
on a network with 9 nodes and 14 links. Node 1 is the given MN.

1 2

5

7

9 3

4

8

6

m0 m1

m2
m3 m4

MN

Figure 4.1: M-cycle solution set provided by the joint ILP for a network with 9 nodes and
14 links.

The ILP solution has
∑

jm
j = 5 m-cycles for single-link SRLG fault localization. M-

cycles m0, m1, m2, m3, and m4 traverse 4, 5, 6, 5, and 5 links, respectively. The solution
allows at most n = 2 m-cycles in any unidirectional link of the network. The network with
the m-cycles is shown in Figure 4.1.

The solution provides a unique decimal alarm code for each undirected link of the
network. The decimal alarm code of a link is derived based on the m-cycles that traverse the
link, without considering the direction of traversal through the link. Thus, unidirectional
links (u, v) and (v, u) have the same decimal alarm code. Table 4.1 shows the alarm code
table (ACT), which is the mapping between link failure events and link decimal alarm
codes. The decimal alarm codes are given in column Dec. of the table.

Any single-link failure will disrupt a unique set of m-bursts. As a result, a unique
decimal alarm code will be generated. The generated decimal alarm code identifies the
failed link. For example, if m-cycles m1, m2, and m4 are disrupted due to a single-link
failure, the generated decimal alarm code will be 22. The MN can identify link (1, 2) as
the failed link from the ACT, using 22 as index.

The burst starting times s0, s1, s2, s3, and s4 along the corresponding m-cycles given
by the solution are 0 ms, 20 ms, 0 ms, 20 ms, and 0 ms, respectively. The total burst
propagation delays tp0, tp1, tp2, tp3, and tp4 through the m-cycles are 8 ms, 10 ms, 12 ms,

58

Table 4.1: ACT using the Joint ILP

Link m4 m3 m2 m1 m0 Dec.
(1, 2) 1 0 1 1 0 22
(1, 5) 1 1 0 0 0 24
(1, 7) 0 1 1 0 1 13
(1, 9) 0 0 0 1 1 3
(2, 3) 1 0 0 0 0 16
(2, 4) 0 0 1 1 0 6
(3, 4) 1 0 0 1 0 18
(3, 9) 0 0 0 1 0 2
(4, 5) 1 0 1 0 0 20
(5, 6) 0 1 1 0 0 12
(6, 7) 0 0 1 0 0 4
(6, 8) 0 1 0 0 0 8
(7, 8) 0 1 0 0 1 9
(8, 9) 0 0 0 0 1 1

10 ms, and 10 ms, respectively. The fault localization latency or total monitoring delay T
is 50 ms. Thus, T is derived in the solution either from m-cycle m1 as s1 + tp1 + L = 20
+ 10 + 20 = 50 ms or from m-cycle m3 as s3 + tp3 + L = 20 + 10 + 20 = 50 ms.

Figure 4.2 shows m-burst traversal timing through each unidirectional link traversed
by more than one m-bursts. Each rectangle in the figure represents the period that the
m-burst along the m-cycle traverses through the link. The period is cuv +L = 2 + 20 = 22
ms. All links in the figure are traversed by 2 m-bursts back to back that means 2 bursts
traverse through a link, one immediately after the other. Back-to-back periods are indicated
by black rectangles. As shown in the figure, bursts along m-cycles m0 and m3 traverse
unidirectional links (1, 7) and (7, 8) back to back, and bursts along m-cycles m4 and m1

traverse unidirectional link (2, 1) back to back. Thus, the m-bursts are non-overlapping
through any link of the network. Hence, the m-bursts are collision-free throughout the
network.

To determine whether the m-burst framework can be applied to any arbitrary mesh
network, we have run the program with five more networks, with a single arbitrarily chosen
MN for each one and keeping all other assumptions the same as the above experiment.
Numbers of m-cycles

∑
jm

j, maximum numbers of m-cycles n through any unidirectional
link, and monitoring delays T of the solutions are given in Table 4.2. Networks in the table
are identified by the numbers of nodes and links.

For each of the five networks, the m-burst framework is able to identify a set of m-cycles
to achieve unambiguous failure localization (UFL) for the single-link SRLG failures. The

59

Links

Time-

(1, 7) m0 m3

(2, 1) m1m4

(7, 8) m0 m3

Figure 4.2: Schedule of link traversal by multiple m-bursts along the m-cycles provided by
the joint ILP.

maximum number of m-cycles through any unidirectional link of each network is low. The
fault localization latency or total monitoring delays from 26 ms to 52 ms of the solutions
for the networks are optimal. For each network, the m-burst framework is able to achieve
collision-free burst scheduling by keeping the m-bursts along the m-cycles non-overlapping
throughout the network.

Table 4.2: The Performance of the Joint ILP in Additional Networks

Networks
Performance 4 nodes 5 nodes 6 nodes 7 nodes 8 nodes

metrics 6 links 8 links 9 links 12 links 12 links∑
j m

j 3 4 4 6 4
n 1 1 2 2 2
T 26 26 48 48 52

4.4 Separate Optimization

The proposed m-burst framework has two distinct objectives: (1) minimization of the num-
ber of m-cycles and (2) minimization of the fault localization latency or total monitoring
delay through m-burst scheduling along the m-cycles. We have formulated an ILP for the
m-burst framework as a joint optimization problem of m-cycle design and m-burst schedul-
ing in subsection 4.3.1 and numerically tested the ILP in subsection 4.3.2. To investigate
the effectiveness of the m-burst framework, we investigate m-cycle and m-burst problems
as separate optimization problems and compare the numerical results in this section.

60

4.4.1 ILP Formulation for M-Cycle Allocation

The main objective of the m-cycle design problem is to find the minimum number of
m-cycles that provide unique alarm codes for all undirected links of a network. Another
objective is to limit the maximum number of m-cycles traversing through any unidirectional
link, which will limit the fault localization latency indirectly. These objectives are the same
as those in the m-cycle allocation part of the objective of the ILP for joint optimization.
Thus, we have taken relevant portions of the objective and constraints as well as used
constants and variables with the same meaning from the ILP for joint optimization.

ILP for M-Cycle Allocation

The specific ILP formulation is provided as follows.

Objective:

Minimize
{∑

j

mj + r1 ∗ n
}

(4.36)

Subject to the constraints (4.2) to (4.16) of the ILP for the joint optimization problem
given in Section 4.3.1. Note that the constraints (4.2) to (4.15) are related to m-trail
formation and mostly taken from the method in [63]. The constraint (4.16) is for finding
the maximum number of m-cycles traversing through any unidirectional link of the network.

The objective (4.36) aims at minimizing the number of m-cycles
∑

jm
j and the max-

imum number of m-cycles n traversing through any unidirectional link. The relative im-
portance of the objectives is manipulated with the help of cost ratio r1.

4.4.2 ILP Formulation for M-Burst Launching Time Scheduling

This subsection provides an ILP formulation for the m-burst launching time scheduling that
takes a set of m-cycles as an input. The set of m-cycles is derived by the ILP for m-cycle
allocation given in subsection 4.4.1 as a solution for single-link SRLG fault localization.
Note that each m-cycle in the solution set traverses the given MN. Assume that one WL
is assigned in each unidirectional link traversed by at least one m-cycle in the solution set.

As the paths of m-cycles are given, the calculation of the burst propagation delay along
the m-cycles is done as preprocessing; doing so decreases the complexity of the problem

61

significantly. However, we have to consider burst traversal directions along the m-cycles as
new variables because the burst traversal along the m-cycles in the given direction may not
provide the minimum fault localization latency. As burst propagation delays from the MN
to on-cycle nodes depend on the burst flow direction along an m-cycle, two spin variables
per m-cycle are used to keep track of propagation delays properly.

Notation List

G The network, G = (V,E), where V is the set of nodes and E is the set of unidirectional
links of the network.

N A large number representing ∞.

L Predefined constant burst length in ms.

M Number of m-cycles in the solution.

i, j Indices of m-cycles i, j ∈ {0, 1, 2, . . . ,M − 1}.

spjr Binary variables for spins of the jth m-cycle. Given spin spj0 is equal to 1 if the
m-burst along the jth m-cycle traverses each on-cycle link in the given direction and
0 otherwise. Reverse spin spj1 is equal to 1 if the m-burst along the jth m-cycle
traverses each on-cycle link in the opposite direction and 0 otherwise.

pjrk Pre-calculated propagation delay in ms of the m-burst from the MN to the kth node
of the jth m-cycle along given or reverse spin spjr.

tpj Pre-calculated round trip burst propagation delay in ms of the m-burst along the jth
m-cycle starting from and returning to the MN.

sjr Real variable, the m-burst launching time in ms from the MN along the jth m-cycle.
It can be assigned non-zero value only if the jth m-cycle with spjr spin is 1.

girjtuv Binary variable, it is equal to 1 if the m-burst along the ith m-cycle with spir spin
arrives to node u before the m-burst along the jth m-cycle with spjt spin and both
the bursts traverse (u, v), and 0 otherwise. It helps collision-free burst propagation
through network links.

T Real variable, the maximum fault localization latency in ms.

62

ILP for Burst Launching Time Scheduling

The specific ILP formulation is provided as follows.

Objective:

Minimize {T} (4.37)

Subject to the following constraints:

Each m-cycle has only one non-zero spin.

spj0 + spj1 = 1, ∀j (4.38)

The constraint ensures that positive burst starting times can be assigned only to the bursts
along m-cycles with valid spins.

sjr ≤ spjr ∗N, ∀j, r (4.39)

Constraints (4.40) and (4.40) enforce minimum difference between the arrival times of two
m-bursts to node u when the two m-bursts along the ith and jth m-cycles traverse the
same outgoing link (u, v) from the node. The minimum difference is the burst length L.
Thus, they ensure collision free burst propagation through any link of the network. Here,
the kth node of ith m-cycle considering spir spin or the lth node of jth m-cycle considering
spjt spin is the same node u. Moreover, the next hop node along the ith or jth cycle
considering the respective spins is also the same node v. Now ∀(u, v), i, j, r, t, l, k,

(sir + pirk)− (sjt + pjtl) ≥ (1− (N + 1) ∗ girjtuv) ∗ L+ (spir + spjt − 2) ∗N (4.40)

(sjt + pjtl)− (sir + pirk) ≥ (girjtuv −N ∗ (1− girjtuv)) ∗L+ (spir + spjt− 2) ∗N (4.41)

The fault localization latency is the largest elapse time for any m-burst with valid spin
from the start of the monitoring period and return of the last bit of the m-burst to the
MN.

T ≥ sjr + tpj + L+ (spjr − 1) ∗N, ∀j, r (4.42)

The objective (4.37) aims to minimize the fault localization T by manipulating spins
of the m-cycles and the starting time of the m-bursts.

63

4.4.3 Numerical Results

We have solved two ILPs in modeling language GNU MathProg separately. The MathProg
model for the m-cycle allocation ILP is translated using the GLPK solver glpsol into an
MPS file for each network to run the program in ILOG CPLEX 11.1. The solution of
the m-cycle allocation ILP is a set of m-cycles. The MathProg model for the m-burst
scheduling ILP is also translated using the GLPK solver glpsol into another MPS file for
the network to run the program in ILOG CPLEX 11.1 using the set of m-cycles derived
by the m-cycle allocation ILP as an input.

At first, we run the program for m-cycle allocation in a network with 9 nodes and 14
links; it is the same network used in the joint optimization problem. Node 1 is the given
MN.

Table 4.3: M-Cycle Solution Set Provided by the M-Cycle Allocation ILP

M-cycles Paths
m0 1→ 2→ 3→ 4→ 5→ 1
m1 1→ 9→ 3→ 2→ 1
m2 1→ 2→ 4→ 3→ 9→ 1→ 7→ 6→ 5→ 1
m3 1→ 7→ 6→ 8→ 9→ 3→ 2→ 1
m4 1→ 5→ 6→ 7→ 8→ 9→ 1

A set of 5 cycles form an m-cycle solution for any single-link failure localization. The
paths of the m-cycles are shown in Table 4.3. M-cycles m0, m1, m2, m3, and m4 traverse
5, 4, 9, 7, and 6 links, respectively. The m-cycles define a set of unique decimal alarm
codes for the network links as shown in Table 4.4. The solution allows at most 2 m-cycles
through any unidirectional link of the network.

The m-cycle solution set provided by the m-cycle allocation method is used as an input
to the m-burst scheduling problem. To run the program for m-burst scheduling, we assume
that the burst length L is 20 ms, and the propagation delay δ through each unidirectional
link is 2 ms in the experiment.

As shown in Figure 4.3, orientations of the bursts along the m-cycles m1, m2 and m4 are
reversed to get the minimum fault localization latency or total monitoring delay T . The
burst starting times s0, s1, s2, s3, and s4 along the corresponding m-cycles given by the
solution are 0 ms, 40 ms, 30 ms, 2 ms, and 18 ms, respectively. The total burst propagation
delays tp0, tp1, tp2, tp3, and tp4 through the m-cycles are 10 ms, 8 ms, 18 ms, 14 ms, and
12 ms, respectively. Thus, the fault localization latency or total monitoring delay T is
derived from either m-cycle m1 as s1 + tp1 + L = 40+8+20 = 68 ms or from m-cycle m2

as s2 + tp2 + L = 30+18+20 = 68 ms. But this delay is sub-optimal.

64

Table 4.4: ACT using the Separate ILPs

Link m4 m3 m2 m1 m0 Dec.
(1, 2) 0 1 1 1 1 15
(1, 5) 1 0 1 0 1 21
(1, 7) 0 1 1 0 0 12
(1, 9) 1 0 1 1 0 22
(2, 3) 0 1 0 1 1 11
(2, 4) 0 0 1 0 0 4
(3, 4) 0 0 1 0 1 5
(3, 9) 0 1 1 1 0 14
(4, 5) 0 0 0 0 1 1
(5, 6) 1 0 1 0 0 20
(6, 7) 1 1 1 0 0 28
(6, 8) 0 1 0 0 0 8
(7, 8) 1 0 0 0 0 16
(8, 9) 1 1 0 0 0 24

Figure 4.4 shows m-burst traversal timing through each unidirectional link traversed
by more than one m-bursts. Back-to-back m-bursts are indicated in the figure by black
rectangles, which mean the two bursts traverse through a unidirectional link one imme-
diately after the other. The bursts along m-cycles m4 and m2, m0 and m4, and m3 and
m4 traverse unidirectional links (1, 9), (5, 1), and (7, 6) back to back, respectively. With
the scheduling effort, burst collision was completely avoided by manipulating the burst
launching time from the MN along each m-cycle.

1 2

5

7

9 3

4

8

6

m0

m1

m2m3

m4

MN

Figure 4.3: M-cycle solution set provided by the separate ILPs for a network with 9 nodes
and 14 links.

Both the joint and the separate optimization methods solve the related problems of the

65

Links

Time-

(1, 2) m0 m1

(1, 9) m2m4

(2, 1) m3 m2

(2, 3) m0 m1

(3, 4) m0 m2

(5, 1) m0 m4

(7, 6) m3 m4

(9, 3) m3 m2

Figure 4.4: Schedule of link traversal by multiple m-bursts along the m-cycles provided by
the separate ILPs.

m-burst framework for the same network with 9 nodes and 14 links. The joint optimization
method provides smaller fault localization latency T . Now to compare the performance
of the methods further, we run the separate optimization method for 5 more networks as
well.

The performances of the methods are compared in Table 4.5. Networks are identified
in the table with the numbers of nodes and links. The number of m-cycles

∑
jm

j in the
solution set by both the methods are the same for all the networks except the network with
7 nodes and 12 links where the joint optimization method required a higher number of m-
cycles. The higher number of m-cycles in the solution set to reduce the fault localization
latency is not unexpected of the joint optimization method because of the comparative
importance of the fault localization latency and the number of m-cycles is represented by
the cost ratio in the objective function of the ILP. The maximum number of m-cycles n
traversing through any unidirectional link of the network derived by both the methods
is the same for all the networks. In 50% of the networks, the joint optimization method
outperforms the separate optimization method in terms of the minimum fault localization
latency T .

66

Table 4.5: The Comparative Performance of the Joint and Separate ILP Methods

Joint Separate
Network

∑
j m

j n T
∑

j m
j n T

4 nodes, 6 links 3 1 26 3 1 26
5 nodes, 8 links 4 1 26 4 1 26
6 nodes, 9 links 4 2 48 4 2 50
7 nodes, 12 links 6 2 48 4 2 54
8 nodes, 14 links 4 2 52 4 2 52
9 nodes, 14 links 5 2 50 5 2 68

4.5 Heuristic Algorithms

As the ILP methods cannot be applied in a large network to get a solution in reasonable
time, we propose the heuristic algorithms for m-cycle allocation and m-burst scheduling in
subsections 4.5.1 and 4.5.2, respectively.

4.5.1 M-Cycle Allocation Method

The pseudo code of the m-cycle allocation method to localize single-link SRLG failures
is given in Algorithm 4.1. Two main inputs of the algorithm are a network and a single
monitoring node (MN). Each m-cycle starts from and returns to the MN. The primary
objective is to find the minimum number of m-cycles that is able to localize single-link fail-
ures unambiguously. All links are considered unidirectional. Initially, the m-cycle solution
set M and the alarm code table (ACT) A are empty.

The outer while loop is to find the minimum cost m-cycle solution set M. The cost
of a solution set is defined as cnew = r1 ∗

∑
jm

j + r2 ∗ n +
∑

j

∑
(u,v) e

j
uv where

∑
jm

j is
the total number of m-cycles in the solution, n is the maximum number of m-cycles in
the solution traversing through any unidirectional link of the network, and

∑
j

∑
(u,v) e

j
uv

represents the total number of links traversed by the m-cycles in the solution. r1 and r2

are constants defining relative importance of the cost components. The loop iterates until
the current minimum cost cmin does not improve for nmax times.

The inner while loop finds a sufficient number of unique m-cycles in a solution set to
localize single-link SRLG faults unambiguously. Thus, each link has to be traversed by
a unique subset of m-cycles in the solution set. The unique subset of m-cycles defines a
unique alarm code for each undirected link of the network. As a result, the faulty link can

67

be identified unambiguously from the disrupted m-cycles. Each m-cycle is found by using
the helper function FindMCycle.

In line 7, the m-cycles solution set M and the alarm code table A are returned.

Algorithm 4.1: The M-Cycle Allocation Method for Single-Link SRLG Fault Local-
ization

Input: G(V,E), MN, and nmax
Output: M and A

1 Initialize A, M← φ, cmin ←∞, nmin ← 0
while nmin < nmax do

2 Anew, Mnew ← φ
while # distinct alarm codes in Anew < # undirected link in G do

3 mj ← FindMCycle(Anew)
if mj 6∈ Anew then

4 Anew, Mnew ← mj

5 Update cnew using m-cycles in Mnew, nmin ← nmin + 1
if cnew < cmin then

6 A← Anew, M←Mnew, cmin ← cnew, nmin ← 0

7 Return A,M

The helper function FindMCycle is a randomized local search method that finds a valid
m-cycle. Note that for each undirected link (u, v) in the network, nuv is initially 1, and
each time the link is traversed by an m-cycle in Aj, nuv is incremented.

The outer while loop of the function iterates until a valid m-cycle is not found. Each
search for m-cycle mj starts from the MN and terminates at the MN. In other words, each
m-cycle takes the MN as its first node, visits other nodes possibly multiple times, and
returns to the MN. Initially, the MN is the current node u of mj.

The inner while loop of the function finds the next current nodes of m-cyclemj randomly
in sequence. In each iteration of the inner loop, node v is chosen from the u adjacent nodes
as a tentative next current node. If there is no outgoing unidirectional link from the current
node u that can be included in m-cycle mj, the current search is aborted and a new search
is started as the next iteration of the outer while loop. Otherwise, if the undirected link
(u, v) is not already in m-cycle mj, the link will be included in m-cycle mj with probability
p. The link will certainly be included in m-cycle mj if an undirected link (u, v) is not
traversed by any m-cycle in Aj. Moreover, if p ≤ 1

nuv
, the link will be included in m-cycle

mj. If a unidirectional link (u, v) is included in m-cycle mj, node v becomes the current
node u, and the next iteration of the inner loop starts.

68

Once the MN is chosen as the current node u of m-cycle mj a second time, the m-cycle
becomes a valid one and the function returns m-cycle mj in line 8.

Function FindMCycle(Aj)

Input: G(V,E), MN, and Aj

Output: mj

1 Initialize mj ← φ
while mj == φ do

2 u← MN
while u 6= MN ∨ |mj| == φ do

3 Choose a node v ∈ V : (u, v) ∈ E randomly with probability p
if there is no outgoing link from node u that can be chosen then

4 mj ← φ
5 Exit the inner While loop.

if (u, v) 6∈ mj ∧ (v, u) 6∈ mj ∧ p ≤ 1
nuv

then
6 mj ← (u, v)
7 u← v

8 Return mj

4.5.2 M-Burst Launching Time Scheduling

Once a set of m-cycles M that provides a unique code for each single-link SRLG is derived
by the heuristic given in subsection 4.5.1, the burst launching times from the MN are
calculated. The set of starting times S of the m-bursts along the m-cycles are derived by
the burst scheduling algorithm given in Algorithm. 4.2. The algorithm is based on Tabu
search [31].

Tabu search is a metaheuristic that starts with a current solution (found randomly or
based on the specific problem instance), and then iterates as long as the current solution
seems to be improving. A Tabu list keeps track of the recent current solutions in order
to avoid the same solution as the current solution repeatedly. Each solution in the Tabu
list is a Tabu solution and remains so for a predefined number of current solution updates.
In each iteration of Tabu search, the best solution in the neighbourhood of the current
solution is found. Usually in permutation problems, each neighbourhood is identified by
pairwise swapping of the positions in the current solution. Each pairwise swapping of the
positions provides another potential solution and is called a move. A move is associated
with a move value. If the best move is an improvement on the current solution, it is

69

accepted as the current solution. Otherwise, the best move that is not a Tabu solution is
selected as the current solution [31].

In Algorithm 4.2, the m-cycles in M are stored in an ordered list seq. A sequence of
m-cycles is defined by the positions of m-cycles in seq at a point in time. The primary
objective of the burst scheduling heuristic is to find the minimum fault localization latency
T , avoiding burst collisions altogether. The near optimal sequence of m-cycles that provides
minimum T is found by repeatedly swapping positions of m-cycles pair-wise in seq as per
Tabu search rules [31].

In line 1, T is set to ∞. The outer while loop finds the minimum T . Each iteration of
the outer while loop has two sections: initialization in lines 2-7 and Tabu search in lines
8-16.

In line 2, the Tabu list, the ordered list seq, new spin set spnew, and new propagation
delay table P are initialized. Then, a position in seq for each m-cycle is chosen randomly
and spin spjnew of the m-cycle is also chosen randomly in lines 3 and 4. The spin will
determine if the m-burst will traverse on-cycle links in a given or opposite direction. Then,
the burst propagation delay pjuv from the MN to node u of each unidirectional link (u, v)
traversed by m-cycle mj is calculated in line 5, considering the spin of the burst. Next, a
new fault localization latency Tnew and new set of burst launching times Snew are initialized
using the helper function FindMaxDelay in line 6. Finally, the spin set sp, the set of burst
launching times S, and the minimum fault localization latency T are updated if Tnew is
less than T in line 7.

The inner while loop is the Tabu search section. It has two sub-sections: Tabu move
and update. The inner loop will find minimum Tnew for a particular spin set spnew of the
m-cycles.

In Tabu move sub-section, lines 8-12, all the move values corresponding to the pair-wise
swapping of the current positions of the m-cycles in seq are calculated by using the helper
function FindMaxDelay. A move is either a Tabu or non-Tabu move. The best Tabu and
non-Tabu moves are found in the sub-section that involves the most expensive calculations.

In the update sub-section, lines 13-16, the relevant parameters seq, Snew, and Tnew are
updated based on the move values. If the maximum improvement of Tnew is provided by
the best Tabu move, it is used to update the relevant parameters. Otherwise, the best
non-Tabu move is used to update the relevant parameters. Then, the Tabu list is updated
for the next iteration of the inner while loop. Next, sp, S, and T are updated if Tnew is
less than T in line 16.

The spin set sp, the set of starting times S, and fault localization latency T are returned
in line 17.

70

Algorithm 4.2: M-Burst Launching Time Scheduler
Input: G(V,E), MN, n, and M
Output: sp, S, and T
begin

1 Initialize T ←∞
while # iteration of non-improving T < n do

2 Initialize Tabu list, seq, spnew, and P
for each mj ∈M do

3 Randomly choose a free position k in seq and the spin spj
new of the m-trail

4 seq[k]← mj , spnew ← spj
new

5 P ← Find burst propagation delay pj
uv, ∀(u, v) ∈ E

6 Snew, Tnew ← FindMaxDelay(P , seq)
if Tnew < T then

7 sp← spnew, S ← Snew, T ← Tnew

while # iteration of non-improving Tnew < n do
8 Initialize Tnt, Tt ←∞

for each ith and jth positions in seq do
9 seqij ← swap positions of the m-trails

10 Sij , Tij ← FindMaxDelay(P , seqij)
if it is a non-Tabu move ∧ Tij < Tnt then

11 seqnt ← seqij , Snt ← Sij , Tnt ← Tij

if it is a Tabu move ∧ Tij < Tt then
12 seqt ← seqij , St ← Sij , Tt ← Tij

if Tt ≤ Tnew ∧ Tt < Tnt then
13 seq ← seqt, Snew ← St, Tnew ← Tt

else
14 seq ← seqnt, Snew ← Snt, Tnew ← Tnt

15 Update Tabu list
if Tnew < T then

16 sp← spnew, S ← Snew, T ← Tnew

17 Return sp, S, T

In Algorithm 4.2, seq can have O(|M|!) number of sequences of m-cycles. The Tabu
search technique helps to find a sequence of m-cycles in seq, which provides near-optimal
T without searching all the sequences of m-cycles.

The helper function FindMaxDelay calculates the starting times Ssq of m-bursts from
the MN along the m-cycles from the first position to the last position of the given sq.
Each burst is kept non-overlapping in each unidirectional link with all other bursts along
the m-cycles in the preceding positions of sq. Thus, ∀mi in the preceding position of each
m-cycle mj in sq, if the burst along mj arrives to the sending node u of a link (u, v) before
the burst along mi completely passes through u, the starting time of the burst sj has to be
increased to satisfy the condition (sj + pjuv) ≥ (si + piuv + L) in order to avoid collision in

71

(u, v). In this case, checking with the m-cycles in the preceding positions of mj has to be
restarted from the beginning. In other words, the function finds the earliest possible burst
launching time sj from the MN for the m-burst along each m-cycle mj. Here, L is the
burst length, and piuv and pjuv are the burst propagation delays along m-cycles mi and mj

from the MN to node u, respectively. Note that piuv, p
j
uv, and L are constants in function

FindMaxDelay.

The fault localization latency Tsq for the given sequence sq is the maximum value of
(sj + pjuv +L) provided by any m-cycle mj. Ssq and Tsq are returned in line 11 of function
FindMaxDelay.

Function FindMaxDelay(P , sq)

Input: G(V,E), MN, and M
Output: Ssq and Tsq

begin
1 Ssq ← φ, mj ← sq[0], sj ← 0
2 Ssq ← sj , Tsq ← sj + tpj + L

foreach k ∈ {1 . . . |sq|} do
3 mj ← sq[k], sj ← 0
4 foreach l ∈ {0 . . . (k − 1)} do
5 mi ← sq[l], get si from Ssq

foreach unidirectional link (u, v) ∈ E do
if both mi and mj visit (u, v) then

6 Get pi
uv and pj

uv from P
if (sj + pj

uv + L) > (si + pi
uv) ∧ (sj + pj

uv) < (si + pi
uv + L) then

7 sj ← (si + pi
uv + L− pj

uv)
8 GoTo line 4

9 Ssq ← sj

if (sj + tpj + L) > Tsq then
10 Tsq ← sj + tpj + L

11 Return Ssq, Tsq

For the sequence of m-trails in sq, the helper function FindMaxDelay finds Tsq taking
Ω(|E||M|2) steps.

4.5.3 Numerical Results

We have implemented the heuristic algorithms for m-cycle allocation and m-burst schedul-
ing described in subsections 4.5.1 and 4.5.2, respectively, in Java. We run the heuristic

72

methods in an Intel Centrino Duo, 1.00GB RAM, 2.00GHz, Windows XP Home Edition
Version 2002 Service Pack 2 Toshiba Satellite T2500 laptop, keeping all the assumptions
the same as those in the ILP experiments. In addition to all the networks used in the
ILP experiments, we have tested the heuristic methods in networks CERNet, SmallNet,
NSFNet and Bellcore. To deal with the degree-2 nodes, we have added links to CERNet,
NSFNet and Bellcore networks: one link each to CERNet and Bellcore, and two links to
NSFNet. The comparative performance of the heuristic and the ILP methods for single-
link SRLG failure localization is shown in Table 4.6. The results from the joint ILP, the
separate ILPs, and the heuristics are given in columns J, S, and H, respectively. The num-
bers of m-cycles derived by the heuristic and the ILP methods are almost the same. The
fault localization latencies derived by the heuristic methods are reasonable.

Table 4.6: The Comparative Performance of the Heuristic and the ILP Methods

No. Performance metrics
Networks of

∑
j m

j T ms

SRLGs J S H J S H
4 nodes, 6 links 6 3 3 3 26 26 26
5 nodes, 8 links 8 4 4 4 26 26 26
6 nodes, 9 links 9 4 4 4 48 50 50
7 nodes, 12 links 12 6 4 5 48 54 50
8 nodes, 12 links 12 4 4 5 52 52 52
9 nodes, 14 links 14 5 5 5 50 68 50
CERNet + 1 link 17 – – 6 – – 72
SmallNet 22 – – 7 – – 106
NSFNet + 2 links 23 – – 7 – – 108
Bellcore + 1 link 29 – – 10 – – 98

4.6 Conclusions

This chapter deals with single-link SRLG fault localization and presents implementations
of a novel framework of failure localization via out-of-band monitoring in all-optical WDM
networks, called the monitoring burst (m-burst) framework. With the proposed m-burst
framework, one supervisory WL channel in each unidirectional link traversed by any m-
cycle is used for failure localization, and the monitoring node (MN) launches short-duration
optical bursts along a set of cycles called m-cycles to probe their on-off status. The MN thus
can achieve unambiguous failure localization (UFL) for the SRLGs under consideration,
using significantly less monitoring resources than are necessary in the previously reported
studies.

73

An ILP is formulated as a joint design of m-cycle allocation and derivation of launching
times of the bursts along the m-cycles to minimize the fault localization latency and sig-
naling overhead. As a preliminary study on the proposed framework, we have conducted
numerical experiments on small networks. The results demonstrate the feasibility and
easy implementation of the framework. We have also formulated two ILPs as separate
optimization problems for m-cycle allocation and m-burst scheduling. The joint optimiza-
tion method outperforms the separate optimization method to find the fault localization
latency for 50% of the tested networks. As the ILP methods cannot be applied in large net-
works to get a solution in a reasonable time, we have also devised heuristic algorithms for
m-cycle allocation and burst scheduling to find the near-optimal solution of the problems.
The m-cycle allocation method is a randomized local search method. The burst schedul-
ing method finds the earliest burst launching time from the MN for the burst along each
m-cycle. The heuristic methods incur reasonable fault localization latency for single-link
SRLG fault localization.

In the numerical experiments for the m-burst framework, bursts are kept non-overlapp-
ing throughout the network by manipulating the launching time of each m-burst from the
MN in the ILP and heuristic methods. The burst launching time scheduling techniques
developed in this chapter will be used directly or indirectly in the rest of this thesis. In
particular, Tabu search based Algorithm 4.2 will be used for burst scheduling, with most
of the m-trail allocation methods developed later on.

Once the m-trail allocation and burst scheduling problems are solved, we need to mul-
tiplex multiple bursts in each unidirectional link traversed by more than one m-cycle to
avoid burst collisions completely. In this chapter, we have shown that the scheduling for
node switch fabric configuration can be done from the burst launching times and m-cycle
routes as simple and systematic calculations. Moreover, the switching schedule follows a
fixed pattern in each monitoring period. Thus, instead of sending control packets ahead of
each burst as in OBS, the switching schedule can be sent to the nodes separately from the
bursts themselves. Moreover, the updates of the switching schedule can be sent after long
intervals.

The methods developed in this chapter provide a proof of concept of the m-burst
framework. We have shown that single-link SRLG faults in all-optical networks can be
localized from a single MN with reasonable fault localization latency by using at most a
single WL in each unidirectional link of the network. Hence, this work proves our thesis on
single-link SRLG fault localization in all-optical mesh networks. We shall deal with single-
link and multi-link SRLG fault localization in all-optical networks in the next chapter.

74

Chapter 5

M-Burst on Multi-Link SRLGs

5.1 Introduction

Fault management is a challenging task in all-optical networks. The Link Management Pro-
tocol (LMP) [33] proposed under the GMPLS framework employs sequential co-ordination
between adjacent nodes along each lightpath. As a result, it is subject to long fault manage-
ment delay and high protocol complexity. To mitigate the problems, link-based monitoring
[2][34][64] has been considered in the literature, where every link is exclusively monitored
via a single-hop supervisory lightpath (S-LP) launched with a constant optical signal.

More efficient fault localization methods are proposed that use a set of multi-hop S-
LPs such as a monitoring cycle (m-cycle or MC) [1][64][70][72], monitoring trail (m-trail)
[54][63], or monitoring tree (m-tree) [17][21][53]. A monitoring node (MN) that terminates
an S-LP can obtain the failure status of the group of links traversed by the S-LP. A set
of S-LPs is allocated such that each undirected link of a network is traversed by a unique
subset of the S-LPs. Therefore, the network controller will be able to localize any shared
risk link group (SRLG) failure unambiguously according to the collected alarms issued by
the MNs.

The failure localization schemes based on multi-hop S-LPs generally take a large amount
of wavelength links (WLs), especially when the number of considered SRLGs is large. For
example, the method in [51] has indicated that it takes more than 10 WLs per link on
average for the S-LPs to localize all the SLRG failures with up to 3 links. Such high
monitoring resource consumption is not acceptable in some circumstances.

On the other hand, some studies suggest monitoring a set of S-LPs terminated at a
common MN in order to completely remove the alarm dissemination/collection complexity

75

[1][2][52][61]. The method in [1] ensures that for each pair of SRLGs, there exists at least
two S-LPs, with either each S-LP traversing only one SRLG, or one of them traversing one
SRLG and another S-LP traversing both SRLGs. Moreover, each SRLG must be traversed
by at least one S-LP. Thus, the number of required S-LPs is upper-bounded by O(|Ψ|2),
where |Ψ| is the number of SRLGs under consideration. The studies in [52][61] suggest
that a node can obtain the on-off status of an S-LP by tapping the optical signal, by which
the failure localization decision can be made locally at each node without taking any alarm
dissemination overhead.

In Chapter 3, the monitoring bursts (m-bursts) framework is introduced for fault local-
ization in all-optical mesh networks as a remedy to the observed problems. With m-burst
framework, a set of S-LPs called m-trails is derived such that all of them originate from and
terminate at a single MN, and each link is traversed by a unique subset of m-trails. Next,
instead of launching persistent optical signals along each m-trail, short-duration optical
bursts are sent from the MN along the m-trail to inspect the failure status of the m-trail.
By synchronizing the switching fabric configuration of intermediate nodes of the m-trails
in advance, each network link can reserve as few as a single WL along which multiple opti-
cal bursts can be multiplexed in the time domain. Accordingly, the MN follows a specific
schedule of launching the burst for each m-trail in order to achieve collision-free probing for
all the m-bursts during a monitoring period. The relevant problem formulation in detail
for m-trail allocation and m-burst scheduling under the proposed m-burst framework is
provided in Section 3.3 of Chapter 3.

In Chapter 4, the m-burst framework is applied for single-link SRLG fault localization
using m-cycles. A single MN is traversed by a set of m-trails in the form of cycles called
m-cycles. The MN launches optical bursts along the m-cycles to detect the on-off status
of the m-cycles. Due to close-loop shape of an m-cycle, the launched optical bursts will be
received by the MN if all the links along the m-cycle are working properly, but the burst
will be lost if any link along the m-cycle fails. Like a conventional m-trail fault localization
approach, the MN designates a set of m-cycles where each m-cycle provides a single bit in
the alarm code based on whether the corresponding burst is received at the expected time
instant or not. Since each m-burst is a short-duration optical flow, we no longer need to
reserve statically a whole WL along each link of an m-cycle. Multiple optical bursts can be
multiplexed in the time domain on the same WL, which significantly reduces the consumed
monitoring resources. As a result, each link may consume as few as a single WL for fault
localization to support multiple m-cycles traversing through the link. This is possible if
provided with a proper burst scheduling mechanism at the MN, which manipulates the
launching time of each optical burst such that burst collision at any link can be completely
avoided. However, the study in Chapter 4 covers only single-link fault localization.

76

In this chapter1, we extend the study in Chapter 4 by providing a complete study on the
m-burst framework under a multi-link SRLG failure scenario. We develop comprehensive
analysis for gaining deeper understanding of the m-trail allocation problem with a single
MN. Given the maximum number of simultaneous faulty links d that can possibly occur
in the network, the methods proposed in this chapter find a set of m-trails to identify any
SRLG failure and determines the instants of launching m-bursts in order to avoid burst
collision along any link of the network.

To minimize the failure localization latency, a new problem for m-trail allocation and
burst scheduling is formulated in Section 5.2, in which a set of m-trails and the timing
of launching the burst for each m-trail are jointly determined, in order to achieve the
maximum parallelism of burst traversals. The basic idea of the proposed novel M-Trial
Cover against the Faults (MCF) method is to ensure that in case of any SRLG failure, each
remaining link is traversed by at least one m-trail that is disjoint from the faulty SRLG.
The MCF method needs the number of m-trails in O(|Ψ|). i.e., O((|E| + 1)d), where d is
the maximum number of links in any SRLG.

Obviously, with more m-trails, less parallelism can be achieved, causing longer failure
localization latency. In Section 5.3, we improve the MCF m-trail allocation method of
Section 5.2 by having no more than (d + 1)|E| m-trails in the solution. The basic idea of
the proposed novel Disjoint path-based M-Trial Cover against the Faults (DMCF) method
is to ensure that each link is traversed by (d + 1) otherwise link-disjoint m-trails, such
that when any SRLG with up to d links fails, each remaining link is traversed by at least
one m-trail that is disjoint from the faulty SRLG. This approach means a reduction of the
asymptotic bound on the number of consumed m-trails from O((|E|+1)d) to O((d+1)|E|),
which is a significant improvement of the state-of-the-art in the considered scenario. Note
that the reduction of m-trails not only reduces the monitoring delay under the proposed
m-burst framework, but also greatly simplifies the network control and management.

The rest of the chapter is organized as follows. In Section 5.2, a novel multi-link SRLG
fault localization method called MCF is proposed. Theoretical analysis of the MCF m-trail
allocation method for multi-link SRLG fault localization is provided in subsection 5.2.1. In
subsection 5.2.2, an ILP is formulated to solve the m-trail allocation and burst scheduling
problems jointly. In subsection 5.2.3, a heuristic m-trail allocation algorithm to localize
multi-link SRLG failures is provided. Numerical experiments are conducted and the results
are given in subsection 5.2.4.

In Section 5.3, a novel disjoint path-based extension of MCF method called DMCF

1The content of this chapter has been published as a journal paper [7] and is accepted as a conference
paper [6]

77

is proposed. Theoretical analysis of the DMCF m-trail allocation method for multi-link
SRLG fault localization is given in subsection 5.3.1. In subsection 5.3.2, an ILP is formu-
lated to solve the m-trail allocation problem. A heuristic m-trail allocation algorithm to
localize multi-link SRLG failures is provided in subsection 5.3.3. Numerical experiments
are conducted, and the results are given in subsection 5.3.4.

Section 5.4 concludes the Chapter.

5.2 MCF: A Multi-Link SRLG Fault Localization

Method

This section2 deals with multi-link SRLG fault localization in all-optical mesh networks.
In fact, the m-burst framework is extended for multi-link SRLG fault localization. We
propose a novel m-trail allocation scheme called the m-trail cover against the faults (MCF)
for multi-link SRLG fault localization and provide theoretical justifications of the scheme.
Specifically, the proposed m-trail allocation method ensures that any healthy link is tra-
versed by at least one uninterrupted m-trail during an SRLG failure. As a proof of concept,
we formulate the m-trail allocation and the burst scheduling problems as a joint optimiza-
tion problem via an Integer Linear Program (ILP) and implement the method for all
possible SRLGs with up to d = 3 links in any network. A heuristic method for the m-trail
allocation scheme is proposed and implemented for multi-link SRLG fault localization. To
derive burst launching times along the m-trails provided by the heuristic method, Algo-
rithm 4.2, given in Chapter 4 for burst scheduling, is used. Numerical results for small
networks show that the scheme is able to localize single-link and multi-link SRLG faults
unambiguously with a very small amount of fault localization latency.

5.2.1 Theoretical Analysis

Let the sets of the SRLGs, the m-trails, and the m-trails traversing through an undirected
link (u, v) be denoted as Ψ, M, and ϕ(u,v), respectively.

Lemma 5.2.1. ∀(u, v), (w, x) ∈ E, if ϕ(u,v) ⊂ ϕ(w,x) or ϕ(w,x) ⊂ ϕ(u,v), multi-link SRLG
faults involving (u, v) and (w, x) cannot be unambiguously localized from the MN by detect-
ing only disrupted m-trails.

2The content of this section has been published as a journal paper [7]

78

Proof. We use proof by contradiction. Assume that the lemma is false, i.e., in case of
ϕ(u,v) ⊂ ϕ(w,x) or ϕ(w,x) ⊂ ϕ(u,v), multi-link SRLG faults involving (u, v) and (w, x) can be
unambiguously localized from the MN by detecting only disrupted m-trails.

Let two SRLGs be ψi = {(u, v)} and ψj = {(u, v), (w, x)}, and the sets of m-trails
traversing links (u, v) and (w, x) be ϕ(u,v) = {m0, m1, m2} and ϕ(w,x) = {m0, m2}, re-
spectively. Here, ϕ(w,x) ⊂ ϕ(u,v). If the SRLG ψj becomes faulty, m-trails m0, m1 and m2

will be disrupted. Detecting disrupted m-trails, the MN cannot determine whether ψi or
ψj is faulty because both the SRLGs are traversed by m-trails m0, m1 and m2. It is a
contradiction.

Corollary 5.2.2. ∀(u, v), (w, x) ∈ E, if ϕ(u,v) * ϕ(w,x) and ϕ(w,x) * ϕ(u,v), single-link
faults can be unambiguously localized from the MN by detecting only disrupted m-trails.

Corollary 5.2.3. ∀(u, v) ∈ E: (u, v) is not adjacent to the MN, at least two m-trails must
traverse (u, v) to enable unambiguous localization of multi-link SRLG faults from the MN
by detecting only disrupted m-trails.

However, it is not sufficient that every link of a network is traversed by a unique set
of m-trails to localize multi-link SRLG faults unambiguously. To show the fact, let two
multi-link SRLGs be ψi = {(u, v), (w, x), (y, z)} and ψj = {(u, v), (y, z)}, and the sets of
m-trails traversing links (u, v), (w, x) and (y, z) be ϕ(u,v) = {m0, m1}, ϕ(w,x) = {m1, m2}
and ϕ(y,z) = {m2, m3}, respectively. Here, ϕ(u,v), ϕ(w,x) and ϕ(y,z) are unique sets. Hence,
(u, v), (w, x) or (y, z) is traversed by a unique set of m-trails. If the SRLG ψi becomes
faulty, m-trails m0, m1, m2 and m3 will be disrupted. Detecting disrupted m-trails, the
MN cannot determine whether multi-link SRLG ψi or multi-link SRLG ψj is faulty because
both multi-link SRLGs are traversed by the same set of m-trails.

Lemma 5.2.4. ∀ψi, ψj ∈ Ψ: ψi 6= ψj and |ψi| = |ψj| = l, if the set of m-trails traversing
ψi is not the same set of m-trails traversing ψj, i.e., ϕψi

6= ϕψj
, any multi-link SRLG fault

involving l links can be unambiguously localized from the MN by detecting only disrupted
m-trails.

Proof. From inspection, a multi-link SRLG fault involving l links will disrupt a unique set
of m-trails because ϕψi

6= ϕψj
.

Lemma 5.2.5. ∀ψi, ψj ∈ Ψ: ψi ⊂ ψj, if the set of m-trails traversing ψi is a proper subset
of those traversing ψj, i.e., ϕψi

⊂ ϕψj
, any multi-link SRLG faults involving either ψi or

ψj can be unambiguously localized from the MN by detecting only disrupted m-trails.

79

Proof. From inspection, at least one more m-trail traverses the superset SRLG. Thus the
multi-link SRLG fault involving either ψi or ψj will disrupt different numbers of m-trails.

To identify multi-link faults unambiguously, it is evident that a) m-trails traversing a
link cannot be a subset of those traversing another link of the network, b) each SRLG
with the same number of links should be traversed by a unique set of m-trails, and c) a
set of links must be traversed by strictly less numbers of m-trails than those traversing its
superset.

The proposed MCF m-trail allocation method ensures that during a failure event each
healthy link of the network is traversed by at least one uninterrupted m-trail. Faulty
links are identified from the MN by detecting disrupted m-trails. Now we prove that the
set of m-trails identified as a solution by the proposed method has the above mentioned
characteristics; as a consequence, the method has the capability to localize multi-link SRLG
faults unambiguously.

Theorem 5.2.6. ∀ψi ∈ Ψ, if each link in E\ψi is traversed by at least one m-trail that is
link-disjoint from the SRLG ψi, then

i) m-trails traversing each link is not a subset of those traversing another link of the
network;

ii) each SRLG having the same number of links are traversed by a unique set of m-trails;
and

iii) m-trails traversing each SRLG is a proper subset of those traversing any of its superset
SRLGs.

Proof. i) ∀(u, v), (w, x) ∈ E, let single-link SRLGs be ψj = {(u, v)} and ψk = {(w, x)}.
As each link in E\ψj including link (w, x) is traversed by at least one m-trail that is link-
disjoint from the SRLG ψj, at least one m-trail that does not traverse ψj will traverse ψk
because (w, x) ∈ ψk. Hence, ϕ(w,x) * ϕ(u,v).

Similarly, as each link in E\ψk including link (u, v) is traversed by at least one m-trail
that is link-disjoint from the SRLG ψk, at least one m-trail that does not traverse ψk will
traverse ψj because (u, v) ∈ ψj. Hence, ϕ(u,v) * ϕ(w,x).

ii) ∀ψj, ψk ∈ Ψ where ψj 6= ψk and |ψj| = |ψk| indicates that there exists at least one
link that is in ψj but not in ψk and vice versa. Assume that (u, v) and (w, x) are such links
where (u, v) ∈ ψj ∧ (u, v) 6∈ ψk and (w, x) ∈ ψk ∧ (w, x) 6∈ ψj.

80

As each link in E\ψj including link (w, x) is traversed by at least one m-trail that is
link-disjoint from the SRLG ψj, at least one m-trail that does not traverse ψj will traverse
ψk because (w, x) ∈ ψk. Hence, ϕψk

* ϕψj
.

Similarly, as each link in E\ψk including link (u, v) is traversed by at least one m-trail
that is link-disjoint from the SRLG ψk, at least one m-trail that does not traverse ψk will
traverse ψj because (u, v) ∈ ψj. Thus, ϕψj

* ϕψk
. Hence, ψj and ψk are traversed by

unique sets of m-trails.

iii) ∀ψj, ψk ∈ Ψ: ψj ⊂ ψk. As ψj ⊂ ψk, all the m-trails that traverse ψj will also
traverse ψk. Hence, ϕψj

⊆ ϕψk
.

Again, ψj ⊂ ψk indicates that there exists at least one link that is in ψk but not in ψj.
Assume that (w, x) is such a link where (w, x) 6∈ ψj ∧ (w, x) ∈ ψk. As each link in E\ψj
including link (w, x) is traversed by at least one m-trail that is link-disjoint from the SRLG
ψj, at least one m-trail that does not traverse ψj will traverse ψk because (w, x) ∈ ψk. Thus,
|ϕψj
| < |ϕψk

|.

Theorem 5.2.7. ∀ψi ∈ Ψ, if each link in E\ψi is traversed by at least one m-trail that is
link-disjoint from the SRLG ψi, single-link and multi-link SRLG faults can be unambigu-
ously localized from the MN by detecting only disrupted m-trails.

Proof. ∀ψj, ψk ∈ Ψ: |ψj| ≤ |ψk|. Thus, ψj may or may not be a subset of ψk. But ψk can
not be a subset of ψj. Thus, there arise two cases.

Case 1, ψj ⊆ ψk: In this case |ψj| must be less than |ψk|, i.e., ψj ⊂ ψk. It implies that
all the m-trails that traverse ψj will also traverse ψk. i.e., ϕψj

⊆ ϕψk
. Moreover, ∃(w, x) ∈

E : (w, x) 6∈ ψj ∧ (w, x) ∈ ψk. As each link in E\ψj including link (w, x) is traversed by at
least one m-trail that is link-disjoint from the SRLG ψj, we have |ϕψj

| < |ϕψk
|.

Case 2, ψj 6⊂ ψk: In this case |ψj| is less than or equal to |ψk|. In either situation
∃(u, v), (w, x) ∈ E : (u, v) ∈ ψj ∧ (u, v) 6∈ ψk and (w, x) 6∈ ψj ∧ (w, x) ∈ ψk. As each link in
E\ψk including link (u, v) is traversed by at least one m-trail that is link-disjoint from the
SRLG ψk, we have ϕψj

* ϕψk
. Again, as each link in E\ψj including link (w, x) is traversed

by at least one m-trail that is link-disjoint from the SRLG ψj, we have ϕψk
* ϕψj

.

Thus, each SRLG is traversed by a unique set of m-trails. Hence, disrupted m-trails
will identify the faulty SRLG.

We observe that Theorem 5.2.7 is a sufficient but not a necessary condition for unam-
biguous localization of single-link and multi-link SRLG faults from the MN by detecting
only disrupted m-trails. To show that the theorem is not a necessary condition, let two

81

SRLGs be ψi and ψj where ψj 6⊂ ψi and they are traversed by two sets of m-trails namely
ϕψi

= {m1,m2,m3} and ϕψj
= {m1,m2}, respectively. Thus, ψi and ψj are traversed by

unique sets of m-trails. Consequently, any fault involving either ψi or ψj can be unambigu-
ously localized even though ψj is not traversed by at least one m-trail which is link-disjoint
from ψi.

Example: Figure 5.1 shows a three link network to explain how the proposed multi-
link SRLG fault localization method works. Node a is the MN. Five SRLGs are given as
ψ1 = {(a, b)}, ψ2 = {(b, c)}, ψ3 = {(c, a)}, ψ4 = {(a, b), (b, c)}, ψ5 = {(b, c), (c, a)}. As
shown in Figure 5.1(a), four m-trails are needed to identify five SRLG failures. For each of
the single-link SRLG ψ1, ψ2 and ψ3 failure, the remaining two links are traversed by m1 and
m3, m0 and m1, and m0 and m2 which are link-disjoint from ψ1, ψ2 and ψ3, respectively.
For each of the double link SRLG ψ4 and ψ5 failure, the remaining link is traversed by m1

and m0 which are link-disjoint from ψ4 and ψ5, respectively. Hence, ∀ψi ∈ Ψ, each link in
E\ψi is traversed by at least one m-trail that is link-disjoint from the SRLG ψi.

Figure 5.1(b) shows the ACT derived from the m-trails. The decimal alarm codes are
given in column Dec. of the ACT. The decimal codes of SRLGs ψ1, ψ2, ψ3, ψ4 and ψ5 are
5, 12, 10, 13 and 14, respectively. Since each SRLG has a unique code, it indicates that
each SRLG is traversed by a unique set of m-trails. Therefore, the MN will be able to
localize SRLG faults unambiguously by detecting only disrupted m-trails.

a

bc

m0m1 m2m3

MN

(a) M-cycles in the solution set

SRLGs m3 m2 m1 m0 Dec.

ψ1 0 1 0 1 5
ψ2 1 1 0 0 12
ψ3 1 0 1 0 10
ψ4 1 1 0 1 13
ψ5 1 1 1 0 14

(b) Alarm code table (ACT)

Figure 5.1: M-trail solution set and the ACT for a network with 3 node and 3 link.

5.2.2 ILP Formulation for the MCF Method

With a single MN and a set of SRLGs Ψ where each ψ ∈ Ψ consists of either single or
multiple links of the network, the proposed ILP is a manipulation of Theorem 5.2.7 in such

82

a way that ∀ψ ∈ Ψ each link in E\ψ is traversed by at least one m-trail that is link-disjoint
from ψ while visiting the MN. Different from any previous research, the ILP determines
the burst schedule and minimizes the monitoring period by manipulating the routes of
m-trails where each SRLG is traversed by a unique set of m-trails.

To reduce the problem size, we use an enumerated set of m-trails as an input to the
ILP. For each node of the network, k unique shortest cycles/trails (m-trails) are derived by
using Suurballe’s algorithm for shortest pairs of disjoint paths [50] and Yen’s algorithm for
k-shortest loop-less paths [69]; each enumerated m-trail traverses the node and the MN.

List of Notation

G The network, G = (V,E), where V is the set of nodes and E is the set of unidirectional
links of the network.

MN The monitoring node in the network, MN ∈ V .

r1, r2 Predefined cost ratios.

N A large predefined number that represents ∞.

J Total number of enumerated m-trails.

eejuv It is equal to 1 if the jth enumerated m-trail traverses unidirectional link (u, v) and
0 otherwise.

esjψ It is equal to 1 if the jth enumerated m-trail traverses any link of SRLG ψ, and 0
otherwise.

desjabψ It is equal to 1 if esjψ == 0 ∧ (eejab == 1 ∨ eejba == 1) where undirected link
(a, b) ∈ E\ψ, and 0 otherwise.

pjrk Pre-calculated propagation delay in ms of the m-burst from the MN to the kth node
of the jth enumerated m-trail following the given or reverse spin spjr.

tpj Pre-calculated total propagation delay in ms of the m-burst along the jth enumerated
m-trail starting from and returning to the MN.

mj Binary variable, it is equal to 1 if the jth enumerated m-trail is in an ILP solution
and 0 otherwise.

83

spjr Binary variables called spins of the jth enumerated m-trail. As propagation delays
from the MN to on-trail nodes depend on the burst flow direction along an m-trail,
two spin variables per enumerated m-trail are used to keep track of propagation
delays properly. It can be assigned a non-zero value only if the enumerated m-trail
is in an ILP solution. Given spin spj0 is equal to 1 if the jth enumerated m-trail
that is in an ILP solution traverses its on-trail links in the enumerated direction and
0 otherwise. Similarly, reverse spin spj1 is equal to 1 if the jth enumerated m-trail
that is in an ILP solution traverses its on-trail links against the enumerated direction
and 0 otherwise.

ejuv Binary variable, it is equal to 1 if the jth m-trail in an ILP solution traverses unidi-
rectional link (u, v) with spin spj0 or unidirectional link (v, u) with spin spj1, and 0
otherwise.

girjtuv Binary variable, it is equal to 1 if the m-burst along the ith m-trail in an ILP solution
with spin spir arrives to node u before the m-burst along the jth m-trail in the ILP
solution with spin spjt and both the bursts traverse unidirectional link (u, v), and 0
otherwise. It helps collision-free burst propagation through network links.

sjr Variable m-burst launching time in ms from the MN along the jth enumerated m-
trail. It can be assigned a non-zero value only if the jth enumerated m-trail with
spin spjr is in an ILP solution.

T Variable maximum fault localization latency in ms.

n Integer variable, it is the maximum number of m-trails in an ILP solution traversed
through any unidirectional link of the network.

αψ Integer variable, decimal SRLG code of ψ.

ILP for M-Trail Allocation and M-Burst Launching Time Scheduling

The specific ILP formulation is provided as follows.

Objective:

Minimize {T + r1 ∗ n + r2 ∗
∑
j

mj} (5.1)

Subject to the following constraints:

84

At least one enumerated m-trail that is link-disjoint from SRLG ψ but traverses undirected
link (a, b) must be in an ILP solution. This is the key constraint that implements the
proposed MCF m-trail allocation method for multi-link SRLG fault localization.∑

j

mj ∗ desjabψ ≥ 1, ∀ψ ∈ Ψ,∀(a, b) ∈ E\ψ (5.2)

Each enumerated m-trail in an ILP solution has only one non-zero spin.

spj0 + spj1 = mj, ∀j (5.3)

The constraint ensures that positive burst starting times can be assigned only to the bursts
along enumerated m-trails that are in an ILP solution with valid spins.

sjr ≤ spjr ∗N, ∀j, r (5.4)

Constraints 5.5 and 5.6 enforce minimum difference between arrival times of two m-bursts
to node u to the burst length L when the m-bursts along the ith and jth enumerated
m-trails traverse the same outgoing link (u, v) from the node. Thus, the constraints ensure
collision free burst propagation through any link of the network. Here, node u is the
kth node of the ith enumerated m-trail considering spin spir and the lth node of the jth
enumerated m-trail considering spin spjt. Moreover, node v is the next hop node along the
ith and jth enumerated m-trails considering their spins. Now ∀i, r, k, j, t, l, (u, v),

(sir + pirk)− (sjt + pjtl) ≥ (1− (N + 1) ∗ girjtuv) ∗ L+ (spir + spjt − 2) ∗N (5.5)

(sjt + pjtl)− (sir + pirk) ≥ (girjtuv +N ∗ (girjtuv − 1)) ∗ L+ (spir + spjt − 2) ∗N (5.6)

The maximum fault localization latency is the largest elapse time for any m-burst with
valid spin from the start of the monitoring period to the return time of the last bit of the
m-burst to the MN.

T ≥ sjr + mj ∗ tpj + L + (spjr − 1) ∗N, ∀j, r (5.7)

Link traversal by m-trails in an ILP solution considering their spins

ejuv ≥ mj ∗ eejuv + spj0 − 1, ∀(u, v) ∈ E ∀j (5.8)

85

ejvu ≥ mj ∗ eejuv + spj1 − 1, ∀(u, v) ∈ E ∀j (5.9)

Calculation of the maximum number of m-trails traversing through any unidirectional link
of the network

n ≥
∑
j

ejuv, ∀(u, v) ∈ E (5.10)

The following constraint is for the calculation of decimal codes, but it is not a constraint
of the ILP per se. However, using the codes, we can verify if the method derives a unique
code for each SRLG or not.

αψ =
∑
j

2j ∗ esjψ, ∀ψ ∈ Ψ (5.11)

Objective 5.1 aims to minimize mainly the fault localization latency. In order to find
the fault localization latency, the number of m-trails traversing through any unidirectional
link of the network and the total number of m-trails |M| are also minimized.

From Eq. 5.2, we have the number of constraints in the order of O(|E||Ψ|) where |E|
is the number of network links and |Ψ| is the number of SRLGs under consideration. As
|Ψ| ≤ (|E| + 1)d, O(|E||Ψ|) is equivalent to O(|E|(|E| + 1)d) where d is the maximum
number of links in any SRLG. From Eq. 5.11, we have the number of variables in the order
of O(|Ψ|) based on the variable αψ.

5.2.3 Heuristic Algorithm for M-Trail Allocation

The ILP is not scalable to the problem size; thus, a heuristic m-trail allocation algorithm
for multi-link SRLG fault localization is proposed in Algorithm 5.1. The set of m-trails
provided by the MCF m-trail allocation method is then used as the input of the burst
scheduler Algorithm 4.2, given in Chapter 4, in order to find burst launching times from
the MN and fault localization latency.

All links are considered undirected in Algorithm 5.1. In line 1, the m-trail solution set
M and ACT A are initialized as empty. In lines 2-3, an m-trail is found for each node
of the network G based on the node’s shortest path to the MN. In lines 4-5, the shorter
m-trail based on shortest distances d(u) and d(v) is selected from the two m-trails that

86

terminate at the end nodes u and v of each link (u, v). Then the link is concatenated to
the m-trail as its last link to derive a new m-trail. The new m-trail is added to M and A

in line 6. In the outer for loop, each SRLG ψ ∈ Ψ is considered in turn. In line 7, each
m-trail that traverses any link of ψ ∈ Ψ is deleted from A to form a temporary ACT Aψ.
Then for each link not in the SRLG ψ and if the alarm code of the link becomes 0 in Aψ

(i.e., Aab
ψ == 0), the link is added to an array Qψ in line 8. Next, for each link in Qψ if the

alarm code of the link remains 0 in Aψ, a new m-trail is found in line 9 that traverses the
link but is link-disjoint from the SRLG ψ using the helper function FindMTrail. Finally,
the new m-trail is added to M, A and Aψ in line 10. In line 11, the set of m-trails M as
the solution of the fault localization problem and ACT A are returned.

Algorithm 5.1: The MCF M-Trail Allocation Method

Input: G(V,E), MN, and d
Output: M and A
begin

1 Initialize M,A← φ
2 Find shortest distances from the MN in G

foreach u ∈ V do
3 Build an m-trail mi

u based on the shortest path p(u) from the MN

foreach (u, v) ∈ E do
if d(u) ≤ d(v) then

4 Build m-trail mj with (u, v) and mi
u

else
5 Build m-trail mj with (u, v) and mi

v

6 M,A← mj

foreach ψ ∈ Ψ do
foreach mj ∈M: mj ∈ ϕψ do

7 Delete mj from A to form Aψ

foreach link (a, b) ∈ E\ψ: Aab
ψ == 0 do

8 Qψ ← (u, v)

foreach link (a, b) ∈ Qψ: Aab
ψ == 0 do

9 mj ← FindMTrail
(

Aψ, ψ, a, b
)

10 M, A, Aψ ← mj

11 Return M,A

Function FindMTrail finds a new m-trail that traverses link (a, b) but is link-disjoint
from SRLG ψ. In lines 1-2, the ordered list L stores nodes a and b in ascending order of
the lengths of their shortest paths p(a) and p(b) from the MN, respectively. The first node

87

in L will be used to find the new m-trail before the second one. In the inner for loop,
neighborhoods of both nodes are checked in turn. If any neighboring node v of node u is
visited by an m-trail that is link-disjoint from SRLG ψ, the new m-trail is derived by using
the portion of the m-trail from the MN to node v and links (u, v) and (a, b). If such an
m-trail is not found in the outer for loop, link (a, b) and all links of SRLG ψ are deleted
from G to derive a truncated network Gψ in line 7. Then, two shortest paths p(a) and p(b)
from the MN to the nodes a and b, respectively are found in Gψ. The new m-trail mj is
derived by using link (a, b) and the shorter of the two shortest paths p(a) and p(b). In line
11, m-trail mj is returned.

Function FindMTrail(Aψ, ψ, a, b)

Input: G(V,E), MN, and M
Output: mj

begin
1 Build an ordered list L = [a, b]

if d(a) > d(b) then
2 Swap positions of a and b in L

foreach u ∈ L do
foreach v ∈ N(u) and w ∈ N(v) do

if v 6= a ∧ v 6= b ∧ w 6= a ∧ w 6= b ∧ Avw
ψ ≥ 1 then

3 Find any m-trail mi that visits v
4 Get the portion mi

v of the m-trail from the MN to v
5 Add (a, b) and (u, v) to mi

v to form an m-trail mj

6 Return mj

7 Gψ ← delete (a, b) and each (u, v) ∈ ψ from G
8 Find shortest distances from the MN in Gψ

if d(a) ≤ d(b) then
9 Build m-trail mj based on the shortest path p(a) from the MN and (a, b)

else
10 Build m-trail mj based on the shortest path p(b) from the MN and (a, b)

11 Return mj

To find an ordered list of 2 nodes based on the shortest path, the helper function
FindMTrail requires at most O(|V | log2 |V |+ |E|) steps via Dijkstra’s algorithm. The outer
for loop iterates twice only: one for each end node of link (a, b). For each node, it requires
O(1) steps to check the neighborhood of the node for uninterrupted m-trails. It takes at
most O(log2 |M|) steps to search an uninterrupted m-trail. Thus, the outer for loop needs
O
(
d log2(|E| + 1)

)
steps as |M| ∈ O(|Ψ|) shown below and |Ψ| ≤ (|E| + 1)d, where d is

88

the maximum number of simultaneous faulty links. Line 7 needs O(1) steps and line 8
requires at most O(|V | log2 |V | + |E|) steps via Dijkstra’s algorithm. To build an m-trail
O(E) steps are required. Thus, complexity of the helper function is O(|V | log2 |V |+ |E|).

The overall worst-case complexity of the method is derived as follows. Line 2 of Algo-
rithm 5.1 requires O(|V | log2 |V | + |E|) steps. Line 3 needs O(E) steps. Lines 4-6 needs
requires O(|E|) steps. The outer for loop iterates O(|Ψ|) times. Deleting m-trails from
A needs O(|E|) steps. To populate Qψ requires |E| steps. As each SRLG can disrupt a
small number of m-trails, the number of links that are not being traversed by at least one
uninterrupted m-trail will also be small. Thus, |Qψ| can be considered as constant. To
find a new m-trail for a link in Qψ requires complexity of O(|V | log2 |V |+ |E|). Thus, the
outer for loop takes the worst-case complexity of O

(
|Ψ|(|V | log2 |V |+ |E|)

)
.

Next, we derive asymptotic upper bound of the number of m-trails denoted as |M|. In
line 6 of Algorithm 5.1, |E| m-trails are added to the solution. In line 10, upper bound
of m-trails to cover links in Qψ while disjoint from any link of ψ is O(1) because a small
number of m-trails can be devised to cover all such links. Thus, we have |M| ∈ O(|Ψ|),
compared with |M| ∈ O(|Ψ|2) in [1].

5.2.4 Numerical Results

We have developed a model of the ILP described in Section 5.2.2 in the modeling language
GNU MathProg and translate the MathProg model using the GLPK solver glpsol into an
MPS file to run the program in ILOG CPLEX 11.1.

We assume that the burst length L is 20 ms, burst propagation delay through any link
(u, v) is 2 ms, and there is at most one supervisory WL along each unidirectional link in
the numerical experiment. We also assume that r1 is 0.1 and r2 is 0.01. As minimization
of n helps to minimize the fault localization latency indirectly, r1 is assigned a low value.
Again, as WL consumption is almost fixed for a network and bursts are launched from and
returned to the MN, minimization of the number of m-trails turns into a secondary issue.
Thus, r2 is assigned even a lower value than that of r1.

We conducted the experiment on a network with 7 nodes and 12 links. Node 0 is
assigned as the MN. An SRLG could consist of up to d = 3 links, where each SRLG with
two or three links is node-disjoint from the MN. In our case, there are in total 96 SRLGs
consisting of 12 single-link, 28 dual-link and 56 triple-link SRLGs as shown in Table 5.1.

As shown in Figure 5.2, the ILP solution has |M| =
∑

jm
j = 19 m-trails. The set of m-

trails populates the network ACT, which is the mapping between each possible SRLG code

89

Table 5.1: List of SRLGs in a Network with 7 Nodes and 12 Links

(0 1) (1 3)(5 6) (1 2)(1 6)(3 4) (1 3)(2 6)(5 6)
(0 4) (1 6)(2 3) (1 2)(1 6)(4 5) (1 3)(3 4)(4 5)
(0 5) (1 6)(2 6) (1 2)(1 6)(5 6) (1 3)(3 4)(5 6)
(0 6) (1 6)(3 4) (1 2)(2 3)(2 6) (1 3)(4 5)(5 6)
(1 2) (1 6)(4 5) (1 2)(2 3)(3 4) (1 6)(2 3)(2 6)
(1 3) (1 6)(5 6) (1 2)(2 3)(4 5) (1 6)(2 3)(3 4)
(1 6) (2 3)(2 6) (1 2)(2 3)(5 6) (1 6)(2 3)(4 5)
(2 3) (2 3)(3 4) (1 2)(2 6)(3 4) (1 6)(2 3)(5 6)
(2 6) (2 3)(4 5) (1 2)(2 6)(4 5) (1 6)(2 6)(3 4)
(3 4) (2 3)(5 6) (1 2)(2 6)(5 6) (1 6)(2 6)(4 5)
(4 5) (2 6)(3 4) (1 2)(3 4)(4 5) (1 6)(2 6)(5 6)
(5 6) (2 6)(4 5) (1 2)(3 4)(5 6) (1 6)(3 4)(4 5)
(1 2)(1 3) (2 6)(5 6) (1 2)(4 5)(5 6) (1 6)(3 4)(5 6)
(1 2)(1 6) (3 4)(4 5) (1 3)(1 6)(2 3) (1 6)(4 5)(5 6)
(1 2)(2 3) (3 4)(5 6) (1 3)(1 6)(2 6) (2 3)(2 6)(3 4)
(1 2)(2 6) (4 5)(5 6) (1 3)(1 6)(3 4) (2 3)(2 6)(4 5)
(1 2)(3 4) (1 2)(1 3)(1 6) (1 3)(1 6)(4 5) (2 3)(2 6)(5 6)
(1 2)(4 5) (1 2)(1 3)(2 3) (1 3)(1 6)(5 6) (2 3)(3 4)(4 5)
(1 2)(5 6) (1 2)(1 3)(2 6) (1 3)(2 3)(2 6) (2 3)(3 4)(5 6)
(1 3)(1 6) (1 2)(1 3)(3 4) (1 3)(2 3)(3 4) (2 3)(4 5)(5 6)
(1 3)(2 3) (1 2)(1 3)(4 5) (1 3)(2 3)(4 5) (2 6)(3 4)(4 5)
(1 3)(2 6) (1 2)(1 3)(5 6) (1 3)(2 3)(5 6) (2 6)(3 4)(5 6)
(1 3)(3 4) (1 2)(1 6)(2 3) (1 3)(2 6)(3 4) (2 6)(4 5)(5 6)
(1 3)(4 5) (1 2)(1 6)(2 6) (1 3)(2 6)(4 5) (3 4)(4 5)(5 6)

and the corresponding SRLG. The ACT is shown in Table 5.2. Each SRLG has an entry in
the ACT of the network. An SRLG code is determined by the m-trails traversing through
the SRLG. For example, link (1, 2) is traversed by m-trails m2, m8, m16 and m18, thus its
code is 101 0000 0001 0000 0100. The corresponding decimal code is 327940. As link (3, 4)
is traversed by m-trails m4, m9, m10 and m15, its code is 000 1000 0110 0001 0000. The
corresponding decimal code is 34320. Similarly, link (5, 6) is traversed by m-trails m14,
m15, m16 and m18, hence its code is 101 1100 0000 0000 0000. The corresponding decimal
code is 376832. The code of SRLG ψ = {(1, 2), (3, 4), (4, 5)} is the bit-wise OR of its link
codes, i.e., 101 1100 0111 0001 0100. The corresponding decimal code is 378644.

When an SRLG fails, a unique set of m-trails will be disrupted, which results in a
unique alarm code. For example, if m2, m5, m7, m8, m10, m16, m17 and m18 are disrupted,
the generated alarm code will be 111 0000 0101 1010 0100. The corresponding decimal
alarm code is 218 + 217 + 216 + 210 + 28 + 27 + 25 + 22 = 460196. The MN can identify the
SRLG consists of links (1, 2), (2, 6) and (4, 5) as the failed SRLG from the ACT in Table

90

0

4

5 6

1

2

3
m15

m16

m18

m17

MN

(a) M-cycles in the solution set

0

4

5 6

1

2

3

m0

m1

m2

m3
m4

m5

m6

m7

m8

m9

m10

m11

m12

m13

m14

MN

(b) M-trails in the solution set

Figure 5.2: M-trail solution set for a network with 7 nodes and 12 links.

5.2 using 460196 as an index.

The solution allows at most n = 6 m-trails through any unidirectional link of the
network.

The starting time of the bursts sj, total propagation delay through the m-trail tpj,
burst length L, and fault localization latency T j for the burst along the jth m-trail is
shown in Table 5.3. Maximum fault localization latency T is 126 ms. Thus, T is derived
in the solution from m-trail m2, m7, m9 or m14.

Due to space constraint, Figure 5.3 shows collision-free m-burst traversal timing through
only links from the MN to node 3 via nodes 1 and 2, and back to the MN using the same
links during a monitoring period. Each rectangle represents an m-burst and the m-burst is
labeled with the corresponding m-trail. The traversal period of an m-burst through a link
is equal to the burst propagation delay δ through the link and the burst length L. Thus,

91

Table 5.2: Alarm Code Table (ACT)

Dec. SRLG Dec. SRLG Dec. SRLG Dec. SRLG
408 (2 3) 360680 (1 3)(2 6) 376992 (2 6)(5 6) 427480 (1 3)(2 3)(4 5)

32840 (1 3) 360682 (1 3)(1 6)(2 6) 376994 (1 6)(2 6)(5 6) 427536 (3 4)(4 5)
33240 (1 3)(2 3) 360710 (1 2)(1 6) 377064 (1 3)(2 6)(5 6) 427538 (1 6)(3 4)(4 5)
34320 (3 4) 360780 (1 2)(1 3) 377092 (1 2)(5 6) 427608 (1 3)(3 4)(4 5)
34392 (1 3)(3 4) 360782 (1 2)(1 3)(1 6) 377094 (1 2)(1 6)(5 6) 427928 (2 3)(3 4)(4 5)
34712 (2 3)(3 4) 360862 (1 2)(1 6)(2 3) 377164 (1 2)(1 3)(5 6) 428560 (0 4)
34776 (1 3)(2 3)(3 4) 360870 (1 2)(1 6)(2 6) 377240 (2 3)(5 6) 459936 (2 6)(4 5)
65869 (0 1) 360890 (1 6)(2 3)(2 6) 377242 (1 6)(2 3)(5 6) 460036 (1 2)(4 5)

250880 (0 5) 360924 (1 2)(1 3)(2 3) 377244 (1 2)(2 3)(5 6) 460188 (1 2)(2 3)(4 5)
270498 (0 6) 360940 (1 2)(1 3)(2 6) 377252 (1 2)(2 6)(5 6) 460196 (1 2)(2 6)(4 5)
294914 (1 6) 360952 (1 3)(2 3)(2 6) 377272 (2 3)(2 6)(5 6) 460216 (2 3)(2 6)(4 5)
294986 (1 3)(1 6) 362160 (2 6)(3 4) 377304 (1 3)(2 3)(5 6) 492706 (1 6)(2 6)(4 5)
295322 (1 6)(2 3) 362162 (1 6)(2 6)(3 4) 378384 (3 4)(5 6) 492776 (1 3)(2 6)(4 5)
295386 (1 3)(1 6)(2 3) 362232 (1 3)(2 6)(3 4) 378386 (1 6)(3 4)(5 6) 492806 (1 2)(1 6)(4 5)
296466 (1 6)(3 4) 362260 (1 2)(3 4) 378456 (1 3)(3 4)(5 6) 492876 (1 2)(1 3)(4 5)
296538 (1 3)(1 6)(3 4) 362262 (1 2)(1 6)(3 4) 378544 (2 6)(3 4)(5 6) 493232 (2 6)(3 4)(4 5)
296858 (1 6)(2 3)(3 4) 362332 (1 2)(1 3)(3 4) 378644 (1 2)(3 4)(5 6) 493332 (1 2)(3 4)(4 5)
327840 (2 6) 362396 (1 2)(2 3)(3 4) 378776 (2 3)(3 4)(5 6) 508928 (4 5)(5 6)
327940 (1 2) 362420 (1 2)(2 6)(3 4) 394240 (4 5) 508930 (1 6)(4 5)(5 6)
328092 (1 2)(2 3) 362424 (2 3)(2 6)(3 4) 394648 (2 3)(4 5) 509000 (1 3)(4 5)(5 6)
328100 (1 2)(2 6) 376832 (5 6) 427010 (1 6)(4 5) 509088 (2 6)(4 5)(5 6)
328120 (2 3)(2 6) 376834 (1 6)(5 6) 427080 (1 3)(4 5) 509188 (1 2)(4 5)(5 6)
328124 (1 2)(2 3)(2 6) 376904 (1 3)(5 6) 427082 (1 3)(1 6)(4 5) 509336 (2 3)(4 5)(5 6)
360610 (1 6)(2 6) 376906 (1 3)(1 6)(5 6) 427418 (1 6)(2 3)(4 5) 509456 (3 4)(4 5)(5 6)

the period is δ + L = 2 + 20 = 22 ms.

Table 5.3: Monitoring Delays along the M-Trails

mj sj + tpj + L = T j mj sj + tpj + L = T j

0 0 + 4 + 20 = 24 10 34 + 12 + 20 = 64
1 0 + 8 + 20 = 28 11 40 + 4 + 20 = 64
2 98 + 8 + 20 = 126 12 74 + 4 + 20 = 98
3 32 + 12 + 20 = 64 13 24 + 4 + 20 = 48
4 0 + 12 + 20 = 32 14 98 + 8 + 20 = 126
5 58 + 8 + 20 = 86 15 54 + 12 + 20 = 86
6 78 + 8 + 20 = 106 16 14 + 10 + 20 = 44
7 94 + 12 + 20 = 126 17 20 + 6 + 20 = 46
8 54 + 12 + 20 = 86 18 72 + 14 + 20 = 106
9 98 + 8 + 20 = 126

The periods when two m-bursts traverse through a link back-to-back are indicated by
black rectangles in Figure 5.3. The m-bursts along m-trails m6 and m2, m18 and m2, and

92

m3 and m8 traverse links (0, 1), (1, 2) and (2, 3), respectively, back-to-back. Similarly, the
m-bursts along m-trails m0 and m16, m16 and m3, m8 and m6, and m6 and m2 traverse link
(1, 0) back-to-back. Each black rectangle in the figure spans 2 ms, which is the same as the
burst propagation delay through a link. It is obvious that whenever two m-bursts traverse
a link back-to-back, they remain collision-free in the link. On the other hand, the m-burst
along m-trail m8 starts traversing link (0, 1) or (1, 0) once the m-burst along m-trail m3

completed traversal of link (0, 1) or (1, 0), respectively. Thus, the m-bursts along m-trails
m3 and m8 remain 2 ms apart in links (0, 1) and (1, 0).

Links

Time (ms)-
0 20 40 60 80 100 120

(0, 1) m0 m8 m6m3 m2

(1, 2) m8 m18 m2

(2, 3) m4 m3 m8 m7

(3, 2) m4 m3 m8 m7

(2, 1) m16 m8 m2

(1, 0) m0 m16 m3 m8 m6 m2

Figure 5.3: Collision-free link traversal by multiple m-bursts.

To verify the proposed algorithm, we run the ILP on three more networks with an
arbitrarily chosen MN in each network while keeping all other assumptions the same as
those in the above experiment.

The simulation results in terms of the number of m-trails
∑

jm
j, the maximum number

of m-trails n through any unidirectional link, and the maximum fault localization latency T
of the solutions are given in Table 5.4. The results for single-link SRLG fault localization are
taken from Section 4.3. The results for single-link and multi-link SRLG fault localization
are shown in columns S and M, respectively.

For each of the four networks, the method is able to identify a set of m-trails to achieve
unambiguous failure localization (UFL) for the multi-link SRLGs failures. Maximum fault
localization latency T for each network is optimal. Maximum number of m-trails n through
any unidirectional link for each network is low. For each network, the method is able to
achieve collision-free burst scheduling by keeping the m-bursts along the m-trails non-
overlapping through any link of the network.

93

By taking the single-link SRLG result as reference, when multi-link SRLGs are consid-
ered and increased by 1.67, 2.25, 4.89, and 8 times, the number of m-trails is increased by
3, 3, 3.75, and 3.17 times, the maximum number of m-trails traversing through any uni-
directional link is increased by 3, 3, 2.5, and 3 times, and the maximum fault localization
latency is increased by 2.62, 2.54, 2.42, and 2.63 times, respectively. It shows that the
proposed approach is scalable to the number of SRLGs.

Table 5.4: The Comparative Performance in Additional Networks

Networks
Performance 4 nodes 5 nodes 6 nodes 7 nodes

metrics 6 links 8 links 9 links 12 links
S M S M S M S M∑

j m
j 3 9 4 12 4 15 6 19

n 1 3 1 3 2 5 2 6
T ms 26 68 26 66 48 116 48 126

The proposed heuristic m-trail allocation method is implemented on an Intel Centrino
Duo, 1.00GB RAM, 2.00GHz, Windows XP Home Edition Version 2002 Service Pack 2
Toshiba Satellite T2500 laptop. In addition to all the networks used in the ILP experiments,
we have tested the heuristic method on 4 larger topologies: CERNet, SmallNet, NSFNet
and Bellcore. We have modified the topologies of NSFNet by adding two links and Bellcore
by adding one link. For all the networks, all the SRLGs with up to arbitrary three links
are considered, where each SRLG with two or three links is node-disjoint from the MN.
Once a set of m-trails is derived by the m-trail allocation method for a network, the burst
scheduling is done in the network using Algorithm 4.2 of subsection 4.5.2 to derive burst
launching times and fault localization latency T with δ = 2 ms and L = 20 ms. The result
is shown in column H in Table 5.5. The number of m-trails derived by the heuristic is
approximately similar to that found with the ILP for multi-link SRLG fault localization.
The method minimizes the maximum failure localization latencies.

5.3 DMCF: A Disjoint Path-Based Extension of the

MCF Method

This section3 also deals with multi-link SRLG fault localization in all-optical mesh net-
works. We introduce a novel m-trail allocation scheme called the Disjoint path-based

3The content of this section is accepted as a conference paper [6]

94

Table 5.5: The Comparative Performance of the Heuristic and the ILP MCF Methods

No. of Performance metrics
Networks SRLGs

∑
j m

j T ms

S M H S M H S M H
4 nodes, 6 links 6 10 10 3 9 8 26 68 94
5 nodes, 8 links 8 18 18 4 12 11 26 66 94
6 nodes, 9 links 9 44 44 4 15 15 48 116 138
7 nodes, 12 links 12 96 96 6 19 20 48 126 152
8 nodes, 12 links 12 132 132 4 – 27 52 – 228
9 nodes, 14 links 14 179 179 5 – 24 50 – 164
CERNet 16 236 236 – – 32 – – 258
SmallNet 22 1162 1162 – – 64 – – 502
NSFNet + 2 links 23 1353 1353 – – 98 – – 876
Bellcore + 1 link 29 2053 2053 – – 86 – – 742

M-trail Cover against the Faults (DMCF) under the m-burst framework for achieving local
unambiguous failure localization (L-UFL), in which a single monitoring node (MN) can
localize any failure on a shared risk link group (SRLG) with up to d links by inspecting
the optical bursts traversing through it. The DMCF method is an extension of the MCF
method given in Section 5.2.

Specifically, the proposed MCF m-trail allocation method requires that any healthy
link is traversed by at least one uninterrupted m-trail during an SRLG failure, which can
be achieved by launching no more than (d + 1) link-disjoint m-trails originating from the
MN for each link. Based on such a sufficient condition, we develop a solution approach
based on integer linear program (ILP) for m-trail allocation, and implement the method
for SRLGs with d = 3. To avoid the high computation complexity in solving the ILP, a
heuristic algorithm is developed for deriving (d+ 1) link-disjoint m-trails between the MN
and each link of the network.

Again, to derive burst launching times along the m-trails provided by the heuristic
method, Algorithm 4.2, given in subsection 4.5.2 for burst scheduling, is used. Numerical
results show that the proposed method, by solving the ILP and heuristics, yields signif-
icantly better performance than that of the methods in Section 5.2 and in [1] in large
network topologies.

95

5.3.1 Theoretical Analysis

This section analyzes the m-trail allocation problem for local unambiguous failure local-
ization (L-UFL) with a single MN and provides two theorems that serve as a basis for the
subsequent ILP formulation and heuristic design.

Let the set of SRLGs and the set of m-trails traversing through undirected link (u, v)
be denoted as Ψ and ϕ(u,v), respectively. A necessary condition for the eligibility of the
solution is that each SRLG is traversed by a unique subset of the m-trails in the solution.
This directly results in the fact that the m-trails that are not disrupted by a faulty SRLG
should traverse all healthy links of the network. Such a fact is formalized in Theorem
5.2.7 given in Section 5.2 as a sufficient condition, in which ∀ψ ∈ Ψ, if each link in E\ψ
is traversed by at least one m-trail that is disjoint from the SRLG ψ, any SRLG fault can
be unambiguously localized by the MN according to the disrupted m-trails.

Let the maximum number of faulty links be d, and each undirected link be traversed by
(d+ 1) m-trails that are link-disjoint in other links. Moreover, each m-trail in the solution
traverses the MN. We will demonstrate that the requirements of Theorem 5.2.7 can be
satisfied with dramatically reduced number of m-trails, specifically less than or equal to
(d+ 1)|E|.

A solution of the m-trail allocation problem for multi-link SRLG fault localization is a
set of m-trails M, where each m-trail is passing through the MN. The solution must have
at least three characteristics as described in Theorem 5.3.1.

Theorem 5.3.1. ∀(u, v) ∈ E: (u, v) is an undirected link, if (u, v) is traversed by at least

(d+ 1) m-trails that are link-disjoint in other links, then

i) the m-trails traversing each link is not a subset of those traversing another link of the

network;

ii) each SRLG having the same number of links are traversed by a unique set of m-trails;

and

iii) the m-trails traversing each SRLG is a proper subset of that traversing any of its

superset SRLGs.

Proof. i) ∀(u, v), (w, x) ∈ E, if ϕ(u,v)∩ϕ(w,x) = φ, ϕ(u,v) can not be a subset of ϕ(w,x) and vice

versa. In case ϕ(u,v)∩ϕ(w,x) 6= φ, letmj traverse both the links, i.e., mj ∈ ϕ(u,v)∧mj ∈ ϕ(w,x).

96

As the remaining d m-trails traversing link (u, v) are link-disjoint from mj in other links,

they cannot traverse link (w, x). Thus ϕ(u,v) * ϕ(w,x). Similarly, ϕ(w,x) * ϕ(u,v).

ii) ∀ψi, ψj ∈ Ψ: ψi 6= ψj and |ψi| = |ψj| = l. This indicates that there are x links that

are in ψi but not in ψj and vice versa. Here 1 ≤ x ≤ l ≤ d. For each one of the x links in

ψi, at most l m-trails can traverse both the link and ψj, and at least one m-trail must be

disjoint from ψj. Thus ϕψi
* ϕψj

. Similarly, ϕψj
* ϕψi

.

iii) ∀ψi, ψj ∈ Ψ: ψi ⊂ ψj. As ψi ⊂ ψj, all the m-trails that are traversing ψi will also

traverse ψj. Hence, ϕψi
⊆ ϕψj

. Moreover, as ψi ⊂ ψj, there exists at least one link that is

in ψj but not in ψi. Assume that (w, x) is such a link, where (w, x) 6∈ ψi∧(w, x) ∈ ψj. Since

an SRLG has at most d links, |ψi| < d. Thus at most (d− 1) m-trails that are traversing

(w, x) can traverse ψi and at least two m-trails that do not traverse ψi will traverse ψj

because (w, x) ∈ ψj. Thus, |ϕψi
| < |ϕψj

|.

Theorem 5.3.2. ∀(u, v) ∈ E: (u, v) is an undirected link, if (u, v) is traversed by at least

(d+1) m-trails that are link-disjoint in other links, where each m-trail is passing through the

MN, single-link and multi-link SRLG faults involving up to d links can be unambiguously

localized from the MN by detecting disrupted m-trails only.

Proof. ∀ψ ∈ Ψ, single-link and multi-link SRLG faults involving up to d links in ψ can

disrupt up to d m-trails that are traversing any healthy undirected link (u, v) ∈ E\ψ. As

each link of the network is traversed by (d + 1) m-trails that are link-disjoint in other

links, at least one m-trail that is link-disjoint from the faulty SRLG ψ will traverse (u, v).

Hence, the condition of Theorem 5.2.7 is satisfied. Therefore, single-link and multi-link

SRLG faults can be unambiguously localized from the MN by detecting disrupted m-trails

only.

5.3.2 ILP Formulation for the DMCF Method

This section provides an ILP for implementing the condition in Theorem 5.3.2. In contrast
to the MCF method, given in Section 5.2, the developed ILP for the DMCF method ensures
that each undirected link is visited by at least (d+1) m-trails that are link-disjoint in other
links. This guarantees that each undirected link in E\ψ, ∀ψ ∈ Ψ, is traversed by at least

97

one m-trail that is link-disjoint from the SRLG ψ as |ψ| ≤ d. The derived solution is
sufficient for achieving L-UFL. Each m-trail in an ILP solution visits the MN as well.

List of Notation

G The network, G = (V,E), where V is the set of nodes and E is the set of unidirectional
links of the network.

MN The monitoring node in the network, MN ∈ V .

J Predefined maximum number of allowed m-trails in an ILP solution.

i, j Indices of m-trails i, j ∈ {0, 1, 2, . . . , J − 1}.

r1, r2 Predefined cost ratios.

δ Predefined small positive constant. It is the minimum voltage increase along an
m-trail, |E|−1 ≥ δ > 0.

mj Binary variable, it is equal to 1 if the jth m-trail is in an ILP solution and 0 otherwise.

mtj Binary variable, it is equal to 1 if mj is a trail and 0 otherwise.

soju Binary variable, It is equal to 1 if node u is the source of the jth m-trail and 0
otherwise. Note that only MN can be the source of an m-trail.

siju Binary variable, It is equal to 1 if node u is the destination of the jth m-trail and 0
otherwise. If the MN is also the destination of an m-trail, it will be a cycle.

ef juv Binary variable, it is equal to 1 if the jth m-trail, which is either a trail or a cycle,
traverses unidirectional link (u, v) en route to its destination node and 0 otherwise.

qjuv Fractional variable, It is defined as voltage of the vector u→ v for unidirectional link
(u, v). It assumes an arbitrary positive value if the jth m-trail traverses link (u, v)
and 0 otherwise.

zju Binary variable, it is equal to 1 if the jth m-trail visits node u and 0 otherwise. The
variables zju and qjuv along with predefined constant δ help to keep each m-trail in an
ILP solution a single connected component.

98

erjuv Binary variable, it is equal to 1 if the jth m-trail, which is a trail not a cycle, traverses
unidirectional link (u, v) while returning from its destination node to the MN and 0
otherwise.

ejuv Binary variable, it is equal to 1 if the jth m-trail traverses unidirectional link (u, v)
and 0 otherwise.

eujuv Binary variable, it is equal to 1 if the jth m-trail traverses undirected link (u, v) and
0 otherwise.

cij Binary variable, it is equal to 1 if both the ith and jth m-trails traverse any common
undirected link and 0 otherwise.

ldijuv Binary variable, it is equal to 1 if both the ith and jth m-trails traverse undirected link
(u, v) but the ith m-trail is link-disjoint from the jth m-trail in all other undirected
links, and 0 otherwise.

df juv Binary variable, it is equal to 1 if the jth m-trail is counted as one of the otherwise
link-disjoint m-trails traversing undirected link (u, v), and 0 otherwise.

l Integer variable, it is the maximum number of potential collision for any m-trail in
an ILP solution.

n Integer variable, it is the maximum number of m-trails in an ILP solution traversing
through any unidirectional link of the network.

esjψ Binary variable, it is equal to 1 if the jth m-trail traverses any undirected link of
SRLG ψ, and 0 otherwise.

αψ It is the decimal alarm code of SRLG ψ. Each decimal alarm code must be a positive
number.

ILP for M-Trail Allocation

The specific ILP formulation is provided as follows.

Objective:

Minimize

{
n+ l + r1 ∗

∑
j

mj + r2 ∗
∑
j

∑
∀(u,v)∈E

ejuv

}
(5.12)

99

Subject to the following constraints:

The constraints (5.13) to (5.21) and their variables are related with m-trail formation and
mostly taken from the method in [63]; please refer to the paper for a thorough explanation
of the constraints and the variables. A single source node and a single destination node are
allowed for each m-trail in an ILP solution. Only the MN can be the source of an m-trail.∑

u∈V

soju = mj, sojMN =
∑
u∈V

soju,
∑
u∈V

siju = mj, ∀j (5.13)

The indices of the m-trails in an ILP solution are the lowest ones. A lower bound of the
number of m-trails in an ILP solution helps to find the solution faster.

mj ≥ mj+1, ∀j : j ≤ J − 2 (5.14)

∑
j

mj ≥ d ∗ blog2(E + 1)c (5.15)

The jth m-trail can traverse an undirected link at most once en route to its destination
node. A valid m-trail must traverse at least one unidirectional link.

ef juv + ef jvu ≤ mj, ∀(u, v) ∈ E : u < v, ∀j (5.16)

∑
∀(u,v)∈E

(ef juv + ef jvu) ≥ mj, ∀j (5.17)

The flow conservation defined for each node of the network enforces that each m-trail
consists of connected components.∑

(u,v)∈E

(ef juv − ef jvu) = (soju − siju), ∀u ∈ V, ∀j (5.18)

If any link incident on node u is traversed by the jth m-trail, the node is considered visited
by the m-trail. Voltages of the vectors corresponding to on-trail links can be assigned
non-zero values. The node voltage constraint (5.21) ensures that each m-trail in an ILP
solution is a single connected component.

zju ≥ ef juv + ef jvu, ∀u ∈ V : (u, v) ∈ E,∀j (5.19)

100

qjuv ≤ ef juv, ∀(u, v) ∈ E,∀j (5.20)

siju +
∑

(u,v)∈E

(qjuv − qjvu) ≥ δ ∗ zju, ∀u ∈ V, ∀j (5.21)

If the MN is the destination node of the jth m-trail, it is a cycle and a trail otherwise.

mtj = mj − sijMN , ∀j (5.22)

The constraints (5.23) – (5.25) ensure that if the jth m-trail is a cycle, it can traverse an
undirected link at most once. On the other hand, if the m-trail is a trail and traverses an
undirected link, it has to traverse the link from both directions.

erjuv ≤ ef jvu, ∀(u, v) ∈ E,∀j (5.23)

ef juv + erjvu ≤ mj + mtj, ∀(u, v) ∈ E,∀j (5.24)

mj + erjvu ≥ mtj + ef juv, ∀(u, v) ∈ E,∀j (5.25)

The jth m-trail can traverse unidirectional link (u, v) either en route to its destination
node or while it is returning from its destination node to the MN.

ejuv = ef juv + erjuv, ∀(u, v) ∈ E,∀j (5.26)

The constraint derives the maximum number of m-trails traversing through any unidirec-
tional link of the network.

n ≥
∑
j

ejuv, ∀(u, v) ∈ E (5.27)

If both the ith and jth m-trails traverse any common link, cij will be 1. Moreover, cij and
cji must assume the same value.

cij + 1 ≥ eiuv + ejuv, ∀(u, v) ∈ E,∀i, j : i <> j (5.28)

101

cij = cji, ∀i, j (5.29)

The constraint finds the maximum number of m-trails that traverse common link(s) with
any m-trail.

l ≥
∑
∀i:i<>j

cij, ∀j (5.30)

If the jth m-trail traverse undirected link (u, v) from either direction en route to its desti-
nation node, the link is considered traversed by the m-trail.

eujuv = ef juv + ef jvu, ∀(u, v) ∈ E : u < v, ∀j (5.31)

Constraints (5.32) and (5.33) identify otherwise link-disjoint m-trail pairs that are travers-
ing each undirected link (u, v). The ith and jth m-trails can be considered link-disjoint
except in link (u, v) if both the m-trails traverse the link. ldijuv and ldjiuv must assume the
same value.

ldijuv ≤ euiuv, ldijuv ≤ eujuv, ldijuv = ldjiuv,∀(u, v) ∈ E : u < v, ∀i, j : i < j (5.32)

Moreover, the ith m-trail has to be link-disjoint from the jth m-trail in all other undirected
links. Now, ∀(u, v), (w, x) ∈ E : u < v ∧ w < x ∧ (u, v) 6= (w, x), ∀i, j : i < j,

ldijuv + euiwx + eujwx ≤ 2 (5.33)

An m-trail traversing the link (u, v) can be considered otherwise link-disjoint from at most
d m-trails that are also traversing the link. At least (d+1) mutually otherwise link-disjoint
m-trails should traverse each link of the network.∑

i:i<>j

ldijuv = d ∗ df juv, ∀(u, v) ∈ E : u < v, ∀j (5.34)

∑
j

df juv = (d+ 1), ∀(u, v) ∈ E : u < v (5.35)

If any undirected link (u, v) in SRLG ψ is traversed by the jth m-trail, the SRLG is
considered traversed by the m-trail. If no link in SRLG ψ is traversed by the jth m-trail,

102

esjψ is 0. The decimal alarm code αψ of SRLG ψ is determined by the set of traversing
m-trails.

esjψ ≥ eujuv, ∀ψ ∈ Ψ, ∀(u, v) ∈ ψ : u < v, ∀j (5.36)

esjψ ≤
∑

∀(u,v)∈ψ:u<v

eujuv, ∀ψ ∈ Ψ,∀j (5.37)

αψ =
∑
j

2j ∗ esjψ, ∀ψ ∈ Ψ (5.38)

The objective function (5.12) aims at minimizing the number of potential collisions
between the m-bursts indirectly by minimizing both n and l. The number of m-trails and
usage of WLs in the ILP solution are also minimized where each undirected link is traverse
by at least (d+ 1) m-trails that are link-disjoint in other links.

From Eq. (5.36), we have the number of constraints in the order of O(d2|E||Ψ|) because
|ψ| ≤ d and J ≤ (d+ 1)|E|, where |E| is the number of undirected links, |Ψ| is the number
of SRLGs under consideration, and d is the maximum number of links in any SRLG. From
Eq. (5.38), we have the number of variables in the order of O(|Ψ|), based on the variable
αψ.

The scheduling algorithm will take the ILP solution, a set of m-trails, for a network as
an input. It turns out that there is little performance differences between using the ILP
given in sub-section 4.4.2 and the heuristic Algorithm 4.2 presented in sub-section 4.5.2
in solving the scheduling problem. We will therefore use the heuristic algorithm for burst
launching time scheduling in this section.

5.3.3 Heuristic Algorithms for the DMCF Method

In this sub-section, two heuristic algorithms are proposed. The first one is a heuristic
m-trail allocation algorithm for multi-link SRLG fault localization given in Algorithm
5.2. Like the ILP in sub-section 5.3.2 for m-trail allocation, the heuristic is based on
Theorem 5.3.2, where each m-trail in the solution visits the MN. Next, the redundant
m-trails in the solution are removed by using the second heuristic described in function
RemoveRedundantMTrails. The resultant set of m-trails is then used as the input of the
burst scheduler described in Algorithm 4.2 in sub-section 4.5.2 to find fault localization
latency.

103

M-Trail Allocation for SRLG Fault Localization

The pseudo code of the proposed heuristic algorithm for the m-trail allocation problem is
given in the Algorithm 5.2. The basic idea is to reuse each m-trail as much as possible
such that every link is traversed by at least (d+ 1) m-trails that are link-disjoint in other
links, and there exists a set of m-trails that is disjoint from each SRLG while covering the
rest of the network.

In line 1, the solution set of m-trails M, the alarm code table (ACT) A, and the set of
the m-trail sets L are initialized as empty. Each element of L is a set of m-trails traversing
a particular link. In lines 2 and 3, each undirected link of the network is assigned a distance
that is the smaller one of the two shortest distances of the end nodes of the link from the
MN. In line 4, links are en-queued to Q based on the descending order of their distances.
Thus, m-trails traversing links that are far away from the MN will be derived before the
m-trails traversing links near the MN.

The while loop will consider each undirected link in turn. Each iteration of the loop
covers lines 5-18. In line 5, an undirected link (u, v) is de-queued from Q and a unique
network Guv is derived from G for (u, v). In line 6, the set of m-trails Luv currently
traversing the link (u, v) is retrieved from L. The intention is to reduce the total number
of m-trails in the solution by reusing the largest possible set of m-trails already traversing
link (u, v) but link-disjoint in all other links.

In line 7, each set of disjoint m-trails in Luv are found using a helper function, not
shown, (d+ 1) times. Each time n from (d+ 1) to 1 is used as another parameter. In the
helper function, all the combinations of n m-trails from Luv are verified whether they are
link-disjoint or not in all links except link (u, v) using bitwise AND operation on the pairs of
m-trail codes. The m-trail code of an m-trail is derived from link traversal of the m-trail.
All disjoint set of m-trails are assigned to Ldsuv. The cardinality of the largest set of disjoint
m-trails in Ldsuv is assigned to max in line 8.

For example, if no m-trail is currently traversing link (u, v), Luv and Ldsuv will be empty,
and max = 0. If mj is currently traversing link (u, v), Luv = {mj}, Ldsuv = {{mj}}, and
max = 1. If mi and mj are currently traversing link (u, v) and mi and mj are not disjoint
in all other links, Luv = {mi,mj}, Ldsuv = {{mi}, {mj}}, and max = 1. On the other hand,
if mi and mj are currently traversing link (u, v) and mi and mj are disjoint in all other
links, Luv = {mi,mj}, Ldsuv = {{mi,mj}, {mi}, {mj}}, and max = 2.

If max is less than (d + 1), this indicates that (u, v) is not yet traversed by at least
(d+1) m-trails that are link-disjoint in other links. In this case, each m-trail set Ljuv in Ldsuv
will be considered in turn. Now, the m-trails in Ljuv traverse (u, v) but disjoint in all other

104

links of Guv. We tentatively assume that the m-trails in Ljuv are already found for (u, v)
and remaining kj disjoint paths for the link will be derived in line 11 using Algorithm A.1,
which is based on Suurballe’s [50] and Bhandari’s [12] algorithms for disjoint paths. If no
set in Ldsuv can be used to find reduced number of new otherwise link-disjoint paths, in line
15 we derive (d+ 1) otherwise disjoint paths without using any m-trail in Luv. We assume
that the MN and each undirected link are separated by the min-cut with cardinality at
least (d + 1). If the network G is (d + 1) connected, there will be at least (d + 1) link-
disjoint paths between the MN and each end node of each link of the network as per Menger
Theorem [3]. An m-trail is formed using each new path and unidirectional links (u, v) and
(v, u) and the m-trail is added to M, A, and L in lines 17 and 18, respectively.

The m-trails solution set M for multi-link SRLG fault localization and ACT A are
returned in line 19.

Let us derive the upper bound of the number of m-trails in a solution, |M|. The while
loop of Algorithm 5.2 iterates |E| times, where |E| is the number of undirected links.
At most (d + 1) m-trails are added to M in each iteration of the loop. Thus, we have
|M| ≤ (d+ 1)|E|.

Now, let us derive complexity of the algorithm. Line 2 needs O(|V | log2 |V |+ |E|) steps
to find node distances from the MN using Dijkstra’s algorithm. Line 3 needs |E| steps to
assign distances to the links. Line 4 needs |E| log2 |E| steps to en-queue the links to Q in
descending order of their distances.

The while loop iterates |E| times. As m-trails derived for each link are link-disjoint
in other links of the network, the number of m-trails traversing any link will be at most
|E|. Thus, for each undirected link (u, v), |Luv| ≤ |E|. Now, to find all combination of up
to (d + 1) m-trails in Luv, O

(
(|E| + 1)(d+1)

)
steps are required. To perform pair wise AND

operations in a set of m-trails with cardinality (d+ 1), O
(
(d+ 1)2

)
steps are needed. Thus,

line 7 requires at most O
(
(d+ 1)2(|E|+ 1)(d+1)

)
steps.

The first for loop inside the while loop will iterate |Ldsuv| times, which is equivalent to
O
(
(|E| + 1)d

)
because the cardinality of the largest m-trail set in Ldsuv will be less than

or equal to d inside the loop. Consequently, at most d disjoint paths for a link will be
searched O

(
(|E| + 1)d

)
times in line 11. Finding d disjoint path from the MN to each

link needs O(d|V ||E|) steps using Algorithm A.1 after minor modifications. Line 14 needs
O(|E|) steps. Thus, the first for loop needs O

(
d|V ||E|(|E|+ 1)d

)
steps.

Line 15 needs O((d+ 1)|V ||E|) steps. Finding the paths from D and forming m-trails
based on the paths requires O((d+ 1)|E|) steps in line 17. Thus, overall complexity of the
algorithm will be O

(
d(d+ |V |)(|E|+ 1)(d+2)

)
.

105

Algorithm 5.2: The DMCF M-Trail Allocation Method
Input: G(V,E), MN, and d
Output: M and A
begin

1 Initialize M,A, L← φ, k ← (d+ 1)
2 ∀u ∈ V , find shortest distance d(u) from the MN

foreach undirected link (u, v) ∈ E do
3 Assign min

(
d(u), d(v)

)
as the distance of (u, v).

4 Assign the links to a queue Q in descending order of their distances.
while Q 6= φ do

5 (u, v)← Extract from Q, Guv ← G
6 Retrieve the set of m-trails Luv traversing (u, v) from L.
7 Find all disjoint m-trails sets in Luv and assign these sets in descending order of their

cardinalities to Lds
uv.

8 max← the cardinality of the largest set of m-trail in Lds
uv

if max < k then
foreach Lj

uv ∈ Lds
uv do

9 kj ← (k − |Lj
uv|)

10 Delete each unidirectional link in Guv traversed by any m-trail in Lj
uv.

11 Find kj link-disjoint paths in Guv from the MN to (u, v).
12 Assign the link-disjoint paths to D.

if |D| == kj then
13 k disjoint paths are found for (u, v). Now, exit the for loop.

else
14 Restore each unidirectional link in Guv traversed by any m-trail in Lj

uv.

if k disjoint paths are not found for (u, v) using any m-trail in Luv then
15 Find k link-disjoint paths in Guv from the MN to (u, v) without deleting any link

of Guv traversed by any m-trail in Luv.
16 Assign the link-disjoint paths to D.

foreach path p(u) ∈ D do
17 Form m-trail mj with p(u), (u, v) and (v, u)
18 Add mj to M, A, and L

19 Return M,A

Post Processing Module

Note that Theorem 5.3.2 serves as a sufficient condition for L-UFL, which yields some
redundant m-trails against the optimal case. Therefore, both results by the ILP and
Algorithm 5.2 should go through a post process in order to remove any redundant m-trail.
We shall describe the proposed post processing module now.

106

Once the set of m-trails M and ACT A are derived by solving the ILP or implemen-
tation of Algorithm 5.2, the function RemoveRedundantMTrails is invoked to remove the
redundant m-trails from M and A. We have applied two established rules to remove any
redundant m-trail from a solution set: two or more SRLG codes should not become equal,
and no SRLG code should become 0 after the removal of the m-trail [64].

In line 1, a conflict set is built for each m-trail. The m-trails in M is assigned to Q
in descending order of the cardinality of their conflict set in line 2. The while loop will
consider each m-trail in turn. In line 4, an m-trail mj is de-queued from Q. If mj is removed
from M, each link has to be traversed by at least one m-trail, and two or more SRLG codes
should not become equal. These conditions are verified in lines 5 and 6, respectively. Here,
Ψ is the set of SRLGs, αi and αj are SRLG codes of the SRLGs ψi and ψj, respectively.
If either condition is not fulfilled, m-trail mj cannot be removed and next iteration of the
while loop starts. Otherwise, m-trail mj is removed from M and A in line 7. In line 8, M

and A are returned.

Function RemoveRedundantMTrails(M, A)

Input: G(V,E), Ψ, M, and A
Output: M,A
begin

foreach mj ∈M do
foreach (u, v) ∈ E: (u, v) is an undirected link and mj traverses (u, v) do

foreach mi ∈M\mj do
if mi traverses (u, v) then

1 Add mi to the conflict set of mj .

2 Assign the m-trails to a queue Q in descending order of the cardinalities of their conflict sets.
3 while Q 6= φ do
4 mj ← Extract from Q

foreach (u, v) ∈ E: (u, v) is an undirected link do
if (u, v) is not traversed by at least one m-trail in M\mj then

5 GoTo line 3.

foreach ψi ∈ Ψ do
foreach ψj ∈ Ψ\ψi do

if αi == αj considering all m-trails in M\mj then
6 GoTo line 3.

7 Remove mj from M and A.

8 Return M,A.

We have, |M| ≤ (d+1)|E|. To find conflict set, line 1 needs O
(
(d+1)2|E|3

)
steps. Line

107

2 needs O
(
(d + 1)|E| log2((d + 1)|E|)

)
steps to en-queue the m-trails to Q in descending

order of the cardinalities of their conflict sets. The while loop iterates O
(
(d+1)|E|

)
times.

Line 5 needs O(|E|) steps. Line 6 needs O
(
|Ψ|2

)
steps, where |Ψ| is the number of SRLGs

under consideration. Thus, overall complexity of the function RemoveRedundantMTrails
is O

(
(d+ 1)|E||Ψ|2

)
.

5.3.4 Numerical Results

We have first solved the m-trail allocation problem using the ILP-based approach, given
in Section 5.3.2, and ILOG CPLEX 11.1. The set of m-trails derived by solving the ILP
is used as an input to the post process module, followed by the invocation of the burst
scheduler described in Algorithm 4.2, given in sub-section 4.5.2, in order to find fault
localization latency.

The experiment considers all the SRLGs with up to arbitrary three links, where each
SRLG with two or three links is node-disjoint from the MN. Consequently, if an undirected
link that is incident on the MN is traversed by a single-hop m-trail, the condition of
Theorem 5.2.7 for the link will be satisfied. Similarly, if an undirected link that is incident
on an MN neighboring node but node-disjoint from the MN is traversed by two otherwise
link-disjoint m-trails and one of them is a two-hop m-trail, the condition of Theorem 5.2.7
for the link will also be satisfied. We assume that r1 is 0.1 and r2 is 0.01.

We conducted the experiment on a network with 7 nodes and 12 links. Node 0 is
assigned as the MN. There are in total 96 SRLGs consisting of 12 single-link, 28 dual-link,
and 56 triple-link SRLGs.

The solution of the ILP-based approach has
∑
mj = 10 m-trails, as shown in Figure

5.4. The ACT, not shown, of the network keeps the mapping between the alarm code
and the corresponding SRLG. The alarm code of an SRLG is determined by the m-trails
traversing through the SRLG. For example, link (1, 2) is traversed by m-trail m0, its
alarm code is 0 000 000 001; link (3, 4) is traversed by m-trails m4 and m9, its alarm code
is 1 000 010 000; and link (5, 6) is traversed by m-trails m6 and m8, its alarm code is
0 101 000 000. On the other hand, since the SRLG ψ = {(1, 2), (3, 4), (5, 6)} is traversed
by all the above mentioned m-trails, its alarm code 1 101 010 001 is the bitwise OR of its
link alarm codes.

To run the burst scheduling heuristic using the set of m-trails, which is the solution of
the ILP-based approach, we assume that the burst length L is 20 ms, burst propagation
delay δ through any link (u, v) is 2 ms, and there is a single supervisory WL along each

108

0

4

5 6

1

2

3

m0

m1

m2

m3

m4

m5

m6

m7

m8

m9

MN

Figure 5.4: M-trail solution set for a network with 7 nodes and 12 links.

unidirectional link traversed by any m-trail. The starting time of the bursts sj, total
propagation delay through the m-trail tpj, burst length L, and monitoring delay for the
jth m-burst T j in the network with 7 nodes and 12 links are shown in Table 5.6. Maximum
monitoring delay, i.e., fault localization latency T is 80 ms. Thus, T is derived in the
solution from the burst along m-trail m7.

Table 5.6: Monitoring Delays along the M-Trails

mj sj + tpj + L = T j mj sj + tpj + L = T j

0 40 + 8 + 20 = 68 5 30 + 8 + 20 = 58
1 0 + 8 + 20 = 28 6 50 + 8 + 20 = 78
2 20 + 8 + 20 = 48 7 44 + 16 + 20 = 80
3 0 + 8 + 20 = 28 8 22 + 16 + 20 = 58
4 50 + 8 + 20 = 78 9 0 + 16 + 20 = 36

Figure 5.5 illustrates the period when the m-bursts traverse through links from the MN
to node 2 via nodes 6, 1, and 3, and back to the MN. Each rectangle represents the time
period that the corresponding m-burst traverses through a link. The time period is equal
to propagation delay δ through the link, which is 2 ms, and burst length L, which is 20 ms,
i.e., δ + L = 2 + 20 = 22 ms. When one burst arrives at node u to traverse unidirectional
link (u, v) at the same moment another burst has left node v after traversing the link, they
are shown adjacent to each other. Back-to-back periods are indicated in Figure 5.5 by black
rectangles when two bursts traverse through an unidirectional link one immediately after
the other. The m-bursts in Figure 5.5 as well as all other bursts remain non-overlapping

109

through any link of the network. Hence, the m-bursts are collision-free throughout the
network.

Links

Time-

(0, 6) m3 m7

(6, 1) m2 m7

(1, 3) m1 m7

(3, 2) m9 m8 m7

(2, 3) m9 m8 m7

(3, 1) m1 m7

(1, 6) m2 m7

(6, 0) m3 m7

Figure 5.5: Schedule of m-bursts through selected unidirectional links.

The proposed heuristic DMCF method for m-trail allocation is implemented to compare
a couple of methods in eight network topologies, namely the MCF method given in Section
5.2 and MC-1 method proposed in [1]. For all the networks, all the SRLGs with up to
arbitrary three links are considered, where each SRLG with two or three links is node-
disjoint from the MN. Once a set of m-trails is derived by the m-trail allocation method
for a network, the burst scheduling is done in the network using Algorithm 4.2 given in
subsection 4.5.2 to derive burst launching times and fault localization latency T with δ = 2
ms and L = 20 ms. The results are shown in Table 5.7.

In addition to the results by the ILP-based approach shown in column M2, the MC-1

method [1] is shown in columns H0, which uses both m-cycles and m-paths based on
the well-known necessary and sufficient conditions of UFL by comparing pair-wise SRLG
codes, also called tag values, derived from the set of m-trails traversing each SRLG. The
results by using the MCF method and the DMCF method are shown in column H1 and
H2, respectively.

From the table, we see that the proposed DMCF method yields the best performance
in terms of the least m-trails and the shortest fault localization latency among all the other
method. However, the ILP-based approach is subject to huge computation complexity and

110

can only be implemented in generally small networks. In the experiment the ILP could
only be used for networks consisting of up to 7 nodes and 12 links, in which we stopped
running the program if it did not return a valid solution in 24 hours. Further, the proposed
heuristic for m-trail allocation requires significantly fewer m-trails than required by all the
other schemes, which translates to the shortest fault localization latency.

Table 5.7: The Comparative Performance of MC-1, MCF, and DMCF Methods

Networks No. of
∑
mj T

SRLGs H0 H1 M2 H2 H0 H1 M2 H2

6 nodes, 12 links 96 17 19 12 12 108 152 88 88
7 nodes, 12 links 96 17 20 10 14 132 152 80 112
8 nodes, 12 links 132 22 27 15 172 228 120
9 nodes, 14 links 179 27 24 18 154 164 114
CERNet 236 29 32 20 168 258 152
SmallNet 1162 43 64 27 336 502 216
NSFNet + 2 links 1353 68 98 37 556 876 294
Bellcore + 1 link 2053 59 86 37 346 742 220

5.4 Conclusions

This chapter studies the m-burst framework for multi-link SRLG fault localization in all-
optical mesh networks. In Section 5.2, the MCF method is presented. The method extends
the m-burst framework for multi-link SRLG fault monitoring and localization in all-optical
networks, which aims at achieving a truly all-optical, signaling-free, and deterministic fault
localization plane. Detailed analysis of the proposed multi-link SRLG fault localization
scheme is conducted. An ILP is formulated based on the developed theories, which are also
the basis of the developed heuristic approach for large topologies. The ILP and the heuristic
algorithm deal with the m-trail allocation and the burst scheduling problems as joint and
separate optimization problems, respectively. By conducting extensive experiments, it
is found that the proposed MCF method can effectively minimize the maximum fault
localization latency.

In Section 5.3, with the minimization of the fault localization latency as the target, an
optimization problem is formulated and solved in two parts: one is on m-trail allocation

111

and the other is on burst scheduling. Detailed analysis is provided. The theoretical proof
shows that the proposed m-trail allocation method is able to achieve better performance.
Numerical experiments are conducted to verify the proposed ILP-based approach and the
heuristic algorithm, and compare them with two counterparts given in Section 5.2 and [1].
We conclude that the proposed DMCF method can significantly improve on the previously
reported schemes in terms of both the number of m-trails and the total monitoring delay.

The methods developed in this chapter demonstrate that the m-burst framework can
be applied for single-link and multi-link SRLG fault localization in all-optical networks as
well. In other words, single-link and multi-link SRLG faults in all-optical networks can be
localized from a single MN with reasonable fault localization latency by using at most a
single WL in each undirectional link of the network. Hence, this research proves our thesis
on single-link and multi-link SRLG fault localization in all-optical mesh networks.

Once the main objective of the thesis is achieved, we shall investigate techniques to
minimize fault localization latencies further, using the m-burst framework for single-link,
dual-link, and multi-link SRLG fault localization in all-optical networks in the next chapter.
As always, there is a trade-off. Thus, we shall investigate methods that may need more
than a single WL in some unidirectional links.

112

Chapter 6

M-Burst using Nested M-Trails

6.1 Introduction

The m-burst framework for single-link and multi-link SRLG fault localization in all-optical
networks was introduced in Chapter 3. In the framework, fault localization is done from a
single MN, and a single WL is assigned in each unidirectional link for fault localization if the
link is traversed by any m-trail. The relevant problems of the framework are m-trail/m-
cycle allocation, burst launching time scheduling, and node switch fabric configuration
scheduling. The problems are formulated in Section 3.3.

In Chapter 4, the m-burst framework, using m-cycles, for single-link SRLG fault local-
ization in all-optical mesh networks is presented. To deal with the m-cycle allocation and
the burst launching time scheduling problems, the ILPs for joint and separate optimiza-
tions are formulated. Two heuristic algorithms are also developed to solve the problems.
Moreover, the control mechanism for node switch fabric configuration is discussed in detail.

The m-burst framework, using m-trails, for multi-link SRLG fault localization in all-
optical mesh networks is provided in Chapter 5. We have proposed two m-trail allocation
methods. The MCF method ensures that during any fault event each healthy link of the
network is traversed by at least one m-trail that is disjoint from the faulty SRLG. We have
implemented the MCF method in ILP and heuristic for SRLGs with d = 3 links. Then
the MCF method is extended using link-disjoint paths. The DMCF method requires that
each undirected link of the network be traversed by at least (d+ 1) otherwise link-disjoint
m-trails. As a result, the number of m-trails required for fault localization and the fault
localization latency are decreased significantly.

113

In this chapter, we first apply the m-burst framework in all-optical linear and ring
networks. As in mesh networks, the framework has a single MN. A single WL in each
unidirectional link of the networks is assigned because each unidirectional link will be
traversed by at least one m-trail. The implementation of the m-burst framework in all-
optical linear and ring networks is essential because not only are they important networks
in their own right but also the insight gained from the practice will be applied in all-optical
mesh networks.

We demonstrate in this chapter that dual-link SRLG faults can be localized from a
single MN in the ring network using the m-burst framework. Based on this fact, we
propose a novel technique called the nested m-trail method for mainly multi-link SRLG
fault localization in all-optical mesh networks. Initially, a mesh network is decomposed
into virtual ring and linear networks. Then, sets of m-trails are derived in the virtual
networks. The nested m-trails are deployed in m-burst frameworks for the ring and linear
networks to localize dual-link and single-link faults in the virtual ring and linear networks,
respectively.

The rest of the chapter is organized as follows. In Section 6.2, single-link SRLG fault
localization in all-optical linear networks is discussed. Section 6.3 provides dual-link SRLG
fault localization in all-optical ring networks. In these sections, m-trail allocation, burst
launching time scheduling, and node switch fabric configuration scheduling are discussed.

In Section 6.4 dual-link and in Section 6.5 multi-link SRLG fault localization in all-
optical mesh network using the proposed novel nested m-trail technique are discussed. In
Section 6.6, an ILP for decomposition of mesh networks into ring and linear networks is
formulated. The corresponding heuristic is provided in Section 6.7. The numerical results
for fault localization in mesh networks are given in Section 6.8.

The application of the nest m-trail technique for adaptive probing is given in Section
6.9. Section 6.10 concludes the chapter.

6.2 Single-Link SRLG Fault Localization in Linear

Networks

Let G = (V,E) be a linear network with |V | = n nodes and |E| = n − 1 links, the nodes
of the network be numbered from v0 to vn−1 consecutively, the set of probes or m-trails be
M, and the alarm code table (ACT) be A.

114

It is proved in [21] that to localize single-link faults unambiguously in linear network

G, |M| = dn
2
e = d |E|+1

2
e non-adaptive probes are required as shown in Figure 6.1; the same

number of m-trails will be required for the purpose. However, each m-trail starts from its
monitoring node (MN) through an outgoing monitoring wavelength channel (WL), visits
its destination node, and returns to its MN through an incoming monitoring WL. The
m-trail visits all the intermediate nodes between its MN and its destination node twice:
once while going to its destination node and the second time while returning to its MN.

v0 v1 v2 v3 v4 v5

m0

m1

m2

Figure 6.1: Single-link SRLG fault localization in a linear network. (adapted from [57]).

To localize single-link faults from a single MN, much more than |M| = dn
2
e = d |E|+1

2
e

m-trails are required because we have to ensure that each m-trail traverses the MN too, as
shown in Figure 6.2.

v0 v1 v2 v3 v4 v5

m1

m2

m3

m4

m5

MN

Figure 6.2: Single-link SRLG fault localization in a linear network from a single MN. End

node v0 is the MN.

Theorem 6.2.1. If a linear network has a single MN and either end node of the network

is the MN, it requires |E| m-trails to localize single-link SRLG faults unambiguously from

the MN.

115

Proof. Let node v0 be the MN. Each m-trail starts from the MN, reaches its destination

node vj, and returns back to the MN traversing all the intermediate nodes vi twice, where

0 < i < j. When node vn−1 is the MN, the proof will be similar. In this proof, we shall

follow the same logical arguments of [21][63].

Assume that the number of required m-trails is less than |E|, i.e., |M| < |E|. In this

case at least one node will not be a destination node of any m-trail as there are n−1 = |E|
nodes in addition to node v0, which is the MN and the source node of every m-trail, in

linear networks with |E| links. In other words, ∃vk ∈ V : vk is not a destination node of

any m-trail.

If k = (n− 1), the end link (vn−2, vn−1) will not be traversed by any m-trail. Hence, a

single-link fault in the end link cannot be localized.

For 1 ≤ k < (n − 1), all the m-trails traversing the node vk will traverse both of

its adjacent links, i.e., (vk−1, vk) and (vk, vk+1). Hence, a single-link fault in either link

(vk−1, vk) or (vk, vk+1) cannot be localized unambiguously. Thus, the number of required

m-trails should be greater than or equal to |E|, i.e., |M| ≥ |E|.

Let |M| be equal to |E| = n − 1 where each node is a destination node of only one

m-trail, i.e., node vk is the destination node of m-trail mk. Next, assume that ∀vi, vj:
i ≥ 1, 1 < j ≤ (n − 1), and i < j. Let the sets of m-trails traversing links (vi−1, vi) and

(vj−1, vj) be ϕ(vi−1,vi) ϕ(vj−1,vj), respectively.

Now, all the m-trails traversing the links beyond the node vj, if any, will traverse both

links (vi−1, vi) and (vj−1, vj). Let the set of these common m-trails be ϕ, which may be

empty. Therefore, ϕ(vi−1,vi) = ϕ ∪ {mi,mi+1, . . . ,mj−1,mj} and ϕ(vj−1,vj) = ϕ ∪ {mj},
where m-trail subset {mi+1, . . . ,mj−1} may be empty. Hence, both links will be traversed

by unique sets of m-trails. Consequently, a single-link fault in the links can be localized

unambiguously. Therefore, we do not need more than |E| m-trails.

Corollary 6.2.2. If a linear network has a single MN and any node vi where i 6= 0 ∧ i 6=
(n− 1) is the MN, it requires |E| m-trails to localize two faulty links unambiguously from

the MN: one faulty link from the segment v0 to vi and another one from vi to vn−1.

Figure 6.3 shows a linear network to explain Corollary 6.2.2, where an intermediate
node v2 is the MN. Now, a fault in segment v0 to v2 and another fault in segment v2 to v5

116

can be localized independently. From an intermediate node of a linear network, it is now
possible to localize dual-link SRLG faults if the faulty links are located at different sides
of the MN.

v0 v1 v2 v3 v4 v5

m0

m1

m5

m4

m3

MN

Figure 6.3: Single-link SRLG fault localization from a single MN in each segment at either

side of the MN in a linear network. Intermediate node v2 is the MN.

Theorem 6.2.3. In linear networks, only a single faulty link can be localized unambiguously

from a single MN if either end node is the MN.

Proof. Let |M| = |E| and each node except the MN be the destination node of an m-trail.

Now, ∀i, j: i < j, and vi and vj are two adjacent intermediate nodes, link (vi, vj) will be

traversed by a set of m-trails ϕ(vi,vj) = {ϕ ∪ {mj}}, where vj is the destination node of

m-trail mj, and ϕ is the set of m-trails traversing links beyond link (vi, vj) from the MN.

Let a link (vk, vl) beyond link (vi, vj) from the MN be traverse by a set of m-trails

ϕ(vk,vl). Thus, ϕ(vk,vl) ⊆ ϕ ⊂ ϕ(vi,vj). Now, if link (vi, vj) becomes faulty, all the m-trails in

ϕ(vi,vj) will be disrupted and the MN will localize link (vi, vj) as faulty link irrespective of

whether link (vk, vl) is faulty or not. Thus, if both links (vi, vj) and (vk, vl) become faulty

simultaneously, the MN cannot localize the faulty links unambiguously.

Corollary 6.2.4. In linear networks, if any intermediate node is a single MN, only a

single faulty link can be localized unambiguously from the MN in each segment from the

MN to either end node.

Corollary 6.2.5. If a failure event involves a cut, minimum or not, and any number of

links beyond the cut from the MN, the MN cannot localize the faulty links unambiguously.

The MN will identify the links in the cut as the only faulty links.

117

An m-trail is a non-simple path: it is allowed to traverse a node multiple times but each
unidirectional link only once. As m-trails cannot traverse any unidirectional link multiple
times, m-trails in linear networks have deterministic paths. Each m-trail in the m-burst
framework for linear networks starts from its source node, reaches its destination node,
and returns to the source node visiting each undirected link between the nodes twice: once
from each direction.

Theorem 6.2.6. If an end node is the single MN of a linear network, there will be |E|
unique m-trails.

Proof. As the path of an m-trail is fully determined by the MN and the destination node

of the m-trail, in this scenario each node except the MN can be the destination node of

only one m-trail. Thus, there will be |V | − 1 = |E| unique m-trails.

As in all-optical mesh networks, the relevant problems of the m-burst framework in
all-optical linear networks are m-trail allocation, burst launching time scheduling, and
node switch fabric configuration scheduling problems. The problems will be discussed in
subsections 6.2.1, 6.2.2, and 6.2.3 in detail, respectively.

6.2.1 M-Trail Allocation in Linear Networks

As |M| = |E| m-trails are required to localize single-link faults unambiguously and there
are |E| unique m-trails in linear networks when an end node is the MN, we can enumerate
m-trails in M by inspection as described in Algorithm 6.1.

Algorithm 6.1: M-Trail Allocation in Linear Networks
Input: G(V,E) and MN
Output: M and A
begin

1 Initialize M, A← φ
foreach node vj ∈ V \MN do

2 Form m-trail mj using all unidirectional links on the route between node vj and the MN.
3 M, A← mj

4 Return M and A.

Example: Let us derive m-trails by inspection for single-link SRLG fault localiza-
tion in a linear network with 8 nodes and 7 links, where the nodes of the network are

118

numbered from v0 to v7 consecutively, and node v0 is the MN. There are 7 m-trails.
M = {m1,m2,m3,m4,m5,m6,m7}. The destination nodes of the m-trails m1, m2, . . . ,
m7 are nodes v1, v2, . . . , v7, respectively. As each m-trail is fully determined by its des-
tination node and the MN, we can easily find m-trails. For instance, m1 will traverse
unidirectional links (v0, v1) and (v1, v0), and m3 will traverse unidirectional links (v0, v1),
(v1, v2), (v2, v3), (v3, v2), (v2, v1), and (v1, v0). Table 6.1 shows the ACT A constructed
from the link traversal of the m-trails in M. The decimal link alarm codes (Dec.) derived
from the m-trails are unique.

Table 6.1: ACT for Single Link Fault Localization in a Linear Network with 7 Links

Links m7 m6 m5 m4 m3 m2 m1 Dec.
(v0, v1) 1 1 1 1 1 1 1 127
(v1, v2) 1 1 1 1 1 1 0 126
(v2, v3) 1 1 1 1 1 0 0 124
(v3, v4) 1 1 1 1 0 0 0 120
(v4, v5) 1 1 1 0 0 0 0 112
(v5, v6) 1 1 0 0 0 0 0 96
(v6, v7) 1 0 0 0 0 0 0 64

In the m-burst framework for linear networks, two dedicated WLs per undirected link
are assigned for monitoring: one WL for each direction.

Now, can we remove the constraint of localizing only a single-link SRLG fault in linear
networks from each side of the MN? The answer is a resounding yes. If we connect two ends
of a linear network, it becomes a ring network. From a single MN, links of ring networks
can be traversed from both clockwise and anti-clockwise directions. As a result, two single-
link faults can be localized unambiguously from two directions irrespective of locations of
two faulty links. However, before delving into dual-link SRLG fault localization in ring
networks, we discuss scheduling of burst launching from the MN, fault localization latency,
and configuration of node switch fabrics in linear networks.

In subsections 6.2.1 and 6.2.2, we assume that an end node of each linear network is
the MN. If an intermediate node is the MN, we can solve the problem by considering the
MN and each segment from the MN to either end node as an independent problem. We
also assume that node v0 is the MN. Let the source and the destination of each m-trail mj

be the MN and node vj, respectively.

119

6.2.2 M-Burst Launching Time Scheduling in Linear Networks

Let δ and L be the burst propagation delay in ms through any unidirectional link of a
network and the burst length in ms, respectively. The fault localization latency T is equal
to the largest elapsed time for any m-burst from the start of the monitoring period to the
complete return of the burst back to the MN; this is the last returning burst along m-trail
ml in linear networks. Thus, T is sl + tpl +L, where sl and tpl are burst launching time in
ms from MN along the m-trail and total round trip burst propagation delay in ms along
the m-trail, respectively.

Theorem 6.2.7. The lower bound of the fault localization latency T to localize single-link

SRLG fault from a single MN, which is an end node of a linear network, is 2δ|E|+ L.

Proof. Assume that all bursts are launched back-to-back from the MN and ∀mi,mj: i =

j − 1, the burst along m-trail mj is launched immediately before the burst along m-trail

mi. In other words, the bursts are launched back-to-back in descending order of the

lengths of the corresponding m-trails. The burst along m-trail mj has to traverse two more

unidirectional links than the burst along m-trail mi, i.e., links (vi, vj) and (vj, vi).

If L ≤ δ, the burst along m-trail mi will complete traversal of its destination node vi

before the burst along m-trail mj returns back to node vi because the burst along m-trail

mj takes 2δ ms to return. On the other hand, the burst along m-trail mi takes L ms, which

is less than equal to δ ms, to completely pass through the node. Thus, the burst pair will

traverse the links without any collision.

Therefore, the fault localization latency T will be equal to the burst traversal time

along the longest m-trail. In other words, T = sl + tpl + L = 0 + δ · 2|E|+ L = 2δ|E|+ L.

Note that T cannot be less than 2δ|E| + L because T has to be greater than or equal

to the burst traversal time along the longest m-trail.

The lower bound can be achieved only when L ≤ δ because in these cases the bursts can
be launched back-to-back in descending order of the lengths of the corresponding m-trails
and the bursts traverse links in parallel.

If δ < L ≤ δ(|E|−1), we can launch only some bursts back-to-back in descending order
of the lengths of the corresponding m-trails from the MN that traverse links in parallel.
Before deriving upper bound of T , let us have a look on a few instances of burst length.

120

If L = 2δ and |E| is even, bursts along all even numbered m-trails can be launched
back-to-back in descending order of the lengths of the corresponding m-trails. After 2δ+L
delay to avoid collision between the longest and the shortest bursts, the bursts along all odd
numbered m-trails can also be launched back-to-back in descending order of the lengths
of the corresponding m-trails. Figure 6.4 shows snapshots of burst traversal after t6δ, t9δ,
t13δ, and t15δ seconds from the beginning of a monitoring period in a linear network with
six links. As the last burst returns to the MN is the burst along the second longest m-trail,
which is odd numbered, the fault localization latency is T = sl + tpl +L = [0 +L(|E|/2−
1) + (2δ + L)] + 2δ(|E| − 1) + L = L|E|/2 + 2δ|E|+ L = (2δ + L/2)|E|+ L = 3δ|E|+ L.
The fault localization latency T for the network is 20δ.

If L = δ(|E| − 1), we can launch all the bursts back-to-back in ascending order of the
lengths of the corresonding m-trails. The last burst will traverse all links of the network.
Thus, the fault localization latency T would be sl+ tpl+L = [0+L(|E|−1)]+2δ|E|+L =
(2δ + L)|E|. However, T can be reduced further if the bursts are launched in descending
order of the lengths of the corresponding m-trails except the burst along the shortest m-
trail. As the bursts along the longest and the shortest m-trails can traverse the links
in parallel, the burst along the shortest m-trail can be luanched immediately after the
burst along the longest m-trail. In other words, bursts along the longest, the shortest
and the second longest m-trails can be launched back-to-back. Then, each burst can
be launched in descending order of the lengths of the corresponding m-trail. However,
launching of each burst has to be delayed by 2δ + L from that of the previous one. The
last burst will traverse four unidirectional links. Thus, the fault localization latency T will
be sl + tpl + L = [0 + L+ L+ (L+ 2δ)(|E| − 3)] + 4δ + L = (2δ + L)|E| − 2δ.

If L > δ(|E| − 1), we cannot launch any burst back-to-back to traverse links in parallel
completely with another burst. However, we can launch the bursts back-to-back from the
MN or ensure that the bursts return to the MN back-to-back. Thus, partial parallelism can
be achieved. Although, we have to ensure that each previously launched burst completes
traversal of the destination nodes, if any one in its path, of the bursts launched afterward
before they reach their respective destination nodes. The first burst will be launched at
the beginning of a monitoring period as usual.

Theorem 6.2.8. The upper bound of the fault localization latency T to localize single-link

SRLG faults from a single MN, which is an end node of a linear network, is (2δ + L)|E|.

Proof. If bursts are launched in ascending order of the lengths of the corresponding m-

trails, all burst can be launched back-to-back. As each burst has to traverse two more

121

v0 v1 v2 v3 v4 v5 v6

β2 β4 β6

MN

(a) at t6δ.

v0 v1 v2 v3 v4 v5 v6

β5

β2 β4 β6

MN

(b) at t9δ.

v0 v1 v2 v3 v4 v5 v6

β3 β5β1

β6

MN

(c) at t13δ.

v0 v1 v2 v3 v4 v5 v6

β1 β3 β5

MN

(d) at t15δ.

Figure 6.4: Burst traversal in a linear network to localize single-link SRLG faults from a

single MN. End node v0 is the MN. Burst βj traverses the links along m-trail mj. L = 2δ.

unidirectional links than the burst launched immediately before it, bursts cannot collide

because each predecessor burst will remain ahead of its successor bursts on the return route

to the MN too. The last burst that returns to the MN will be the burst along the longest

m-trail that traverses each unidirectional links of the network. Thus, the fault localization

latency T will be sl + tpl + L = [0 + L(|E| − 1)] + 2δ|E|+ L = (2δ + L)|E|.

Alternatively, if bursts are launched in descending order of the lengths of the corre-

sponding m-trails, launching of each subsequent burst has to be delayed by 2δ + L to

122

avoid collision. When a burst reaches its destination node, all the bursts along longer

m-trails, if any, will have passed through the node completely while they are returning

to the MN. The last burst that returns to the MN will be the burst along the shortest

m-trail that traverses two unidirectional links. Thus, the fault localization latency T will

be sl + tpl + L = [0 + (2δ + L)(|E| − 1)] + 2δ + L = (2δ + L)|E|.

Therefore, the fault localization latency in a linear network is dependent on burst length
L and propagation delay δ through links. They determine how many bursts can traverse
the links in parallel and burst launching delays to avoid collision.

6.2.3 Node Switch Fabric Configuration Scheduling in Linear

Networks

The MN connects the outgoing monitoring WL to the transmitter and the incoming mon-
itoring WL to the receiver of the monitor. The other end node vn−1 connects the two WLs
together. These connections will not be changed but the interconnection between WLs in
intermediate nodes will be changed periodically.

Although some values of L in the range δ < L ≤ δ(|E| − 1) provide lower values of the
fault localization latency T with different burst launching sequences, we will discuss next
only burst launching in ascending and descending order of the lengths of the corresponding
m-trails for the reason that will become clear when we discuss burst scheduling in ring
networks in sub-section 6.3.2.

Assume that bursts are launched back-to-back in ascending order of the lengths of the
corresponding m-trails. Now, ∀i: 0 < i < (n − 1), node vi connects two WLs from and
to node vi−1 in the beginning of each monitoring period as shown in Figure 6.5a. At
t = (δ + L)i + kT , where k = 0, 1, . . ., node vi connects the WL from node vi−1 with the
WL to node vi+1 and vice versa as shown in Figure 6.5b.

Similarly, assume that bursts are launched in descending order of the lengths of the
corresponding m-trails keeping consecutive bursts (2δ + L) ms apart at launching time.
Now, ∀i: 0 < i < (n − 1), each node vi connects the WL from node vi−1 with the WL to
node vi+1 and vice versa in the beginning of each monitoring period as shown in Figure
6.6a. At t = (2δ + L)(|E| − i) + iδ + kT , where k = 0, 1, . . ., node vi connects two WLs
from and to node vi−1 as shown in Figure 6.6b.

123

vi−1 vi vi+1

(a) at t = kT .

vi−1 vi vi+1

(b) at t = (δ + L)i+ kT .

Figure 6.5: Configuration of node switch fabric of intermediate node vi for single-link

SRLG fault localization from a single MN in linear networks when bursts are launched

back-to-back in ascending order of the lengths of corresponding m-trails. End node v0 is

the MN.

vi−1 vi vi+1

(a) at t = kT .

vi−1 vi vi+1

(b) at t = (2δ + L)(|E| − i) + iδ + kT .

Figure 6.6: Configuration of node switch fabric of intermediate node vi for single-link

SRLG fault localization from a single MN in linear networks when bursts are launched in

descending order of the lengths of corresponding m-trails. End node v0 is the MN.

6.2.4 Numerical Results

Numerical experiments are conducted in linear networks with 3 to 12 links. A set of m-
trails is derived for single-link SRLG fault localization in each network by inspection. Then,
the burst starting times from the MN along the m-trails are scheduled using the heuristic
Algorithm 4.2, given in Chapter 4. The burst propagation delay δ through a unidirectional

124

link is 2 ms. The burst length L is varied from 1 ms to 32 ms in 7 steps. The expected and
actual fault localization latencies according to the burst lengths in each network are shown
in columns E and A of Table 6.2, respectively. The actual fault localization latencies are
consistent with the theoretically expected values.

Table 6.2: Fault Localization Latency T (ms) in Linear Networks

of L = 1 ms L = 2 ms L = 4 ms L = 8 ms L = 16 ms L = 20 ms L = 32 ms
Links E A E A E A E A E A E A E A
3 13 13 14 14 ≤ 20 20 36 36 60 60 72 72 108 108
4 17 17 18 18 ≤ 28 28 48 48 80 80 96 96 144 144
5 21 21 22 22 ≤ 34 32 ≤ 56 56 100 100 120 120 180 180
6 25 25 26 26 ≤ 40 40 ≤ 68 64 120 120 144 144 216 216
7 29 29 30 30 ≤ 46 44 ≤ 80 76 140 140 168 168 252 252
8 33 33 34 34 ≤ 52 52 ≤ 88 88 160 160 192 192 288 288
9 37 37 38 38 ≤ 60 56 ≤ 104 96 ≤ 176 176 216 216 324 324
10 41 41 42 42 ≤ 64 64 ≤ 116 104 ≤ 196 192 240 240 360 360
11 45 45 46 46 ≤ 70 68 ≤ 128 116 ≤ 216 208 ≤ 260 260 396 396
12 49 49 50 50 ≤ 76 76 ≤ 140 128 ≤ 236 224 ≤ 284 280 432 432

6.3 Dual-Link SRLG Fault Localization in Ring

Networks

Let G = (V,E) be a ring network with |V | = n nodes and |E| = n links, the nodes of the
network be numbered clockwise from v0 to vn−1 consecutively, the set of m-trails be M,
and the alarm code table (ACT) be A.

It is proved in [54] that |M| = dn
2
e = d |E|

2
e m-trails are required to localize single-link

SRLG faults unambiguously in a ring network with more than four nodes as shown in
Figure 6.7. The well-known necessary and sufficient condition for unambiguous single-link
SRLG fault localization is that each undirected link of the network has to be traversed by
a unique set of m-trails.

As in linear networks, to localize single-link SRLG faults from a single MN in ring
networks, much more than |M| = dn

2
e = d |E|

2
e m-trails are required. In this case, the MN

has to be either the source or the destination node of each m-trail as shown in Figure 6.8.

125

v0

v1

v2

v3

v4

v5

m0

m2

m1

Figure 6.7: Single-link SRLG fault localization in a ring network.

v0

v1

v2

v3

v4

v5

m5
m3

m2

m1

m4

MN

Figure 6.8: Single-link SRLG fault localization in a ring network from a single MN. Node

v0 is the MN.

Theorem 6.3.1. If a ring network has a single MN, it requires (|E|−1) m-trails to localize

single-link SRLG faults unambiguously from the MN.

Proof. It is also proved in [54] that a single-link SRLG fault can only be unambiguously

localized in two adjacent links of a degree-2 node if the node is either source or destination

of an m-trail. As each node of a ring network is a degree-2 node and the MN is the source

of every m-trail, each node except the MN has to be the destination node of an m-trail.

Thus, we need at least (n − 1) = (|E| − 1) m-trails as there are (n − 1) nodes except the

MN in a ring network.

126

Assume |M| = (n − 1) = (|E| − 1). If each m-trail traverses links in clockwise (or

anti-clockwise) direction from the MN, one link adjacent to the MN will not be traversed

by any m-trail. Thus, fault in the link cannot be localized. As a result, m-trails has to

traverse links in both clockwise and anti-clockwise directions.

Let node v0 be the MN. Assume that m-trails m1, . . . ,mn−2 are traversing links in

clockwise direction from the MN and a two-hop m-trail mn−1 is traversing links in anti-

clockwise direction as shown in Figure 6.8 in a ring network with six nodes. In case

of a solution set consisting of a multi-hop anti-clockwise m-trail, multiple anti-clockwise

m-trails, or any combination of them, the proof will be similar.

Let destination nodes of m-trails m1, . . . ,mn−3 be v1, . . . , vn−3, respectively. As each

node from v1 to vn−3 is a destination node of a clockwise m-trail, the links located clockwise

from the MN to node vn−3 will be traverse by a unique set of m-trails irrespective of any

common m-trails, if any, traversing the links [see proof of Theorem 6.2.1].

Now, we have to show that remaining three links (vn−3, vn−2), (vn−2, vn−1) and (vn−1, v0)

are also traversed by unique sets of m-trails.

As the destination node of two-hop m-trail mn−1 is vn−2, the destination node of m-

trail mn−2 has to be vn−1. Otherwise node vn−1 will not be a destination of any m-trail.

Hence, link (vn−2, vn−1) will be traversed by both the m-trails. Thus, the sets of m-

trails traversing links (vn−3, vn−2), (vn−2, vn−1) and (vn−1, v0) are ϕ(vn−3,vn−2) = {mn−2},
ϕ(vn−2,vn−1) = {mn−2,mn−1} and ϕ(vn−1,v0) = {mn−1}, respectively. Thus, the links will be

traversed by unique sets of m-trails.

Therefore, we need no more than (n − 1) = (|E| − 1) m-trails to localize single-link

SRLG faults in ring networks.

In this section, we are mainly interested in dual-link SRLG fault localization in all-
optical ring networks. If we deploy one set of m-trail in clockwise (anti-clockwise) direction
from the MN, the ring network will look like a linear network from the MN in the direction
for fault monitoring purposes. As per Corollary 6.2.4, the MN will localize the nearer faulty
link after any fault event considering clockwise (anti-clockwise) direction irrespective of
whether another link has failed or not. Thus, as per Corollary 6.2.2, we need two sets of
m-trails to localize dual-link SRLG faults in ring networks unambiguously: one in clockwise

127

and another in anti-clockwise directions from the MN. Each m-trail set will be responsible
for localizing only a single faulty link.

Let the nearer faulty link from the MN in clockwise direction be called the first faulty
link and the nearer faulty link from the MN in anti-clockwise direction be called the second
faulty link. The clockwise m-trail set will localize the first faulty link and the anti-clockwise
m-trail set will localize the second faulty link. Thus, fault in clockwise (anti-clockwise)
MN adjacent link will be localized unambiguously by the clockwise (anti-clockwise) m-trail
set. Hence, each set has to localize faults in (|E| − 1) links only.

Now, we propose a novel but simple method for dual-link SRLG fault localization in
all-optical ring networks in Algorithm 6.2 that is an application of the m-burst framework
in all-optical ring networks. As in all-optical mesh networks, the relevant problems of the
m-burst framework in all-optical ring networks are m-trail allocation, burst launching time
scheduling, and node switch fabric configuration scheduling problems. The problems will
be discussed in subsections 6.3.1, 6.3.2, and 6.3.3 in detail, respectively.

Algorithm 6.2: Dual-Link SRLG Fault Localization in Ring Networks
Input: G(V,E) and MN
Output: M, A, S, and T
begin

1 Derive by inspection the clockwise and anti-clockwise sets of m-trails from the MN in G. For
clockwise (anti-clockwise) set of m-trails, consider (|E| − 1) links that includes all links in G
except the anti-clockwise (clockwise) MN adjacent link as a linear network.

2 Assign all the m-trails in the sets to M and A.
3 Determine the burst launching times S from the MN along the m-trails.
4 Determine the fault localization latency T .

foreach node u ∈ V do
5 Determine node switch fabric configuration schedule based on the burst arrival and

departure times along the m-trails visiting node u.

6 Return M, A, S, and T .

The m-trail deployment scheme in a ring network with 6 nodes and 6 links is shown in
Figure 6.9. The clockwise set of m-trails is {m1, m2, m3, m4, m5} and the anti-clockwise
m-trails is {m1′ , m2′ , m3′ , m4′ , m5′}. Each set has 5 m-trails. The MN is the source node
of each m-trail.

Theorem 6.3.2. In a ring network, it requires |M| = 2(|E| − 1) m-trails to localize dual-

link SRLG faults unambiguously from a single MN.

128

v0

v1

v2

v3

v4

v5

m5
m5′

m4
m4′

m3
m3′

m2
m2′

m1
m1′

MN

Figure 6.9: Dual-link SRLG fault localization in a ring network from a single MN. Node

v0 is the MN.

Proof. Without losing generality, assume that node v0 is the MN. Let there be (|E| − 1)

m-trails in each set, clockwise or anti-clockwise, to localize a single fault in (|E| − 1) links,

and each node of the network except the MN be a destination node of an m-trail from each

m-trail set. Now, we have to consider three cases.

Case 1: let the first faulty link be any link except (vn−1, v0) and the second faulty link

be (vn−1, v0), which is the last link of the network considering links in clockwise direction

from the MN. From the fault localization perspective, the ring network has two segments

now. The clockwise segment includes all link except link (vn−1, v0) and the anti-clockwise

segment has only one link, i.e., (vn−1, v0). Thus, according to Corollary 6.2.2, the first

faulty link can be localized unambiguously by using the full set of clockwise m-trails and

the second faulty link can be localized by using the single hop anti-clockwise m-trail from

the MN.

Case 2: let the first faulty link be (v0, v1) and the second faulty link be any link except

link (v0, v1), which is the first link of the network considering links in clockwise direction

129

from the MN. We can prove that both the first and second faulty links can be localized

unambiguously using similar argument as in Case 1.

Case 3: the MN adjacent links, i.e., (v0, v1) and (vn−1, v0), are not faulty ones. In

this case, the set of clockwise m-trails traversing the first faulty link and beyond will be

disrupted. Thus, the MN will be able to localize only the first faulty link by using clockwise

m-trails as per Theorem 6.2.3. Similarly, the MN will be able to localize only the second

faulty link by using anti-clockwise m-trails.

Thus, we need no more than |M| = 2(|E| − 1) m-trails to localize dual-link faults

unambiguously from the MN.

Now, if either m-trail set has less than |E| − 1 m-trails, one or more nodes will not be

a desitnation node of any m-trail from that set. As a result, faults in the adjacent links

of those nodes cannot be localized unambigiously from the MN by using the m-trail set.

Thus, each m-trail set must have at least |E| − 1 m-trails.

6.3.1 M-Trail Allocation in Ring Networks

From the perspectives of clockwise or anti-clockwise set of m-trails, a ring network with
|E| links is a linear network with |E| links spread out clockwise or anti-clockwise from the
MN, respectively. As stated earlier, any fault in the last link considering the links clockwise
from the MN will be localized only by the anti-clockwise m-trails and vice versa. Thus,
each m-trail set will be responsible for fault localization in first |E| − 1 links of the ring
network. As in linear networks, there will be |E|− 1 unique m-trails in each set of m-trails
in ring networks because each node except the MN, i.e., n − 1 = |E| − 1 nodes, can be a
destination node of only a single m-trail in the set. Refer to Theorem 6.2.6.

As |E| − 1 m-trails are required to localize single-link faults unambiguously by the
clockwise (anti-clockwise) m-trails and there are |E| − 1 unique clockwise (anti-clockwise)
m-trails in ring networks, we can enumerate m-trails in M by inspection as described in
Algorithm 6.3.

Example: Now, let us derive the sets of clockwise and anti-clockwise m-trails by in-
spection for a ring network with 4 nodes and 4 links, where the nodes of the network are
numbered from v0 to v3 consecutively, and node v0 is the MN. There are 6 m-trails: 3 in
each set. M = {m1,m2,m3,m1′ ,m2′ ,m3′}. The destination nodes of the clockwise m-trails

130

Algorithm 6.3: M-Trail Allocation in Ring Networks
Input: G(V,E) and MN
Output: M and A
begin

1 Initialize M, A← φ
foreach node vj ∈ V \MN do

2 Form m-trail mj using two unidirectional links, one in each direction, from each
undirected link on the clockwise route from the MN to node vj .

3 M, A← mj

4 Form m-trail mj′
using two unidirectional links, one in each direction, from each

undirected link on the anti-clockwise route from the MN to node vj .
5 M, A← mj′

6 Return M and A.

m1, m2, and m3 are nodes v1, v2, and v3, respectively. The destination nodes of the anti-
clockwise m-trails m1′ , m2′ , and m3′ are nodes v1, v2, and v3, respectively. For instance, m1

will traverse unidirectional links (v0, v1) and (v1, v0), and m1′ will traverse unidirectional
links (v0, v3), (v3, v2), (v2, v1), (v1, v2), (v2, v3), (v3, v0). Table 6.3 shows ACT constructed
from 6 m-trails found by inspection in the ring network. The decimal alarm codes (Dec.)
of the single-link and dual-link SRLGs derived from the m-trails are unique. Thus, the
sets of m-trails will be able to localize single-link and dual-link SRLG faults in the ring
network.

Table 6.3: ACT for Dual-Link SRLG Fault Localization in a Ring Network with 4 Links

SRLG m1′
m2′

m3′
m3 m2 m1 Dec.

(v0, v1) 0 0 0 1 1 1 7
(v1, v2) 1 0 0 1 1 0 38
(v2, v3) 1 1 0 1 0 0 52
(v3, v0) 1 1 1 0 0 0 56
(v0, v1)(v1, v2) 1 0 0 1 1 1 39
(v0, v1)(v2, v3) 1 1 0 1 1 1 55
(v0, v1)(v3, v0) 1 1 1 1 1 1 63
(v1, v2)(v2, v3) 1 1 0 1 1 0 54
(v1, v2)(v3, v0) 1 1 1 1 1 0 62
(v2, v3)(v3, v0) 1 1 1 1 0 0 60

131

6.3.2 M-Burst Launching Time Scheduling in Ring Networks

Theorem 6.3.3. The lower bound of the fault localization latency T to localize dual-link

SRLG faults from a single MN in a ring network is 2δ(|E| − 1) + L.

Proof. The lower bound can be achieved only when L ≤ δ. Bursts are launched from the

MN along the clockwise and anti-clockwise m-trails independently. The bursts along each

set of m-trails are launched in descending order of the lengths of the m-trails in the set;

moreover, each burst is delayed exactly by δ ms from the launching time of its predecessor

burst. In the beginning of a monitoring period, two bursts along the longest clockwise and

anti-clockwise m-trails are launched.

Consequently, each burst reaches its destination node, starts reversing traversal direc-

tion and reaches its next node in the reverse direction at the same time. Hence, there will

be no collision. Figure 6.10a depicts the moment when all clockwise and anti-clockwise

bursts reach their destination nodes and Figure 6.10b depicts the moment when all clock-

wise and anti-clockwise bursts reach next nodes from their destination nodes toward the

MN.

As the longest m-trail of each set has the same length, the last bursts along the clockwise

and anti-clockwise m-trails will return to the MN at the same moment. Therefore, the fault

localization latency T will be equal to the burst traversal time along the longest m-trails.

In other words, T = sl + tpl +L = sl
′
+ tpl

′
+L = 0 + δ · 2(|E| − 1) +L = 2δ(|E| − 1) +L.

As the fault localization latency has to be greater than or equal to the burst traversal

time along the longest m-trail, T cannot be less than 2δ(|E| − 1) + L. .

Theorem 6.3.4. The upper bound of the fault localization latency T to localize dual-link

SRLG faults from a single MN in a ring network is (2δ + L)(|E| − 1) + δ(|E| − 2).

Proof. The upper bound of the fault localization latency occurs when L > δ(|E| − 2).

There will be no interleaving of bursts along clockwise and anti-clockwise m-trails in any

undirected link.

132

v0 v1 v2 v3 v4 v5 v0

β1 β2 β3 β4 β5

β1′
β2′

β3′
β4′

β5′

MN
MN

(a) at t5δ.

v0 v1 v2 v3 v4 v5 v0

β1′
β2′

β3′
β4′

β5′

β1 β2 β3 β4 β5

MN
MN

(b) at t6δ.

Figure 6.10: Burst traversal in a ring network to localize dual-link SRLG faults from a

single MN. Node v0 is the MN. Burst βj (blue) traverses the links along clockwise m-trail

mj and burst βj
′

(green) traverses the links along anti-clockwise m-trail mj′ . L = δ.

Bursts along each set of m-trails can be launched either ascending or descending order

of the lengths of m-trails in the set with the same delay (2δ+L)(|E|−1). Refer to Theorem

6.2.8. Now, we have three options of burst selection: both sets of bursts in ascending order

of the lengths of the corresponding m-trails, both sets of bursts in descending order of the

lengths of the corresponding m-trails, or one set of bursts in ascending order and other set

of bursts in descending order of the lengths of the corresponding m-trails.

If bursts along both the m-trail sets are launched in ascending order of the lengths of

the corresponding m-trails, the bursts from two sets can be launched in parallel until the

destination node of two bursts (one from each set) is the middle node of the network. Then

bursts along one m-trail set cannot be launched until bursts along other m-trail set almost

finished link traversal. Thus, the fault localization latency will be almost one and a half

times of the delay (2δ + L)(|E| − 1) incurred by either set of bursts alone.

If bursts along both the m-trail sets are launched in descending order of the lengths of

the corresponding m-trails, the burst along the shortest m-trail in the first m-trail set and

the bursts along the longest m-trail of the second m-trail set can reach their common node

133

at the same time. As a result, the first burst along the second m-trail set can be launched

only after the bursts along the first m-trail set almost finished link traversal. Thus, the

fault localization latency will be almost double of the delay (2δ + L)(|E| − 1) incurred by

either set of bursts alone.

If bursts along one m-trail set are launched in ascending order and bursts along other m-

trail set are launched in descending order of the lengths of the corresponding m-trails, each

pair of bursts (one from each set) can reach their common destination node at the same

time. Without losing generality, assume that clockwise bursts are launched in descending

order of the lengths of the corresponding m-trails. Launching of each subsequent clockwise

burst has to be delayed by 2δ+L from launching of its predecessor clockwise burst to avoid

collision among the clockwise bursts while they are returning to the MN. When a burst

reaches its destination node, all the bursts along longer m-trails, if any, will have passed

through the node completely while they are returning to the MN.

As an anti-clockwise burst can reach up to the destination node of the clockwise burst

along the longest m-trail currently traversing links, the anti-clockwise bursts are launched

back-to-back on ascending order of the lengths of the corresponding m-trails. In addition,

the anti-clockwise burst along the shortest anti-clockwise m-trail is launched after appro-

priate delay in such way that the shortest anti-clockwise burst and the clockwise burst

along the longest clockwise m-trail reach their common destination node at the same time.

Consequently, each pair of clockwise and anti-clockwise bursts reaches their common des-

tination node at the same time as shown in Figure 6.11. The clockwise and anti-clockwise

bursts remain separated in time and space.

Again, without losing generality, let the burst along the longest clockwise m-trail be

launched in the beginning of each monitoring period. Thus, the maximum fault localization

latency of the bursts along the clockwise m-trails will be sl + tpl +L = [0 + (2δ+L)(|E| −
2)] + 2δ + L = (2δ + L)(|E| − 1).

The delay between launching bursts along the longest clockwise and the shortest anti-

clockwise m-trails should be δ(|E|−1)−δ = δ(|E|−2) such that both the bursts reach their

common destination node vn−1 at the same time. Hence, the maximum fault localization

latency of the bursts along the anti-clockwise m-trails will be sl
′
+ tpl

′
+L = [δ(|E| − 2) +

134

L(|E| − 2)] + 2δ(|E| − 1) + L = (2δ + L)(|E| − 1) + δ(|E| − 2).

Thus, the upper bound of the fault localization latency T is (2δ+L)(|E|− 1) + δ(|E|−
2).

v0 v1 v2 v3 v4 v5 v0

β5

β5′

MN
MN

(a) at t5δ.

v0 v1 v2 v3 v4 v5 v0

β4 β5′

β4′
β5

MN
MN

(b) at t5δ + L.

v0 v1 v2 v3 v4 v5 v0

β4

β5 β4′

MN
MN

(c) at t6δ + L.

Figure 6.11: Burst traversal in a ring network to localize dual-link SRLG faults from a

single MN. Node v0 is the MN. Burst βj (blue) traverses the links along clockwise m-trail

mj and burst βj
′
(green) traverses the links along anti-clockwise m-trail mj′ . L ≥ δ(|E|−1).

6.3.3 Node Switch Fabric Configuration Scheduling in Ring

Networks

In the m-burst framework for ring networks, two dedicated wavelength channels (WLs)
per undirected link are assigned for monitoring. One WL is for each direction. The

135

MN connects WLs to and from its clockwise adjacent node to the monitor for clockwise
m-trails. The MN also connects WLs to and from its anti-clockwise adjacent node to
the monitor for anti-clockwise m-trails. These connections will not be changed. We will
consider L > δ(|E| − 2). Hence, T = (2δ + L)(|E| − 1) + δ(|E| − 2).

Assume that at t = 0 the first burst launched is the burst along the longest clockwise
m-trail. The burst along the shortest anti-clockwise m-trail is launched in such a way that
these two bursts reach their common destination node at the same moment. Subsequent
bursts along clockwise m-trails are launched in the descending order of the lengths of the
corresponding m-trails. On the other hand, subsequent bursts along anti-clockwise m-trails
are launched in the ascending order of the lengths of the corresponding m-trails.

∀i: 0 < i < n, in the beginning of monitoring, i.e. at t = 0, intermediate node vi
connects the WL from node vi−1 with the WL to node vi+1 and vice versa as shown in
Figure 6.12a. Note that node vn and node v0 is the same node.

vi−1 vi vi+1

(a) at t = 0.

vi−1 vi vi+1

(b) at t = (2δ + L)(|E| − 1− i) + δi+ kT .

vi−1 vi vi+1

(c) at t = (2δ + L)(|E| − 1− i) + δi+ L+ kT .

Figure 6.12: Configuration of node switch fabric of intermediate node vi for dual-link SRLG

fault localization from a single MN in ring networks. Node v0 is the MN.

At t = (2δ+L)(|E|− 1− i) + δi+kT where k = 0, 1, . . ., intermediate node vi connects
two WLs from and to node vi−1 and two WLs from and to node vi+1 as shown in Figure
6.12b. At t = (2δ + L)(|E| − 1 − i) + δi + L + kT , intermediate node vi connects the
WL from node vi−1 with the WL to node vi+1 and vice versa as shown in Figure 6.12c.

136

The configuration of the node switch fabric will be changed periodically between the states
shown in Figure 6.12b and Figure 6.12c.

6.3.4 Numerical Results

Numerical experiments are conducted in ring networks with 3 to 12 links. Two sets of
m-trails, clockwise and anti-clockwise, are derived in each network by inspection for single-
link and dual-link SRLG fault localization. Then, the burst starting times from the MN
along the m-trails are scheduled using the heuristic Algorithm 4.2, given in Chapter 4.
The burst propagation delay δ through a unidirectional link is 2 ms. The burst length L
is varied from 1 ms to 32 ms in 7 steps. The expected and real fault localization latencies
according to the burst lengths in each network are shown in columns E and A of Table 6.4,
respectively. The actual fault localization latencies are consistent with the theoretically
expected values.

Table 6.4: Fault Localization Latency T (ms) in Ring Networks

of L = 1 ms L = 2 ms L = 4 ms L = 8 ms L = 16 ms L = 20 ms L = 32 ms
Links E A E A E A E A E A E A E A
3 9 9 10 10 18 18 26 26 42 42 50 50 74 74
4 13 13 14 14 ≤ 28 20 40 40 64 64 76 76 112 112
5 17 17 18 18 ≤ 38 30 54 54 86 86 102 102 150 150
6 21 21 22 22 ≤ 48 32 ≤ 68 60 108 108 128 128 188 188
7 25 25 26 26 ≤ 58 42 ≤ 82 66 130 130 154 154 226 226
8 29 29 30 30 ≤ 68 44 ≤ 96 80 152 152 180 180 264 264
9 33 33 34 34 ≤ 78 54 ≤ 110 90 174 174 206 206 302 302
10 37 37 38 40 ≤ 88 56 ≤ 124 100 ≤ 196 188 232 232 340 340
11 41 41 42 44 ≤ 98 66 ≤ 138 106 ≤ 218 202 258 258 378 378
12 45 45 46 48 ≤ 108 68 ≤ 152 120 ≤ 240 218 ≤ 284 276 416 416

If any actual latency in a ring network with |E| links is either upper or lower boundary
value, the value in Table 6.4 can be calculated from the corresponding value in a linear
network with (|E| − 1) links in Table 6.2 and vice versa.

137

6.4 Dual-Link SRLG Fault Localization in Mesh

Networks

In this section, we shall deal with dual-link SRLG fault localization in at least 2-connected
all-optical mesh networks. We have shown in Section 6.3 that dual-link SRLG faults can
be localized in all-optical ring networks using the sets of clockwise and anti-clockwise m-
trails from a single MN. The nearer faulty link from the MN in clockwise direction is called
the first faulty link and the nearer faulty link from the MN in anti-clockwise direction is
called the second faulty link. The clockwise and anti-clockwise sets of m-trails will localize
the first and the second faulty links, respectively. Faulty clockwise (anti-clockwise) MN
adjacent link will be localized by only the clockwise (anti-clockwise) m-trail set. If a single-
link that is not an MN adjacent link becomes faulty, both the m-trail sets will localize the
faulty link.

Now, we can derive a set of cycles C in a mesh network such that each undirected link
of the network is traversed by at least one cycle in C. Note that in a 2-connected network,
a pair of link-disjoint paths exists between each pair of nodes as per Menger theorem [3].
Thus, for each undirected link, we can derive a cycle that traverse the link and the MN.
The set of cycle is known as cycle cover.

In addition, each cycle in C can be viewed as an independent virtual ring network for
fault monitoring purposes only. A virtual ring network can be realized using a separate
pair of WLs (one WL in each direction) in each undirected link traversed by a particular
cycle cj ∈ C. The clockwise and anti-clockwise m-trails derived in the virtual ring network
are called nested m-trails.

Theorem 6.4.1. If each undirected link of an all-optical mesh network is traversed by at

least one cycle in cycle cover C, dual-link SRLG faults can be localized unambiguously from

the MN by using the sets of nested m-trails.

Proof. Each link of the network will be traversed by at least one cycle in C and each cycle

in C is considered as an independent virtual ring network. For a failure event that involves

two undirected links (u, v) and (w, x), we have to consider two cases only.

Case 1: assume that both faulty links are traversed by only a single cycle in C, i.e., the

faulty links (u, v) and (w, x) are traversed by a cycle cj ∈ C . Let (u, v) and (w, x) be the

first and the second faulty links of cj, respectively. In this case, the first and the second

138

faulty links will be localized by the clockwise and anti-clockwise nested m-trail sets of cj,

respectively.

Case 2: assume that each faulty link is traversed by only a single cycle in C, i.e., the

faulty links (u, v) and (w, x) are traversed by two cycles ci and cj, respectively. Now, (u, v)

is the single faulty link in ci. Thus, (u, v) will be localized as a faulty link by the clockwise,

the anti-clockwise, or both nested m-trail sets of ci. Similarly, (w, x) is the single faulty link

in cj. Thus, (w, x) will be localized as a faulty link by the clockwise, the anti-clockwise, or

both nested m-trail sets of cj.

In other cases such as multiple cycles traversing the pair of faulty links or multiple cycles

traversing each faulty link but not both, the faulty links will be localized unambiguously

by the sets of nested m-trails of the respective cycles.

Theorem 6.4.2. If the sets of nested m-trails are used to localize dual-link SRLG faults,

the fault localization latency T is determined by the number of links in the largest cycle in

C, i.e., by |cj|max.

Proof. As each cycle in C is allocated a pair of WLs in each undirected link traversed

by the cycle, the cycles in C will act like independent virtual ring networks during burst

traversal along nested m-trails. Thus, burst scheduling along the sets of clockwise and

anti-clockwise nested m-trails belong to cycle cj ∈ C can be done independent of the burst

scheduling along the nested m-trails belong to any cycle ci ∈ C\cj.

If we consider cj as a virtual ring network, the upper bound of the fault localization

latency T j in cycle cj will be (2δ +L)(|cj| − 1) + δ(|cj| − 2) as per Theorem 6.3.4, where δ

is the burst propagation delay in ms through any unidirectional link of the network and L

is the burst length in ms. In other words, the upper bound of the fault localization latency

in cycle cj is determined by the number of undirected links traversed by the cycle.

Assume that the first burst in each cycle is launched at the same time in each monitoring

period. Thus, the maximum fault localization latency T in the mesh network will be

determine by the largest cycle in C, i.e., by |cj|max.

Now, we propose a novel approach called nested m-trail method in Algorithm 6.4, which
is self-explanatory, for dual-link SRLG fault localization in all-optical mesh networks. The

139

method is based on the combination of the cycle cover of mesh networks [64][72] and the
m-trail [63] methodologies.

The nested m-trails will be deployed in the m-burst framework. However, instead of
using one WL in each unidirectional link (u, v) if any m-trail traverses the link as per the
original m-burst framework, we have to provide a pair of WLs in each undirected link (u, v)
for each cycle cj ∈ C that is traversing the undirected link in the nested m-trail method.

Moreover, the number of monitors is not determined by the nodal degree of the MN as
per the original m-burst framework. The number of monitors is determined by the number
of cycles in the set to cover a mesh network. Specifically, the number of monitors required
by the nested m-trail method is equal to 2 ∗ |C| for dual-link SRLG fault localization in
all-optical mesh network.

Algorithm 6.4: Nested M-Trail Method for Dual-link SRLG Fault Localization
Input: G(V,E) and MN
Output: C, M,A, S, and T
begin

1 Derive a set of cycles C in mesh network G such that each cycle traverses the MN, and each
link of the network is traversed by at least one cycle in C.
foreach cycle cj ∈ C do

2 Derive by inspection the sets of clockwise and anti-clockwise nested m-trails in cycle cj by
considering cj as a virtual ring network. The MN has to be the source node of all nested
m-trails.
Assign the nested m-trails to M and A.

3 Determine independently the burst launching times Sj from the MN along the nested
m-trails in cycle cj .
Assign the burst launching times in Sj to S.
foreach node u ∈ V : cycle cj visits node u do

4 Determine the burst arrival times to u and departure times from u along the nested
m-trails of cycle cj .

5 Determine fault localization latency T from the number of links in the largest cycle, i.e.,
|cj |max.
foreach node u ∈ V do

6 Determine node switch fabric configuration schedule based on the burst arrival and
departure times along the nested m-trails of each cycle visiting node u.

7 Return C, M,A, S, and T .

Once the cycle cover C is derived in a mesh network, we shall take the nested m-trail
sets of each cycle cj ∈ C, the burst launching times from the MN of the nested m-trail sets
of cj, and the schedule of periodic node switch fabric configuration of each node visited

140

by cj from the results derived in Section 6.3 for the ring network having the same length
of cj. However, the following examples will show how we can derive relevant results by
inspection.

6.4.1 M-Trail Allocation for Dual-Link Fault Localization

M-trail allocation problem in nested m-trail method has two steps: finding cycle cover of
the mesh network and deriving nested m-trails from each cycle in the cycle cover set.

Example: Figure 6.13 shows a cycle cover set C = {c0, c1, c2} of the network with 4
nodes and 6 links. Now, each cycle in C is considered as an independent virtual ring
network for fault monitoring purposes only.

The sets of clockwise and anti-clockwise nested m-trails {m01,m02} and {m02′ ,m01′},
respectively, can be derived by inspection from cycle c0. The nested m-trails m01 and
m02 traverse unidirectional links (v0, v1) and (v1, v0), and (v0, v1), (v1, v2), (v2, v1) and
(v1, v0), respectively. The nested m-trails m02′ and m01′ traverse unidirectional links (v0, v2)
and (v2, v0), and (v0, v2), (v2, v1), (v1, v2) and (v2, v0), respectively. Similarly, the sets
of clockwise and anti-clockwise nested m-trails {m12,m13} and {m13′ ,m12′}, respectively,
can be derived from cycle c1 and the sets of clockwise and anti-clockwise nested m-trails
{m23,m21} and {m21′ ,m23′}, respectively, can be derived from cycle c2.

v0

v1

v2v3

MN

c0

c1

c2

Figure 6.13: Cycle cover for dual-link SRLG fault localization in a mesh network.

The ACT of the network using the sets of nested m-trails of the cycles in C is given in
Table 6.5. The set of SRLGs consists of every single-link and all combination of two links
in the network. The decimal alarm code (Dec.) of each SRLG is unique.

141

Table 6.5: ACT for Dual-Link SRLG Fault Localization in a Mesh Network with 4 Nodes

and 6 Links

SRLGs m
2
3
′

m
2
1
′

m
2
1

m
2
3

m
1
2
′

m
1
3
′

m
1
3

m
1
2

m
0
1
′

m
0
2
′

m
0
2

m
0
1

Dec.
(0, 1) 1 1 0 0 0 0 0 0 0 0 1 1 3075
(0, 2) 0 0 0 0 0 0 1 1 1 1 0 0 60
(0, 3) 0 0 1 1 1 1 0 0 0 0 0 0 960
(1, 2) 0 0 0 0 0 0 0 0 1 0 1 0 10
(1, 3) 1 0 1 0 0 0 0 0 0 0 0 0 2560
(2, 3) 0 0 0 0 1 0 1 0 0 0 0 0 160
(0, 1)(0, 2) 1 1 0 0 0 0 1 1 1 1 1 1 3135
(0, 1)(0, 3) 1 1 1 1 1 1 0 0 0 0 1 1 4035
(0, 1)(1, 2) 1 1 0 0 0 0 0 0 1 0 1 1 3083
(0, 1)(1, 3) 1 1 1 0 0 0 0 0 0 0 1 1 3587
(0, 1)(2, 3) 1 1 0 0 1 0 1 0 0 0 1 1 3235
(0, 2)(0, 3) 0 0 1 1 1 1 1 1 1 1 0 0 1020
(0, 2)(1, 2) 0 0 0 0 0 0 1 1 1 1 1 0 62
(0, 2)(1, 3) 1 0 1 0 0 0 1 1 1 1 0 0 2620
(0, 2)(2, 3) 0 0 0 0 1 0 1 1 1 1 0 0 188
(0, 3)(1, 2) 0 0 1 1 1 1 0 0 1 0 1 0 970
(0, 3)(1, 3) 1 0 1 1 1 1 0 0 0 0 0 0 3008
(0, 3)(2, 3) 0 0 1 1 1 1 1 0 0 0 0 0 992
(1, 2)(1, 3) 1 0 1 0 0 0 0 0 1 0 1 0 2570
(1, 2)(2, 3) 0 0 0 0 1 0 1 0 1 0 1 0 170
(1, 3)(2, 3) 1 0 1 0 1 0 1 0 0 0 0 0 2720

6.4.2 M-Burst Launching Time Scheduling

As each cycle of the cycle cover set C will be treated as an independent virtual ring network
for fault monitoring purposes in the nested m-trail method, the burst scheduling can be
done using the same technique as done in ring networks.

Example: Now consider c0 in Figure 6.13 as an independent virtual ring network. The
bursts along the clockwise nested m-trails of c0 will be launched from the MN in descending
order of the lengths of the corresponding nested m-trails and bursts along the anti-clockwise
nested m-trails of c0 will be launched from the MN in ascending order of the lengths of the
corresponding nested m-trails. Moreover, each pair of clockwise and anti-clockwise bursts

142

of c0 having common destination node will reach the node at the same moment.

Burst β02 along clockwise nested m-trail m02 will be launched in the beginning of each
monitoring period, i.e., s02 = 0. If burst β02′ along anti-clockwise nested m-trail m02′ is
launched at δ, i.e., s02′ = δ, bursts β02 and β02′ will reach their common destination node
v2 at the same moment. To avoid collision with burst β02, burst β01 along clockwise nested
m-trail m01 will be launched after 2δ + L ms, i.e., s01 = 2δ + L, but burst β01′ along
anti-clockwise nested m-trail m01′ can be launched immediately after burst β02′ avoiding
collision, i.e., s01′ = δ+L. Hence, bursts β01 and β01′ will reach their common destination
node v1 at the same moment.

Similarly, we can find burst launching times of the nested m-trails of cycles c1 and c2

by inspection.

The first burst in every cycle will be launched in the beginning of each monitoring
period simultaneously; this is possible because each cycle will be formed by using a pair of
WLs in each undirected link visited by the cycle. Thus, the fault localization latency T will
be determine by the largest cycle in the cycle cover set C. In this example, |cj|max = 3. If
δ = 2 ms and L = 20 ms, L > δ(|cj|−2). Thus, T = (2δ+L)(|cj|max−1)+δ(|cj|max−2) = 50
ms.

6.4.3 Node Switch Fabric Configuration Scheduling

Configuration of switch fabrics of the nodes traversed by each cycle in C will be done
independently. The MN connects clockwise and anti-clockwise monitors with the WLs of
the cycle in clockwise and anti-clockwise adjacent links, respectively. These connections
will not be changed. Each node except the MN visited by the cycle will change its switch
fabric configuration two times during each monitoring period: when the pair of bursts
having the node as the common destination reaches the node, and after the pair of bursts
leaves the node completely.

Example: Again, consider c0 in Figure 6.13 as an independent virtual ring network.
Cycle c0 visits nodes v0, v1, and v2. Node v0 is the MN. The MN connects the incoming
and outging WLs from and to undirected link (v0, v1) of c0 to the cycle’s clockwise monitor.
The MN also connects the incoming and ougoing WLs from and to undirected link (v0, v2)
of c0 to the cycle’s anti-clockwise monitor. In the beginning of monitoring, both nodes v1

and v2 connect each incoming WL of c0 from one adjacent node to the outgoing WL of c0

to another adjacent node.

143

At 2δ + kT ms, where T is the fault localization latency and k = 0, 1, . . ., node v2

connects the incoming and outgoing WLs of c0 from and to node v0 as well as the incoming
and outgoing WLs of c0 from and to node v1. Thus, bursts β02 and β02′ will be able to
traverse node v2 without collision. At 2δ+L+ kT ms, node v2 connects the incoming WL
of c0 from node v0 to the outgoing WL of c0 to node v1 and vice versa.

At 3δ + L + kT ms, node v1 connects the incoming and outgoing WLs of c0 from and
to node v0 as well as the incoming and outgoing WLs of c0 from and to node v2. Thus,
bursts β01 and β01′ will be able to traverse node v1 without collision. At 3δ+ 2L+ kT ms,
node v1 connects the incoming WL of c0 from node v0 to the outgoing WL of c0 to node
v2 and vice versa.

Similarly, we can find the schedule for periodic change of the node switch fabric con-
figuration of each node visited by cycles c1 and c2 by inspection.

6.5 Multi-Link SRLG Fault Localization in Mesh

Networks

We have proposed the DMCF method in Section 5.3. The multi-link SRLG fault localiza-
tion method is based on disjoint paths. In all-optical (d + 1)-connected mesh networks,
faulty multi-link SRLG with up to d links can be localized from a single MN if each undi-
rected link is traversed by at least (d + 1) m-trails that are disjoint in other links of the
network.

In Section 6.4, we propose the nested m-trail method in Algorithm 6.4 for dual-link
SRLG fault localization in all-optical 2-connected mesh networks using cycle cover, where
each link is traversed by at least one cycle.

In this section, we extend nested m-trail method for multi-link SRLG fault localization
in all-optical mesh networks, where any SRLG can have up to d links. We shall show that
d link-disjoint paths are needed for each undirected link to localize faulty multi-link SRLG
with up to d links. As there are at least d link-disjoint paths from the MN to each node
in a d-connected network as per Menger theorem [3], the nested m-trail method can be
deployed in d-connected networks to localize d faulty links. Note that in nested m-trail
method, a cycle that traverses the MN and a particular link can be viewed as 2 link-disjoint
paths from the MN to the link.

144

Theorem 6.5.1. If d is even and each undirected link is traversed by at least d
2

cycles that

are disjoint in other links and visit the MN, faulty SRLG up to d links can be localized

unambiguously from the MN using the nested m-trails.

Proof. ∀(u, v) ∈ E: (u, v) is a faulty link. As maximum number of faulty link is d, there

will be at most (d− 1) other faulty links that can disrupt the cycles traversing (u, v).

As each link is traversed by at least d
2

cycles that are disjoint in other links, (u, v) has

at least d disjoint paths to the MN. Now, the other (d − 1) faulty links can disrupt only

(d− 1) paths to the MN. Thus, (u, v) will have at least one uninterrupted path to the MN

during the fault event. Hence, (u, v) will be the first, the second, or the single faulty link

of at least one cycle. As a result, (u, v) will be identified unambiguously as faulty link from

the MN using the nested m-trails of the cycle.

Corollary 6.5.2. If d is odd and each undirected link is traversed by at least one trail and

bd
2
c cycles that are disjoint in other links and visit the MN, faulty SRLG up to d links can

be localized unambiguously from the MN using the nested m-trails.

Theorem 6.5.3. If the sets of nested m-trails in virtual ring networks are used to localize

multi-link SRLG faults, the fault localization latency T is determined by the number of links

in the largest cycle in C, i.e., by |cj|max.

Proof. Since each virtual ring network is considered as an independent network, the proof

of this theorem is the same as the proof of Theorem 6.4.2.

Corollary 6.5.4. If the sets of nested m-trails in virtual ring or linear networks are used

to localize multi-link SRLG faults, the fault localization latency T is determined by the

number of links either in the largest cycle or in the largest trail of C, i.e., by |cj|max or

|tj|max.

Next, we propose the nested m-trail method for multi-link SRLG fault localization in
all-optical mesh networks in Algorithm 6.5, which is self-explanatory. The method is also
based on the combination of the cycle cover of mesh networks [64][72] and the m-trail [63]
methodologies. Algorithm 6.5 is a logical extension of Algorithm 6.4.

145

Algorithm 6.5: Nested M-Trail Method for Multi-Link SRLG Fault Localization
Input: G(V,E), MN, and d
Output: C, M,A, S, and T
begin

1 Derive a set of cycles/trails C in mesh network G such that each undirected link is traversed
by at least d

2 cycles if d is even, or by at least bd
2c cycles and one trail if d is odd, where the

trail (if any) and the cycles are mutually disjoint in other links.
Each cycle/trail in C must traverse the MN.
foreach cycle cj ∈ C do

2 Derive by inspection the sets of clockwise and anti-clockwise nested m-trails in cycle cj by
considering cj as a virtual ring network. The MN has to be the source node of all nested
m-trails.
Assign the nested m-trails to M and A.

3 Determine independently the burst launching times Sj from the MN along the nested
m-trails in cycle cj .
Assign the burst launching times in Sj to S.
foreach node u ∈ V : cycle cj visits node u do

4 Determine the burst arrival times to u and departure times from u along the nested
m-trails of cycle cj .

foreach trail tj ∈ C do
5 Derive by inspection the set of nested m-trails in trail tj by consider tj as a virtual linear

network. The MN has to be the source node of all nested m-trails.
Assign the nested m-trails to M and A.

6 Determine independently the burst launching times Sj from the MN along the nested
m-trails in trail tj .
Assign the burst launching times in Sj to S.
foreach node u ∈ V : trail tj visits node u do

7 Determine the burst arrival times to u and departure times from u along the nested
m-trails of trail tj .

8 Determine fault localization latency T from the number of links in the largest cycle/trail, i.e.,
from |cj |max or |tj |max.
foreach node u ∈ V do

9 Determine node switch fabric configuration schedule based on the burst arrival and
departure times along the nested m-trails of each cycle/trail visiting node u.

10 Return C, M,A, S, and T .

As in dual-link SRLG fault localization, the nested m-trails will be deployed in the
m-burst framework. Similarly, instead of using one WL in each unidirectional link (u, v) if
any m-trail traverses the link as per the original m-burst framework, we have to provide
a pair of WLs in each undirected link (u, v) for each cycle ci or each trail tj in C that is

146

traversing the undirected link.

The number of monitors is determined by the number of cycles and trails in C. Specifi-
cally, the number of monitors is equal to

(
2 ∗ |C\t|+ |C\c|

)
, where c and t are the subsets

of all cycles and all trails in C, respectively.

Again, we shall take the nested m-trail sets of each cycle cj ∈ C, the burst launching
times from the MN of the nested m-trail sets of cj, and the schedule of periodic node switch
fabric configuration of each node visited by cj from the results derived in Section 6.3 for
the ring network having the same length of cj. Similarly, for each trail tj ∈ C, we shall
take the abovementioned results derived in Section 6.2 for the linear network having the
same length of tj. However, the following examples will show how we can derive relevant
results by inspection.

6.5.1 M-Trail Allocation for Multi-Link Fault Localization

As in dual-link SRLG fault localization, the first step to solve m-trail allocation problem
in the nested m-trail method for multi-link SRLG fault localization is to find a set of
cycles/trails C such that each undirected link of the network is traversed by at least d

2

cycles that are disjoint in other links if d is even. If d is odd, each undirected link of the
network has to be traversed by at least bd

2
c cycles and one trail that are also disjoint in

other links. As stated earlier, a cycle is equivalent to two trails during disjoint cycle/trail
enumeration. The second step is also similar to that of dual-link SRLG fault localization:
each cycle and trail in C is considered as a virtual ring and linear network, respectively,
and nested m-trails are derived in the cycle and trail.

The following two examples will explain the process of finding the sets of nested m-trails
by inspection from each cycle/trail in C.

SRLG up to d = 4 links Figure 6.14 shows a set of cycles C = {c0, c1, c2, c3} that covers
the network with 5 nodes and 8 links to localize single-link and multi-link SRLG faults.
Each multi-link SRLG can have up to four links of the network that are disjoint from the
MN, i.e., d = 4. Each MN adjacent undirected link is traversed by at least one cycle. Each
undirected link of the network that is disjoint from the MN is traversed by d

2
= 2 cycles

that are disjoint in other links.

Now, each cycle cj ∈ C is considered as an independent ring network for fault monitor-
ing purposes only. The sets of clockwise and anti-clockwise nested m-trails {m04,m01,m02}

147

and {m02′ ,m01′ ,m04′}, respectively, can be derived by inspection from cycle c0. Nested m-
trail m04 traverses unidirectional links (v0, v4) and (v4, v0), nested m-trail m01 traverses
unidirectional links (v0, v4), (v4, v1), (v1, v4) and (v4, v0), and nested m-trail m02 traverses
unidirectional links (v0, v4), (v4, v1), (v1, v2), (v2, v1), (v1, v4), and (v4, v0). Nested m-trail
m02′ traverses unidirectional links (v0, v2) and (v2, v0), nested m-trail m01′ traverses uni-
directional links (v0, v2), (v2, v1), (v1, v2) and (v2, v0), and nested m-trail m04 traverses
unidirectional links (v0, v2), (v2, v1), (v1, v4), (v4, v1), (v1, v2), and (v2, v0).

Similarly, the sets of clockwise and anti-clockwise nested m-trails {m11,m12,m13} and
{m13′ ,m12′ ,m11′}, respectively, can be derived from cycle c1, the sets of clockwise and
anti-clockwise nested m-trails {m22,m23,m24} and {m24′ ,m23′ ,m22′}, respectively, can
be derived from cycle c2, and the sets of clockwise and anti-clockwise nested m-trails
{m33,m34,m31} and {m31′ ,m34′ ,m33′}, respectively, can be derived from cycle c3.

v0

v1

v2v3

v4

MN

c0

c1

c2

c3

Figure 6.14: Cycle cover for multi-link SRLG fault localization in a mesh network, where

d = 4.

The ACT of the network using the sets of nested m-trails derived from each cycle
cj ∈ C is given in Table 6.6. The set of SRLGs consists of single-link and multi-link
SRLGs. Each multi-link SRLG are disjoint from the MN. There are in total 19 SRLGs: 8
single-link SRLGs, 6 dual-link SRLGs, 4 triple-link SRLGs, and 1 quadruple-link SRLGs.
The decimal alarm code of each SRLG is unique.

SRLG up to d = 3 links Figure 6.15 shows a set of cycles and trails C = {c0, c1, c2, c3,
t4, t5, t6, t7} that covers the network with 5 nodes and 8 links to localize multi-link SRLG
faults. Each MN adjacent undirected link is traversed by two cycles that are disjoint in
other links, and each of the remaining links is traversed by bd

2
c = 1 cycle and 1 trail that

are disjoint in other links.

148

Table 6.6: ACT for Multi-Link SRLG Fault Localization in a Mesh Network with 5 Nodes

and 8 Links, where d = 4

SRLGs m
3
3
′

m
3
4
′

m
3
1
′

m
3
1

m
3
4

m
3
3

m
2
2
′

m
2
3
′

m
2
4
′

m
2
4

m
2
3

m
2
2

m
1
1
′

m
1
2
′

m
1
3
′

m
1
3

m
1
2

m
1
1

m
0
4
′

m
0
1
′

m
0
2
′

m
0
2

m
0
1

m
0
4

Dec.
(0, 1) 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 14,680,512
(0, 2) 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 28,728
(0, 3) 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1,838,592
(0, 4) 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 229,383
(1, 2) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 0 0 2,484
(1, 4) 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 13,631,526
(2, 3) 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 158,976
(3, 4) 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10,174,464
(1, 2)(1, 4) 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 1 0 13,633,974
(1, 2)(2, 3) 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 159,156
(1, 2)(3, 4) 1 0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 10,176,948
(1, 4)(2, 3) 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 13,790,502
(1, 4)(3, 4) 1 1 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 14,368,806
(2, 3)(3, 4) 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 10,185,984
(1, 2)(1, 4)(2, 3) 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 13,790,646
(1, 2)(1, 4)(3, 4) 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 14,371,254
(1, 2)(2, 3)(3, 4) 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 10,186,164
(1, 4)(2, 3)(3, 4) 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 14,380,326
(1, 2)(1, 4)(2, 3)(3, 4) 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 14,380,470

Now, each cycle cj ∈ C is considered as an independent ring network for fault monitor-
ing purposes only. The sets of clockwise and anti-clockwise nested m-trails {m01,m02} and
{m02′ ,m01′}, respectively, can be derived by inspection from cycle c0. The nested m-trails
m01 and m02 traverse unidirectional links (v0, v1) and (v1, v0), and (v0, v1), (v1, v2), (v2, v1)
and (v1, v0), respectively. The nested m-trails m02′ and m01′ traverse unidirectional links
(v0, v2) and (v2, v0), and (v0, v2), (v2, v1), (v1, v2) and (v2, v0), respectively.

Similarly, the sets of clockwise and anti-clockwise nested m-trails {m12,m13} and {m13′ ,
m12′}, respectively, can be derived from cycle c1, the sets of clockwise and anti-clockwise
nested m-trails {m23,m24} and {m24′ ,m23′}, respectively, can be derived from cycle c2,
and the sets of clockwise and anti-clockwise nested m-trails {m34,m31} and {m31′ ,m34′},
respectively, can be derived from cycle c3.

Moreover, each trail tj ∈ C is considered as an independent linear network for fault
monitoring purposes only. The set of nested m-trails {m44,m41,m42} can be derived by in-
spection from cycle t4. Nested m-trail m44 traverses unidirectional links (v0, v4) and (v4, v0),

149

nested m-trail m41 traverses unidirectional links (v0, v4), (v4, v1), (v1, v4) and (v4, v0), and
nested m-trail m42 and traverses unidirectional links (v0, v4), (v4, v1), (v1, v2), (v2, v1),
(v1, v4) and (v4, v0).

Similarly, the sets of nested m-trails {m51,m52,m53}, respectively, can be derived from
cycle t5, the sets of nested m-trails {m62,m63,m64}, respectively, can be derived from cycle
t6, and the sets of nested m-trails {m73,m74,m71} can be derived from cycle t7.

v0

v1

v2v3

v4

MN
c0

c1

c2

c3

t4

t5

t6

t7

Figure 6.15: Cycle cover for multi-link SRLG fault localization in a mesh network, where

d = 3.

The ACT of the network using the sets of nested m-trails derived from the cycles and
trails in C is given in Table 6.7. The set of SRLGs consists of single-link and multi-link
SRLGs. Each multi-link SRLG can have up to three links of the network, i.e., d = 3. There
are in total 92 SRLGs: 8 single-link SRLGs, 28 dual-link SRLGs, and 56 triple-link SRLGs.
The decimal alarm code of each SRLG is unique. However, due to space constraints, all
multi-link SRLGs that are disjoint from the MN and all single-link SRLGs are shown in
the ACT.

6.5.2 M-Burst Launching Time Scheduling

Burst scheduling for each cycle/trail will be done independently. For each cycle cj ∈ C, the
burst launching times along nested m-trails of cj will be done using the same techniques as
described in subsection 6.4.2. Now, as each trail tj ∈ C will be treated as an independent
virtual linear network for fault monitoring purposes in the nested m-trail method, the

150

Table 6.7: ACT for Multi-Link SRLG Fault Localization in a Mesh Network with 5 Nodes

and 8 Links, where d = 3

SRLGs m
7
1

m
7
4

m
7
3

m
6
4

m
6
3

m
6
2

m
5
3

m
5
2

m
5
1

m
4
2

m
4
1

m
4
4

m
3
4
′

m
3
1
′

m
3
1

m
3
4

m
2
3
′

m
2
4
′

m
2
4

m
2
3

m
1
2
′

m
1
3
′

m
1
3

m
1
2

m
0
1
′

m
0
2
′

m
0
2

m
0
1

Dec.
(0, 1) 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3,719,171
(0, 2) 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 29,360,188
(0, 3) 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 234,881,984
(0, 4) 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 474,112
(1, 2) 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 3,407,882
(1, 4) 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 134,651,904
(2, 3) 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 27,263,136
(3, 4) 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 218,106,368
(1, 2)(1, 4) 1 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 137,797,642
(1, 2)(2, 3) 0 0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 28,573,866
(1, 2)(3, 4) 1 1 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 221,514,250
(1, 4)(2, 3) 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 161,915,040
(1, 4)(3, 4) 1 1 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 218,540,544
(2, 3)(3, 4) 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 228,592,288
(1, 2)(1, 4)(2, 3) 1 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 162,963,626
(1, 2)(1, 4)(3, 4) 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 221,686,282
(1, 2)(2, 3)(3, 4) 1 1 0 1 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 229,903,018
(1, 4)(2, 3)(3, 4) 1 1 0 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 229,026,464

launching times of the bursts along nested m-trails of each trail can be derived using the
same technique as done in linear networks.

Example: Now consider t4 in Figure 6.15 as an independent virtual linear network.
Assume that the bursts along the nested m-trails of t4 are launched from the MN in
descending order of the lengths of the corresponding nested m-trails.

Burst β42 along nested m-trail m42 will be launched in the beginning of each monitoring
period, i.e., s42 = 0. To avoid collision with burst β42, burst β41 along nested m-trail m41

will be launched after 2δ + L ms, i.e., s41 = 2δ + L. Similarly, burst β44 along nested
m-trail m44 will be launched after 2δ + L ms from the luanching time of burst β41, i.e.,
s44 = 4δ + 2L.

Similarly, we can find burst launching times of the nested m-trails of trails t5, t6, and
t7 by inspection.

The first burst in every cycle/trail will be launched in the beginning of each monitoring
period simultaneously; this is possible because each cycle/trail will be formed by using a
pair of WLs in each undirected link visited by the cycle/trail. Thus, the fault localization

151

latency T will be determine by the largest cycle or the largest trail in C. In the example
for the SRLG with d = 3 links, the largest cycle in C traverses 3 links, i.e., |cj|max = 3.
If δ = 2 ms and L = 20 ms, L > δ(|cj|max − 2). Thus, the fault localization latency for
the cycles as per Theorem 6.3.4 will be (2δ + L)(|cj|max − 1) + δ(|cj|max − 2) = 50 ms.
The largest trail in C also traverses 3 links, i.e., |tj|max = 3. If δ = 2 ms and L = 20 ms,
L > δ(|tj|max − 1). Thus, the fault localization latency for the trails as per Theorem 6.2.8
will be (2δ + L)|tj|max = 72 ms. Therefore, T will be 72 ms.

6.5.3 Node Switch Fabric Configuration Scheduling

Configuration of switch fabrics of the nodes traversed by each cycle/trail in C will be done
independently. For each cycle cj ∈ C, the node switch fabric configuration will be done
using the same techniques as described in the subsection 6.4.3.

For each trail tj ∈ C, the MN connects the outgoing and incoming WLs of the trail
to a monitor, and the destination node of the trail connects the incoming and outgoing
WLs of the trail. These connections will not be changed. All other nodes visited by the
trail will change its switch fabric configuration two times during each monitoring period:
in the beginning of each monitoring period and when the burst having the node as the
destination reaches the node.

Example: Again, consider t4 in Figure 6.15 as an independent virtual linear network.
Trail t4 visits nodes v0, v4, v1, and v2. Node v0 is the MN, and node v2 is the destination
node of the trail. The MN connects the incoming and the outgoing WLs from and to
undirected link (v0, v4) of t4 to the trail’s monitor. Node v2 connects the incoming and the
outgoing WLs from and to undirected link (v1, v2) of t4. In the beginning of monitoring,
both nodes v1 and v4 connect each incoming WL of t4 from one adjacent node to the
outgoing WL of t4 to another adjacent node.

At 4δ + L+ kT ms, where T is the fault localization latency and k = 0, 1, . . ., node v1

connects the incoming and outgoing WLs of t4 from and to node v4. Thus, bursts β41 will
be able to start returning to the MN. At 4δ+ 2L+ kT ms, node v1 connects the incoming
WL of t4 from node v4 to the outgoing WL of t4 to node v2 and vice versa.

At 5δ + 2L+ kT ms, node v4 connects the incoming and outgoing WLs of t4 from and
to node v0. Thus, bursts β44 will be able to start returning to the MN. At 5δ + 3L + kT
ms, node v4 connects the incoming WL of t4 from node v0 to the outgoing WL of t4 to
node v1 and vice versa.

152

Similarly, we can find the schedule for periodic change of the node switch fabric con-
figuration of each node visited by trails t5, t6 and t7 by inspection.

6.6 ILP to Decompose Mesh Networks

The ILP finds a set of cycles/trails as a solution such that each undirected link is traversed
by d

2
cycles that are disjoint in other links if d is even. One the other hand, if d is odd,

each undirected link is traversed by at least one trail and bd
2
c cycles that are disjoint in

other links. Each cycle/trail in an ILP solution visits the MN as well.

List of Notation

G The network, G = (V,E), where V is the set of nodes and E is the set of unidirectional
links of the network.

MN The monitoring node in the network, MN ∈ V .

J Predefined maximum number of allowed cycles/trails in an ILP solution.

i, j Indices of cycles/trails i, j ∈ {0, 1, 2, . . . , J − 1}.

r1, r2 Predefined cost ratios.

δ Predefined small positive constant. It is the minimum voltage increase along a cy-
cle/trail, |E|−1 ≥ δ > 0.

iduv Predefined unique ID of each undirected link (u, v), where iduv ∈ {0, 1, 2, . . . , |E|−1}.

N A large predefined number that represents ∞.

n A pre-calculated constant that is equal to bd
2
c.

f A pre-calculated constant that is equal to 1 if d, the maximum number of links in
any SRLG, is odd and 0 otherwise.

mj Binary variable, it is equal to 1 if the jth cycle/trail is in an ILP solution and 0
otherwise.

mtj Binary variable, it is equal to 1 if mj is a trail and 0 otherwise.

153

soju Binary variable, It is equal to 1 if node u is the source of the jth cycle/trail and 0
otherwise. Note that only MN can be the source of a cycle/trail.

siju Binary variable, It is equal to 1 if node u is the destination of the jth cycle/trail and
0 otherwise. If the MN is also the destination of a cycle/trail, it will be a cycle.

ejuv Binary variable, it is equal to 1 if the jth cycle/trail traverses unidirectional link
(u, v) and 0 otherwise.

qjuv Fractional variable, it is defined as voltage of the vector u → v for unidirectional
link (u, v). It assumes an arbitrary positive value if the jth cycle/trail traverses link
(u, v) and 0 otherwise.

zju Binary variable, it is equal to 1 if the jth cycle/trail visits node u and 0 otherwise.
The variables zju and qjuv along with predefined constant δ help to keep each cycle/trail
in an ILP solution a single connected component.

eujuv Binary variable, it is equal to 1 if the jth cycle/trail traverses undirected link (u, v)
and 0 otherwise.

cdijuv Binary variable, it is equal to 1 if both the ith and the jth cycles/trails traverse
undirected link (u, v). but the ith cycle/trail is link-disjoint from the jth cycle/trail
in all other undirected links, and 0 otherwise.

df juv Binary variable, it is equal to 1 if the jth cycle/trail is counted as one of the otherwise
link-disjoint cycles/trails that are traversing undirected link (u, v), and 0 otherwise.

gjuv Binary variable, it is equal to 1 if the jth trail is counted as one of the otherwise link-
disjoint cycles/trails that are the traversing undirected link (u, v), and 0 otherwise.

hij Binary variable, it ensures that the cycle/trail codes of the ith cycle/trail and the
jth cycle/trail are different.

l Integer variable, it is the maximum length of any cycle minus 1 or the maximum
length of any trail.

αj It is the cycle/trail code of the jth cycle/trail.

154

ILP to Decompose Mesh Networks

The specific ILP formulation is provided as follows.

Objective:

Minimize

{
l + r1 ∗

∑
j

mj + r2 ∗
∑
j

∑
∀(u,v)∈E

ejuv

}
(6.1)

Subject to the following constraints:

A single source node and a single destination node are allowed for each cycle/trail in an
ILP solution. Only the MN can be the source of a cycle/trail. A valid cycle/trail must
traverse at least one unidirectional link.

sojMN = mj,
∑
u∈V

soju = mj,
∑
u∈V

siju = mj, ∀j (6.2)

∑
∀(u,v)∈E

ejuv ≥ mj, ∀j (6.3)

The constraints (6.4) to (6.9) and their variables are related with cycle/trail formation and
mostly taken from the method in [63]; please refer to the paper for a thorough explanation
of the constraints and the variables. The indices of the cycles/trails in an ILP solution are
the lowest ones. The jth cycle/trail can traverse an undirected link at most once.

mj ≥ mj+1, ∀j : j ≤ J − 2 (6.4)

ejuv + ejvu ≤ mj, ∀(u, v) ∈ E : u < v, ∀j (6.5)

The flow conservation defined for each node of the network enforces that each cycle/trail
consists of connected components.∑

(u,v)∈E

(ejuv − ejvu) = (soju − siju), ∀u ∈ V, ∀j (6.6)

If any link incident on node u is traversed by the jth cycle/trail, the node is considered
visited by the cycle/trail. Voltages of the vectors corresponding to on-trail links can be

155

assigned non-zero values. The node voltage constraint (6.9) ensures that each cycle/trail
in an ILP solution is a single connected component.

zju ≥ ejuv + ejvu, ∀u ∈ V : (u, v) ∈ E,∀j (6.7)

qjuv ≤ ejuv, ∀(u, v) ∈ E,∀j (6.8)

siju +
∑

(u,v)∈E

(qjuv − qjvu) ≥ δ ∗ zju, ∀u ∈ V, ∀j (6.9)

We need trails if d is odd. If the MN is the destination node of the jth cycle/trail, it is
indeed a cycle and otherwise it is a trail.

mtj ≤ f, ∀j (6.10)

mtj = mj − sijMN , ∀j (6.11)

The constraint finds the maximum of trail lengths or cycle lengths minus 1.

l ≥
∑

∀(u,v)∈E

ejuv + (mtj −mj), ∀j (6.12)

If the jth cycle/trail traverses undirected link (u, v) from either direction, the link is
considered traversed by the cycle/trail.

eujuv = ejuv + ejvu, ∀(u, v) ∈ E : u < v, ∀j (6.13)

Constraints (6.14) and (6.15) identify otherwise link-disjoint cycle/trail pairs that are
traversing each undirected link (u, v). The ith and the jth cycles/trails can be consid-
ered link-disjoint except in link (u, v) if both the cycles/trails traverse the link. cdijuv and
cdjiuv must assume the same value.

cdijuv ≤ euiuv, cdijuv ≤ eujuv, cdijuv = cdjiuv,∀(u, v) ∈ E : u < v, ∀i, j : i < j (6.14)

156

Moreover, the ith cycle/trail has to be link-disjoint from the jth cycle/trail in all other
undirected links. Now, ∀(u, v), (w, x) ∈ E : u < v ∧ w < x ∧ (u, v) 6= (w, x), ∀i, j : i < j,

cdijuv + euiwx + eujwx ≤ 2 (6.15)

If the jth cycle/trail traverses undirected link (u, v), the cycle/trail can be considered as
one of the otherwise link-disjoint cycles/trails traversing (u, v).

df juv ≤ eujuv, ∀(u, v) ∈ E : u < v, ∀j (6.16)

The jth cycle/trail can be otherwise link-disjoint from either (n+ f − 1) cycles/trails that
are traversing (u, v) or none. (n+ f) mutually otherwise link-disjoint cycles/trails have to
traverse (u, v).∑

i:i<>j

cdijuv = (n+ f − 1) ∗ df juv, ∀(u, v) ∈ E : u < v, ∀j (6.17)

∑
j

df juv = n+ f, (u, v) ∈ E : u < v (6.18)

At most one of the (n+f) mutually otherwise link-disjoint cycles/trails that are traversing
(u, v) is a trail if d is odd.

gjuv ≤ mtj, gjuv ≤ df juv, (u, v) ∈ E : u < v, ∀j (6.19)

mj + gjuv ≥ mtj + df juv, (u, v) ∈ E : u < v, ∀j (6.20)

∑
j

gjuv ≤ f, (u, v) ∈ E : u < v (6.21)

The cycle/trail codes are calculated based the link traversal.

αj =
∑

∀(u,v)∈E

2iduv ∗ eujuv, ∀j (6.22)

157

Each cycle/trail code has to be unique. ∀i, j : i < j,

αi − αj ≥ 1− hij ∗ (N + 1) + (mi +mj − 2) ∗N (6.23)

αj − αi ≥ hij + (hij − 1) ∗N + (mi +mj − 2) ∗N (6.24)

The objective function (6.1) aims to minimize the length of largest cycle or trail. The
number of cycles/trails and usage of WLs are also minimized.

From Eq. (6.15), we have the number of constraints in the order of O(J2|E|2), where |E|
is the number of undirected links. However, J ≤ dd

2
e|E|. Thus, the number of constraints

is in the order of O(d2|E|4). From the same equation, we have the number of variables in
the order of O(d2|E|4), based on the variable cdijuv.

6.7 Heuristic to Decompose Mesh Networks

The pseudo code of the proposed heuristic algorithm for finding the set of cycle/trail in
mesh networks is given in Algorithm 6.6. The main objectives are to reduce the length of
the largest cycle/trail in the solution set C, the number of the cycles/trails in the set, and
total number of links traversed by the cycles/trails.

In line 1, the set C is initialized as empty. The outer for loop will consider each
undirected link in turn to derive d

2
cycles if d is even or bd

2
c cycles and one trail if d is odd.

The trail and the cycles have to traverse the MN and the current link under consideration,
but they have to be disjoint in other links. In line 2, d link-disjoint paths from the MN to
the end nodes of the current undirected link will be derived using Algorithm A.1, which is
an extension of Suurballe’s [50] and Bhandari’s [12] algorithms for link-disjoint paths. The
nested for loop iterates bd

2
c times. In line 3, a cycle is formed using a pair of link-disjoint

paths and the current undirected link. In line 4, the cycle is added to C. If d is odd, a
trail is formed using the remaining path to v and the current link under consideration in
line 5. In line 6, the trail is added to C.

In line 7, all the cycles and trails are en-queued to Q in descending order of their fault
localization latencies. Thus, the cycles/trails with larger fault localization latencies will
be considered for removal before the cycles/trails with smaller fault localization latencies.
Redundant cycles and trails will be removed in the while loop. In line 9, the current

158

cycle/trail with the maximum fault localization latency but not considered so far will be
removed from Q. If each link of the network is traversed by at least dd

2
e cycles, or bd

2
c

cycles and one trail in C\ctj, where the trail (if any) and the cycles are mutually disjoint
in other links, ctj will be removed from C in line 11. The set C is returned in line 12.

Algorithm 6.6: The Cycle Set Derivation Method
Input: G(V,E), MN, and d
Output: C
begin

1 Initialize C ← φ
foreach undirected link (u, v) ∈ E do

2 Find bd
2c and dd

2e link-disjoint paths in G from the MN to nodes u and v, respectively.
foreach pair of paths to nodes u and v do

3 Form cycle cj with the paths and (u, v)
4 C ← cj

if d is odd then
5 Form trail tj with (u, v) and the remaining path to v.
6 C ← tj .

7 Assign the cycles/trails in C to a queue Q in descending order of their fault localization
latencies.

8 while Q 6= φ do
9 ctj ← Extract from Q

foreach (u, v) ∈ E: (u, v) is an undirected link do
10 if (u, v) is not traversed by at least dd

2e cycles, or bd
2c cycles and one trail in C\ctj,

where the trail (if any) and the cycles are mutually disjoint in other links then
GoTo line 8.

11 Remove ctj from C.

12 Return C.

Now, let us derive complexity of Algorithm 6.6. The outer for loop iterates |E| times.
Finding d disjoint path from the MN to each link needs O(d|V ||E|) steps using Algorithm
A.1 after minor modifications. Forming a cycle based on a pair of paths and a link requires
O(|E|) steps. Similarly, a trail formation requires O(|E|). Thus, forming dd

2
e cycles, or

bd
2
c cycles and one trail require O(d|E|) steps. Thus, the outer for loop needs O(d|V ||E|2)

steps.

Each undirected link is traversed by dd
2
e cycles, or bd

2
c cycles and one trail. Thus,

|C| = dd
2
e|E|. Line 7 needs O

(
dd

2
e|E| log2(dd

2
e|E|)

)
.

The while loop iterates |C| = dd
2
e|E| times, and its inner for loop iterates |E| times. As

cycles/trails derived for each link are link-disjoint in other links of the network, the number

159

of cycles/trails traversing any link will be at most |E|. Now, to find all combination of dd
2
e

cycles/trails, at most O
(
|E|d d

2
e) steps are required. To perform pair wise AND operations

in a set of cycles/trails with cardinality dd
2
e, O(dd

2
e2) steps are needed. Line 10 requires at

most O
(
dd

2
e2|E|d d

2
e) steps for each link. Thus, the inner for loop needs O

(
dd

2
e2|E|d d

2
e+1
)

steps. Accordingly, the while loop needs O
(
dd

2
e3|E|d d

2
e+2
)
. The overall complexity of the

algorithm will be O
(
d3|E|d d

2
e+2
)
.

6.8 Numerical Results

We have solved the ILP given in Section 6.6 using ILOG CPLEX 11.1. The solution of
the ILP for each mesh network is a set of cycles and trails C. Two sets of nested m-trails,
clockwise and anti-clockwise, are derived by inspection from each cycle in C considering
the cycle as a virtual ring network. Similarly, one nested set of m-trails is derived by
inspection from each trail in C considering the trail as a virtual linear network.

The burst starting times from the MN of the bursts along the nested m-trails and
the fault localization latencies for the virtual ring/linear networks are taken from the
results derived for the ring/linear networks with equal number of links. Note that the
fault localization latencies of the linear and ring networks are shown in Table 6.2 and
Table 6.4, respectively. We assume that the first burst during a monitoring period along
a chosen nested m-trail of each cycle/trail is launched simultaneously. Thus, the length of
the largest cycle/trail in the solution set determines the fault localization latency T of the
mesh network.

The experiment considers all the SRLGs with d = 2, 3, 4 in each mesh network one at a
time, where each SRLG with two or more links is node-disjoint from the MN. We conduct
the experiment on a network with 9 nodes and 14 links. Node 0 is assigned as the MN.
There are in total 59, 179, and 389 SRLGs when d is 2, 3, and 4, respectively. We assume
that r1 is 0.1 and r2 is 0.01.

The solutions of the ILP are cycle cover sets {c0, c1, c2, c3}, {c0, c1, c2, c3, c4, t0, t1, t2, t3},
and {c0, c1, c2, c3, c4, c5, c6, c7} as shown in Figure 6.16 for d equal to 2, 3, and 4, respectively.
On average 2.857, 4.857, and 5.143 WLs per undirected link are required for SRLG fault
localization in the network for d equal to 2, 3, and 4, respectively. Then, we derive nested
m-trails by inspection. Next, the ACTs of the network for d = 2, 3, 4 are constructed (not
shown). An ACT keeps the mapping between the alarm code and the corresponding SRLG
code. The SRLG code of an SRLG is determined by the m-trails traversing through the

160

SRLG. The SRLG code of each SRLG when d is 2, 3, or 4 is unique; thus, up to d faulty
links can be localized unambiguously.

v0 v1

v4

v6

v8 v2

v3

v7

v5

MN
c2c3

c0c1

(a) Dual-link SRLG fault localization.

v0 v1

v4

v6

v8 v2

v3

v7

v5

MN

c0

c1

c2

c3

c4

t0

t1

t2

t3

(b) Triple-link SRLG fault localization.

v0 v1

v4

v6

v8 v2

v3

v7

v5

MN

c1

c5

c4

c7

c2

c0

c3

c6

(c) Quadruple-link SRLG fault localization.

Figure 6.16: Dual-link and Multi-link SRLG fault localization in the network with 9 nodes

and 14 links. Node v0 is the MN.

For burst scheduling, we assume that the propagation delay δ through each unidirec-
tional link is 2 ms and the burst length L is 20 ms. As the largest cycle in each case of d
traverses 5 links, T is 102 ms, which is the same in each case, found by using 5 as an index
in Table 6.4.

We have conducted the experiment on three more networks keeping all the assumptions
the same. The results are summerized in Table 6.8.

We implement proposed heuristic in eight networks. The results are shown in Table 6.9.
Like the ILP, once a set of cycles and trails are derived, the nested m-trails are derived
by inspection and ACTs are formed. In all cases, the SRLG codes are unique. Then,
the burst scheduling results are taken from that of linear and ring networks; T for each
network is taken from Table 6.2 or Table 6.4 using the number of links in the largest cycle

161

Table 6.8: The Performance of the ILP Method

Networks d SRLG |C| WLs WLs
|E| |c

j |max T

2 40 4+0=4 32 2.667 4 76
6 Node, 12 links 3 96 5+4=9 60 5.000 4 76

4 166 8+0=8 64 5.330 4 76

2 40 4+0=4 34 2.833 5 102
7 Node, 12 links 3 96 4+6=10 60 5.000 5 102

4 166 6+0=6 56 4.667 5 102

2 48 3+0=3 36 3.000 6 128
8 Node, 12 links 3 132 3+2=5 52 4.333 6 128

4 258 6+0=6 60 5.000 6 128

2 59 4+0=4 40 2.857 5 102
9 Node, 14 links 3 179 5+4=9 68 4.857 5 102

4 389 8+0=8 72 5.143 5 102

or trail, respectively, as index. The fault localization latency T depends on network size
and increases moderately on d.

In Table 6.10, the performance in terms of number of monitors |M |, WL consumption
per link WLs

|E| , and fault localization latency T of the proposed method is compared with

that of the previously reported methods. The results of the method in [1] deployed in
the m-burst framework is shown in column H0. The results of MCF method given in
Section 5.2 and DMCF methods given in Section 5.3 are shown in the columns H1 and
H2, respectively. Column H012 represents each of the previous methods. The results of the
proposed method in this chapter are shown in column H3. Though the new method needs
more monitors and WLs per link, the fault localization latencies in large networks improve
significantly.

6.9 Application of Nested M-Trails in Adaptive

Probing

The m-trail based schemes for fault localization in all-optical networks can be viewed as
non-adaptive probing schemes. A set of m-trails are pre-designed and deployed in the
network to localize single-link or multi-link SRLG faults. Each m-trail can be probed

162

Table 6.9: The Performance of the Heuristic Method

Networks d SRLG |C| WLs WLs
|E| |c

j |max T

2 40 7+0=7 48 4.000 4 76
6 Node, 12 links 3 96 7+5=12 78 6.500 4 76

4 166 8+0=8 66 5.500 5 102

2 40 6+0=6 44 3.667 5 102
7 Node, 12 links 3 96 6+3=9 62 5.167 5 102

4 166 7+0=7 66 5.500 5 102

2 48 5+0=5 48 4.000 6 128
8 Node, 12 links 3 132 5+3=8 66 5.500 6 128

4 258 6+0=6 60 5.000 6 128

2 59 6+0=6 52 3.714 5 102
9 Node, 14 links 3 179 6+4=10 80 5.714 5 102

4 389 8+0=8 72 5.143 5 102

2 71 7+0=7 58 3.625 5 102
CERNet 3 236 7+2=9 80 5.000 6 128

4 566 10+0=10 106 6.625 7 154

2 193 11+0=11 106 4.818 6 128
SmallNet 3 1162 10+9=19 168 7.636 6 128

4 5038 17+0=17 184 8.364 7 154

2 213 9+0=9 110 4.783 7 154
NSFNet + 3 1353 10+9=19 210 9.130 7 154
2 links 4 6198 17+0=17 254 11.043 11 258

2 282 14+0=14 132 4.552 7 154
Bellcore + 3 2053 13+13=26 226 7.793 8 180
1 link 4 10908 21+0=21 266 9.172 9 206

using persistent or non-persistent optical signal, or short-length optical burst. Short-length
optical bursts are used in the m-burst framework.

Now, we shall investigate briefly application of the m-burst framework in adaptive
probing. Note that in adaptive probing, the set of probe or m-trails are not pre-designed.
The next probe to be launched is derived based on the result found so far. If a region of the
network is found healthy, the region will not be probed actively any more in the current
session.

163

Table 6.10: The Comparative Performance of the Methods, where d = 3

Networks No. of |M | WLs
|E| T

SRLGs H012 H3 H012 H3 H0 H1 H2 H3

6 nodes, 12 links 96 3 19 ≤ 2 6.500 108 152 88 76
7 nodes, 12 links 96 4 15 ≤ 2 5.167 132 152 112 102
8 nodes, 12 links 132 3 13 ≤ 2 5.500 172 228 120 128
9 nodes, 14 links 179 4 16 ≤ 2 5.714 154 164 114 102
CERNet 236 5 16 ≤ 2 5.000 168 258 152 128
SmallNet 1162 3 29 ≤ 2 7.636 336 502 216 128
NSFNet + 2 links 1353 3 29 ≤ 2 9.130 556 876 294 154
Bellcore + 1 link 2053 6 39 ≤ 2 7.793 346 742 220 180

One of the important hurdles to deploy adaptive probing in all-optical networks is the
large number of sequential probes needed to localize faults. The state of the art adaptive
run-length probing scheme proposed in [57] needs d log2K+ |E|−d+1

K
+(d−2) probes to find

d link failures, where maximum probing length K is derived to get approximately an equal
probability of a single fault and no fault in a fiber segment along a Eulerian trail. We will
not discuss how to derive exact value of K. However, K = |E|−d+1

d
· ln 2 will provide the

minimum number of probes.

Now, we will only show that using nested m-trail methodology, the number of adaptive
probes to be launched to localize single-link or multi-link SRLG faults can be reduced.
As a result, fault localization latency in adaptive probing will also be reduced. Hence,
the deployment of the adaptive probing in all-optical networks for fault localization will
become feasible.

In addition, application of nested m-trails in adaptive probing will reduce control com-
plexity of setting up and launching of the probes. The bandwidth cost will be the same as
that of conventional adaptive schemes; no additional monitoring hardware in any node is
needed on top of the m-trail framework. Moreover, SRLG faults will be localized from a
single MN.

6.9.1 Dual-Link SRLG Fault Localization in Mesh Networks

In this section, we propose a novel adaptive probing scheme in Algorithm 6.7 that uses the
nested m-trail technique to localize dual-link SRLG faults in all-optical mesh networks.
At first, the mesh network is decomposed into cycles. Probing will be done in each cycle

164

independently. Thus, probing in various region of the network can be done in parallel. As
the largest cycle is upper bounded by the diameter of the network, the number of links to
be probed by each independent probing process is in order of O(|D|) instead of O(|E|),
where D and E are the diameter of the network and the number of links in the network,
respectively.

Algorithm 6.7: Dual-Link SRLG Fault Localization using Adaptive Probing
Input: G(V,E) and MN
Output: C and F

1 Decompose mesh network G into a set of cycles C such that each link of the network is traversed
by at least one cycle, and every cycle traverses the MN.

2 Assign a pair of WLs in each link traversed by each cycle cj ∈ C. Assign 0, . . . , |cj | clockwise
consecutively as additional labels to the nodes of cj , where the MN will have two labels 0 and |cj |.

3 Each cycle cj ∈ C will be probed simultaneously by two probing stations (PSs) from the MN. Each
PS will identify its active probing region using lo and hi node numbers of the region. Initially, lo is
0 and hi is |cj | for both the PSs. The middle node mid of an active probing region is d lo+hi

2 e. The
PSs P j

c and P j
a of cycle cj will launch clockwise and anti-clockwise m-bursts along the cycle,

respectively. The destination of each probe will be the mid node of the PS. Initially, mid of both
PSs will be the same node because the entire cycle is the active probing region of each PS.

4 If both the bursts of each cycle return to the MN, there is no fault in the network. The next pair of
m-bursts from the clockwise and anti-clockwise PSs will be launched immediately along each cycle.

5 If any burst of a cycle ck does not return to the MN, link failure in the cycle is detected. The PS of
each non-returning burst will become an executive probing station (EPS). If one burst does not
return to the MN, one PS will become EPS now. Whenever both bursts of the cycle do not return
to the MN during any subsequent round of probing, the other PS will immediately become an
EPS. The faulty links will be searched in cycle ck using the adaptive probes as described below
until the faulty links are identified.

6 If there is only one EPS in the cycle currently, the EPS will update both the active regions of the
PSs using the results of the last round of probing. On the other hand, if there are two EPSs in the
cycle, each EPS will update its own active probing region.

7 If P k
c is an EPS, P k

c updates its the active probing region as follows. If clockwise burst of the cycle
does not return to the MN, P k

c updates its the active probing region by assigning its mid to its hi.
Otherwise, P k

c assigns its mid to its lo. Then, it calculates its new mid using lo and hi node
numbers of the updated active probing region.

8 If P k
a is an EPS, P k

a updates its the active probing region as follows. If anti-clockwise burst of the
cycle does not return to the MN, P k

a updates its the active probing region by assigning its mid to
its lo. Otherwise, P k

a assigns its mid to its hi. Then, it calculates its new mid using lo and hi node
numbers of the updated active probing region.

9 Then each PS will send an m-burst from the MN to probe its active probing region.
10 The above probing process (lines 6 – 9) will continue until each EPS identifies its nearer faulty

link. When an active probing region of an EPS has one link, it is the faulty link.
Each EPS will assign its nearer faulty link to F .

11 Return C and F .

165

It is evident from the algorithm that the proposed probing scheme is equivalent to
binary search. If the largest cycle has l links, we need at most dlog2 le probes. Moreover,
as two probing processes will be used in each cycle, only half of the links in the cycle
will be searched by each probing process. Thus, only dlog2 le − 1 probes will be needed
to localize a single fault in the cycle by each probing process. The number of adaptive
probes to be launched by any probing process sequentially after fault detection to localize
the faulty links will be reduced significantly. As a result, the fault localization latency T
of the adaptive probing will also be reduced significantly.

Configuration of switch fabrics of the nodes traversed by each cycle cj ∈ C will be done
independently. The MN connects clockwise and anti-clockwise probing stations with the
WLs of cj in clockwise and anti-clockwise adjacent links, respectively. These connections
will not be changed. Each node except the MN visited by cj usually connects WLs of cj

from its clockwise adjacent node in cj to its anti-clockwise adjacent node in cj and vice
versa. During the period a node remains the destination node of one or both the probes in
cj, it keeps WLs from and to its clockwise adjacent node in cj connected as well as WLs
from and to its anti-clockwise adjacent node in cj connected.

Example: Consider Figure 6.16a again. The figure shows decomposition of the network
with 9 nodes and 14 links. Each cycle consists of five links. Figure 6.17 shows probing
sequences during one single-link and two dual-link fault events in cycle c2 of Figure 6.16a.
If adaptive proving is used in each cycle independently, we need 3 sequential probes to
localize a single-link SRLG fault and a dual-link SRLG fault in the network as shown in
Figure 6.17a and Figure 6.17b, respectively. However, the first pair of probes will detect
the failure event as well as define initial active probing region(s). Thus, we need at most
two additional sequential probes to localize the faults in the network. In Figure 6.17c,
we need only one additional sequential probe to localize a dual-link SRLG fault in the
network.

In contrast, if the adaptive proving scheme proposed in [57] is used, the value of K that
gives minimum number of probes in the network is 5. Consequently, at least 7 sequential
probes will be needed to localize dual-link SRLG faults.

6.9.2 Multi-Link SRLG Fault Localization in Mesh Networks

To localize d faulty links using adaptive probing in the m-burst framework, we have to
ensure that each undirected link of the network is traversed by at least d

2
cycles if d is even.

If d is odd, each link has to be traversed by at least dd
2
e cycles, or bd

2
c cycles and one trail.

Thus, line 1 of Algorithm 6.7 is to be modified accordingly to deal with simultaneous d link

166

0 1 2 3 4 5

Xv0 v1 v2 v3 v4 v0

(a) Three clockwise and three anti-clockwise probes are required to localize the faulty link (v1, v2).

0 1 2 3 4 5

X Xv0 v1 v2 v3 v4 v0

(b) Three clockwise and two anti-clockwise probes are required to localize the faulty links (v0, v1)
and (v4, v0), respectively.

0 1 2 3 4 5

X Xv0 v1 v2 v3 v4 v0

(c) Two clockwise and two anti-clockwise probes are required to localize the faulty links (v3, v4)
and (v4, v0), respectively.

Figure 6.17: Application of nested m-trail in adapting probing. The clockwise and anti-

clockwise probes are blue and green, respectively. Both sets of probes are sent from the

MN. Faulty links are marked as (X). Three sequential probes are required to localize the

single faulty link in (a), three sequential probes are required to localize both the faulty

links in (b), and two sequential probes are required to localize both the faulty links in (c).

faults. The probing strategy in each cycle will remain the same as that of the dual-link
SRLG fault localization discussed in subsection 6.9.1.

The numbers of required probes for dual-link and multi-link SRLG fault localization

167

Table 6.11: The Performance of Adaptive Schemes

Networks d No. of P0 P1

SRLGs K #p |cj |max #p

2 40 4 7 4 2 - 1 = 1
6 Node, 12 links 3 96 3 9 4 2 - 1 = 1

4 166 2 11 5 3 - 1 = 2

2 40 4 7 5 3 - 1 = 2
7 Node, 12 links 3 96 3 9 5 3 - 1 = 2

4 166 2 11 5 3 - 1 = 2

2 48 4 7 6 3 - 1 = 2
8 Node, 12 links 3 132 3 9 6 3 - 1 = 2

4 258 2 11 6 3 - 1 = 2

2 59 5 7 5 3 - 1 = 2
9 Node, 14 links 3 179 3 10 5 3 - 1 = 2

4 389 2 12 5 3 - 1 = 2

2 71 6 8 5 3 - 1 = 2
CERNet, 16 links 3 236 3 10 6 3 - 1 = 2

4 566 3 13 7 3 - 1 = 2

2 193 8 9 6 3 - 1 = 2
SmallNet, 22 links 3 1162 5 12 6 3 - 1 = 2

4 5038 4 15 7 3 - 1 = 2

2 213 8 9 7 3 - 1 = 2
NSFNet + 2 links, 3 1353 5 12 7 3 - 1 = 2
23 links 4 6198 4 15 11 4 - 1 = 3

2 282 10 9 7 3 - 1 = 2
Bellcore + 1 link, 3 2053 7 13 8 3 - 1 = 2
29 links 4 10908 5 16 9 4 - 1 = 3

are compared in Table 6.11. Columns P0 and P1 represent the method proposed in [57]
and the method proposed in this chapter, respectively. To derive the minimum number
of probes in P0, at first we derive K0 = |E|−d+1

d
· ln 2 for each network. Then we use the

next lower or higher integer number of K0, whichever gives lower value of #p0, as K in
#p0 = d log2K + |E|−d+1

K
+ (d− 2). The minimum number of probes #p in the network is

the closest integer number of #p0. Data for P1 is taken from Table 6.9. It is clear from the
table that the nested m-trail based adapting probing scheme needs a significantly reduced

168

number of sequential probes.

When d is unbounded, we can by-pass each identified faulty link and continue probing
the remaining links of the cycle. However, to calculate fault localization latency, a through
investigation is required. This is a topic for future work.

6.10 Conclusions

In this chapter, we have studied the m-burst framework for single-link and dual-link SRLG
fault localization in all-optical linear and ring networks, respectively. We have proposed
simple methods to derive the sets of m-trails, burst launching time scheduling, and node
switch fabric configuration scheduling by inspection in both linear and ring networks.
Though the techniques are significant achievement by themselves, they are also used for
dual-link and multi-link SRLG fault localization in all-optical mesh network mainly to
decrease the fault localization latency.

A novel approach for fault localization called the nested m-trail method is proposed.
The application of nested m-trails in the m-burst framework for dual-link and multi-link
SRLG fault localization in all-optical mesh networks is discussed. With the minimization
of the fault localization latency as the target, an optimization problem is formulated in
ILP and solved to decompose mesh networks. A heuristic algorithm for decomposition
of mesh networks is also developed. Once a set of cycles and trails is derived, the m-
trail allocation, the burst scheduling, and node fabric configuration scheduling are done
by inspection in each cycle or trail considering the cycle or trail as a virtual ring or linear
network, respectively. Extensive experiments are conducted to verify the method and to
compare it with counterparts. Numerical results show that the nested m-trail method
reduces the fault localization latency significantly. The nested m-trail method can also
substantially reduce the number of adaptive probes.

169

Chapter 7

Conclusions and Future Work

7.1 Introduction

A fast and precise fault localization scheme can enhance the performance of protection/res-
toration schemes greatly and is essential for implementing reliable all-optical mesh networks
that operate with high throughput. We have mainly aimed at developing efficient multi-link
SRLG fault localization schemes that incur minimum monitoring cost and fault localization
latency in this thesis.

We have applied an out-of-band monitoring technique to localize single-link and multi-
link shared risk link group (SRLG) faults in all-optical mesh networks. The out-of-band
monitoring techniques are based on finding the working status of the dedicated supervisory
lightpaths (S-LPs) known as m-trails; any node of the network can be the transmitting
and/or receiving node of an S-LP, and each S-LP is monitored at its receiving node.

To localize link faults unambiguously in the existing schemes, a set of m-trails is de-
ployed such that each SRLG is traversed by a unique subset of the m-trails. In other words,
the m-trail allocation problem is considered as a topology coding process where each SRLG
is assigned a unique SRLG code based on the traversing m-trails. When an SRLG fails,
each m-trail traversing any link of the faulty SRLG is disrupted; as a result, the monitor
at the receiver of the affected m-trail raises an alarm, and the alarm is broadcast in the
control plane. The network controller derives an alarm code based on the alarming and
non-alarming monitors after collecting all the flooded alarms; finally, the controller local-
izes the failed SRLG by matching the alarm code with an SRLG code, usually by using a
look-up table called the alarm code table (ACT).

170

There are three major concerns of the exiting m-trail schemes: monitor cost, bandwidth
cost, and alarm dissemination delay and related uncertainty. The monitor cost is measured
in terms of the number of monitors |M | that is the same as the number of m-trails |M|.
The bandwidth cost is measured in terms of the number of required wavelength channels
(WLs). An m-trail needs a dedicated WL whenever it traverses a unidirectional link. The
alarm dissemination delay and related uncertainty arise due to the presence of multiple
monitoring nodes (MNs). As monitors are usually scattered around the network, alarm
dissemination in the existing m-trail schemes is unavoidable and is a source of variable
delay.

To deal with the above-mentioned concerns, we have proposed the monitoring burst
(m-burst) framework in Chapter 3. The framework has one given MN, which can be any
node of the network. The links of the network are traversed by a set of closed-loop m-trails
such that each SRLG is traversed by a unique subset of the m-trails. Each m-trail in the
m-burst framework has to traverse the MN and can be either a cycle or a trail. If the
m-trail is a cycle, it can traverse any undirected link only once. On the other hand, if the
m-trail is a trail, it has to traverse each undirected link from both directions. The MN
launches short-length optical bursts along each m-trail to detect its on-off status. Due to
the closed-loop shape of the m-trail, the launched optical bursts will be received by the
MN if all the links along the m-trail are working properly, but the burst will be lost if any
link along the m-trail fails. Thus, alarm dissemination is avoided altogether.

In addition, the m-burst framework needs only one WL in each unidirectional link if
one or more m-trails traverse the link, because bursts traversing the link share the WL in
the time domain. In other words, each m-trail in the m-burst framework is a virtual entity.
Consequently, the framework needs from |E| to 2|E| WLs for both single-link and multi-
link SRLG fault localization. Moreover, the number of monitors |M | and the number of
m-trails |M| are no longer the same in the m-burst framework. As each m-burst is launched
from the single MN along a single WL in an outgoing link and the burst returns to the MN
via a single WL in an incoming link, monitoring resources such as transmitters, receivers,
and monitors of m-trails can also be shared. In fact, the number of required monitors |M |
in the m-burst framework is in the order of the nodal degree of the MN. Thus, the number
of monitors |M | is reduced significantly since it is fully determined by the nodal degree of
the MN. Therefore, the number of m-trails |M| has no significance from the perspective of
the monitor cost. However, the number of m-trails |M| has a major negative effect on the
fault localization latency, which is the main concern in the m-burst framework.

The m-burst framework has three relevant problems: m-trail allocation, m-burst launch-
ing time scheduling, and node switch fabric configuration scheduling problems. To solve
the problems, we have devised several algorithms and procedures that are described in

171

Section 7.2 in detail along with other contributions of the thesis.

The rest of the chapter is organized as follows. Section 7.3 presents the publications
related to the thesis. In Section 7.4, future work is given. Section 7.5 concludes the chapter.

7.2 Contributions

The novel features of the thesis are given below.

In Chapter 3, a novel framework for fault localization in all-optical networks, called
the m-burst framework, is proposed, and three relevant problems of the framework are
formulated. The methods proposed in the subsequent chapters provide solutions to the
problems. The m-burst framework needs a minimum possible numbers of monitors |M |
and WLs to localize single-link, or single-link and multi-link SRLG faults in all-optical
networks.

In Chapter 4, an implementation of the m-burst framework for single-link SRLG fault
localization in all-optical mesh networks is provided. At first, the m-trail allocation and
burst scheduling problems are formulated as a joint optimization problem via an Integer
Linear Program (ILP), where a recursive approach in the ILP is devised to find the burst
arrival time along each m-trail at the sending end node of each unidirectional link that
is traversed by the m-cycle. With the help of the burst arrival times, bursts are kept
non-overlapping in each unidirectional link of the network. The burst launching times
are manipulated to achieve burst separation. It is a novel approach of burst scheduling
to avoid all burst-collisions. For comparison, the m-trail allocation and burst scheduling
problems are formulated as separate optimization problems via two ILPs. Two heuristic
algorithms are also devised to solve the problems in large networks. The burst scheduling
heuristic algorithm ensures that the arrival times of each pair of bursts to the sending node
of any unidirectional link are separated by L ms, where L is the burst length in ms. In
the scheduling algorithm, the earliest possible burst launching time avoiding burst collision
altogether in the network is found for the burst along each m-trail in the solution. Thus,
the fault localization latency is minimized. The burst launching time scheduling methods
developed in the ILP or heuristic in the chapter are used in the later chapters directly or
indirectly.

Node switch fabric configuration scheduling related issues are also discussed in Chapter
4. It is shown that switch fabric configuration scheduling can be done using simple and
deterministic calculations once m-trail allocation and burst scheduling problems are solved.
Actual switch fabrics configuration repeats in each monitoring period.

172

In Chapter 5, an implementation of the m-burst framework for multi-link SRLG fault
localization in all-optical mesh networks is presented. Two novel multi-link m-trail alloca-
tion methods are proposed: MCF and DMCF. The MCF method is based on the theory
that if each healthy link is traversed by at least one m-trail that is link-disjoint from the
faulty SRLG, the MN can localize the faulty SRLG unambiguously. Thus, we can localize
faults using O(|Ψ|) m-trails, which is equivalent to O((|E| + 1)d). The m-trail allocation
scheme and the burst scheduling problems are formulated as a joint optimization problem
via an ILP, where the ILP takes a set of enumerated unique m-trails as the input. A heuris-
tic algorithm is also devised to implement the m-trail allocation scheme in large networks
by finding an unaffected shortest path from the MN to each link during each fault event.

To avoid m-trail enumeration in the ILP formulation and to reduce fault localization
latency, an extension of the MCF m-trail allocation method is also proposed in the chapter.
It is proved that if each undirected link is traversed by (d + 1) m-trails that are disjoint
in other links, the MN can localize the faulty SRLG unambiguously. Thus, we need at
most (d + 1)|E| m-trails. The extended m-trail allocation scheme, i.e., DMCF method, is
formulated as an optimization problem via an ILP. A heuristic algorithm is also devised
to implement the extended m-trail allocation scheme in large networks by finding (d + 1)
link-disjoint shortest paths from the MN to each link.

In Chapter 6, two implementations of m-burst framework for linear and ring networks
are provided. It is observed that dual-link SRLG faults can be localized in a ring network
using two sets of m-trails: one clockwise and another anti-clockwise. A novel m-trail
allocation technique called nested m-trails is proposed in the chapter. A mesh network is
decomposed into cycles and trails such that each undirected link is traversed by d

2
cycles

if d is even or by bd
2
c cycles and one trail if d is odd. Each cycle (trail) is realized as a

virtual ring (linear) network by assigning two WLs in each undirected link traversed by
the cycle (trail). Now, two sets (one set) of m-trails are (is) derived by inspection in each
virtual ring (linear) network. The two sets (one set) of nested m-trails are deployed in the
m-burst framework for the ring (linear) network. Now, fault localization in virtual ring
and linear networks is done in parallel. As a result, the fault localization latency decreases
significantly.

Application of nested m-trails in adaptive probing is also investigated in Chapter 6. The
number of sequential probes needed by the proposed method is very low. Thus, deployment
of adaptive probing for fault localization in all-optical mesh networks is now possible.

In Appendix A, we have simplified link-disjoint and node-disjoint shortest path algo-
rithms. These algorithms find disjoint shortest paths sequentially. The next shortest path
is identified by manipulating link weights and node colors of the links and the nodes, re-

173

spectively, of the already identified paths. Techniques such as network transformation, link
direction reversal, and vertex splitting are completely avoided.

Moreover, in this thesis, we are able to decrease significantly the number of m-trails |M|
required theoretically for multi-link SRLG faults, where an SRLG can have at most d links.
MC-1 method proposed in [1] needs O(|Ψ|2) equivalently O((|E| + 1)2d) cycles to localize
multi-link SRLG faults. The DMCF m-trail allocation method presented in Chapter 5
needs at most (d + 1)|E| m-trails to localize multi-link SRLG faults. The nested m-trail
based m-trail allocation method presented in Chapter 6 requires at most d

2
|E| cycles if d is

even, or at most bd
2
c|E| cycles and |E| trails if d is odd to localize multi-link SRLG faults.

For comparison, the lower bound of |M| is in Ω
(
d log2(|E|+ 1)

)
because |Ψ| ≤ (|E|+ 1)d.

Finally, this thesis allows multi-link SRLG fault localization in comparatively sparse
networks, where an SRLG can have at most d links. MC-1 method proposed in [1] needs
a (d+ 2)-connected mesh network to localize multi-link SRLG faults. The DMCF m-trail
allocation method presented in Chapter 5 needs a (d+1)-connected mesh network to localize
multi-link SRLG faults. The nested m-trail based m-trail allocation method presented in
Chapter 6 can be deployed in a d-connected mesh network to localize multi-link SRLG
faults.

7.3 Publications

The list of publications related to the thesis is given below.

1. M. L. Ali, P.-H. Ho, B.Wu, J. Tapolcai, and B. Shihada. Monitoring Burst (M-Burst)-
A Novel Framework of Failure Localization in All-Optical Mesh Networks. In the
proceedings of the 8th International Workshop on Design of Reliable Communication
Networks, IEEE DRCN 2011, Krakow, Poland, October 2011. This workshop paper
[9] covers mainly the materials of Sections 4.1, 4.2, and 4.3 of Chapter 4.

2. M. L. Ali, P.-H. Ho, J. Tapolcai, and B. Shihada. M-Burst: A Framework of SRLG
Failure Localization in All-Optical Networks. IEEE/OSA Journal of Optical Com-
munications and Networking, 4(8), August 2012. This journal paper [7] covers mainly
the materials of Sections 5.1 and 5.2 of Chapter 5.

3. M. L. Ali, P.-H. Ho, and J. Tapolcai. SRLG Fault Localization via M-Burst Frame-
work. To be presented at the IEEE ICC’13 ONS, Budapest, Hungary, June 2013.
This conference paper [6] covers mainly the materials of subsections 5.3.1, 5.3.2, and
5.3.4 of Section 5.3 of Chapter 5.

174

4. M. L. Ali, P.-H. Ho, J. Tapolcai, and S. Subramaniam. SRLG Fault Localization via
M-Burst Framework. To be submitted. This paper [8] covers materials of Section 5.3
of Chapter 5.

5. M. L. Ali, P.-H. Ho, and J. Tapolcai. Fault Localization in Linear and Ring Networks.
To be submitted. This paper [4] covers materials of Sections 6.2 and 6.3 of Chapter
6.

6. M. L. Ali, P.-H. Ho, and J. Tapolcai. SRLG Fault Localization using Nested M-trails.
To be submitted. This paper [5] covers materials of mainly Sections 6.4 and 6.5 of
Chapter 6 .

Moreover, we shall publish two more papers on adaptive probing given in Section 6.9
of Chapter 6 and disjoint path algorithms given in Appendix A.

7.4 Future Work

We have identified the following future work.

Nested m-trails: Average WL consumption of the nested m-trail technique is higher
than that of the original m-burst framework: the m-burst framework needs at most 2 WLs
per link. It is obvious from the numerical results that WL consumption of the nested
m-trail technique can be reduced substantially because there are duplicate m-trails in the
solution. Thus, further investigation is needed in this direction.

Adaptive Probing : To reduce WLs consumption or when d is unbounded, instead of
setting up dd

2
e cycles for each undirected link, an adaptive probing scheme can be realized

with a set of cycles that is a simple cycle cover of the network. Each identified faulty link in
each cycle will be by-passed and probing will be continued with the remaining links of the
cycle. However, to calculate fault localization latency, a through investigation is required,
which is another topic for future work.

175

7.5 Conclusions

We have investigated single-link and multi-link SRLG fault localization in all-optical mesh
networks. We have proposed the m-burst framework and several m-trail allocation algo-
rithms. We have also devised the burst scheduling schemes and outlined the node switch
fabric configuration scheduling schemes to enable link traversal by multiple bursts without
any collision throughout the network.

In conclusion, we want to state that using at most a single dedicated WL per unidirec-
tional link of an all-optical mesh network, single-link, or single-link and multi-link SRLG
faults can be localized from a single MN with reasonable fault localization latency. More-
over, there still exists a trade-off between monitoring resource consumption and the fault
localization latency.

176

APPENDICES

177

Appendix A

Simple Disjoint Path Algorithms

A.1 Introduction

Disjoint paths play a very important role in fault management of communication networks.
In optical networks, link-disjoint and node-disjoint paths are extensively used in protection
and restoration schemes. Several algorithms in this thesis are developed based on link-
disjoint paths.

For each node pair, the link form of Menger’s Theorem for graphs states that the
maximum number of link disjoint paths, K, between the node pair is equal to the minimum
number of links separating the node pair. If all the separating links are removed, all the
paths between the node pair will be destroyed [3]. In other words, the number of separating
links K is the cardinality of the minimum cut-set between the node pair.

We are interested in this thesis in finding k link-disjoint paths between a single moni-
toring node (MN) and each link of the network. The maximum number of disjoint paths
Kuv between the MN and any undirected link (u, v) will be equal to the cardinality of the
minimum cutset between the MN and the end nodes of the link. Thus, we assume that
each network topology satisfies the following condition: ∀(u, v) ∈ E: (u, v) is an undirected
link, k ≥ Kuv. However, we will develop algorithms to find disjoint paths between a node
pair in this appendix. Finding disjoint paths between the MN and an undirected link needs
simple adjustment of the methods developed for a node pair.

Suurballe in [50] uses network transformation to find disjoint paths. Bhandari in [12]
avoids network transformation. However, Bhandari’s methods depend on direction reversal

178

of the links in already identified paths and vertex splitting. We have avoided these confusing
network manipulations altogether.

In our methods, paths already taken are indentified using a specific link weight and
node color. As a result, we have very simple algorithms to identify multiple disjoint paths
between a node pair in mesh networks.

The rest of the appendix is organized as follows. Theoretical analysis on disjoint short-
est paths is given in Section A.2. In Section A.3 and Section A.4, two heuristics algorithms
are given for deriving link-disjoint and node-disjoint paths, respectively. Numerical ex-
periments are conducted, and results are given in Section A.5. Section A.6 concludes the
appendix.

A.2 Theoretical Analysis on Disjoint Shortest Paths

Disjoint paths are derived between a pair of nodes known as the s−t pair. Each disjoint
path starts from node s and terminates at node t. Let the lengths of paths p1, p2, . . . , pk
be lp1 , lp2 , . . . , lpk

, respectively.

To derive disjoint paths, Suurballe [49] defines an interlacing path, and Bhandari [11]
informally defines an interlacing link or edge. For the purposes of this thesis only, let us
formalize Bhandari’s concept of an interlacing link approximately in the following defini-
tion.

Definition A.2.1. If paths p1 and p2 traverse unidirectional links (u, v) and (v, u), respec-

tively, the corresponding undirected link (u, v) is called an interlacing link between p1 and

p2.

Let the length or cost of the interlacing link (u, v) between p1 and p2 be luv. Note
that instead of a single interlacing link, two paths may have an interlacing segment that
consists of two or more connected interlacing links. Moreover, two paths may have more
than one disjoint interlacing link or segment. However, we will use the term interlacing
link for both an interlacing segment and an interlacing link as well as for multiple disjoint
interlacing links or segments in this thesis for notational convenience.

Theorem A.2.2. If an interlacing link (u, v) is excluded from a path pair p1 and p2, the

path pair will be cut into four pieces such that the s adjacent portion of path p1 (p2) will

179

remain connected with the t adjacent portion of path p2 (p1) at one (other) end node of

(u, v). As a result, two disjoint paths between the s−t node pair will be formed if p1 and

p2 are disjoint in other parts of the network.

Proof. From inspection, let (s, a), (a, u), (u, v), (v, w), (w, t) and (s, b), (b, v), (v, u), (u, x),

(x, t) be two paths from s to t, where undirected link (u, v) is an interlacing link. If the

interlacing link is excluded from the path pairs, (s, a), (a, u) will be connected with (u, x),

(x, t) at node u and (s, b), (b, v) will be connected with (v, w), (w, t) at node v. As a

consequence, the pair of paths (s, a), (a, u), (u, x), (x, t) and (s, b), (b, v), (v, w), (w, t)

becomes disjoint.

Corollary A.2.3. During sequential search for node-disjoint paths, if the next path pj

reaches node u that is already visited by an exiting path pi, pj must leave node u through a

unidirectional link (u, v) such that undirected link (u, v) becomes the interlacing link between

paths pi and pj.

Theorem A.2.4. If two disjoint paths are derive from the paths p1 and p2 by excluding

the interlacing link (u, v), the total length of the disjoint path pair will be lp1 + lp2 − 2 ∗ luv.

Proof. From inspection, the length luv of the interlacing link (u, v) is counted in both lp1
and lp2 . Thus 2 ∗ luv has to be deducted from lp1 + lp2 to derive correct length of the

resultant disjoint path pair.

In this appendix, we will derive k shortest disjoint paths between nodes s and t. Thus,
every path pj in the rest of the appendix is the jth shortest path between the s−t node
pair, where j ∈ {1, 2, . . . , k}. Moreover, the jth shortest path pj is disjoint from every ith
shortest path pi except in the interlacing link, if any, between them, where i ∈ {1, 2, . . . , (j−
1)}.

Theorem A.2.5. If p1 is the shortest path and p2 is the 2nd shortest path in terms of

the length (lp2 − 2 ∗ luv), where (u, v) is the interlacing link between p1 and p2, the length

(lp1 + lp2 − 2 ∗ luv) of the disjoint path pair will be minimum.

Proof. Let p3 be the 3rd shortest path in terms the length (lp3 − 2 ∗ lwx), where (w, x) is

the interlacing link between p1 and p3.

180

As p2 is the 2nd shortest path in terms of the length (lp2 − 2 ∗ luv), (lp2 − 2 ∗ luv) ≤
(lp3−2∗ lwx); otherwise, p3 would be the 2nd shortest path in terms of length (lp3−2∗ lwx).
Hence, (lp1 + lp2 − 2 ∗ luv) ≤ (lp1 + lp3 − 2 ∗ lwx).

Now, let (y, z) be the interlacing link between p2 and p3, either one of the two disjoint

paths derived from paths p2 and p3 by excluding the interlacing link (y, z) be p23, and the

length of path p23 be lp23 .

At first, assume that there is no interlacing link between p1 and p23. As p1 is the shortest

path, lp1 ≤ lp23 ; otherwise, path p23 would be the shortest path. Thus, (lp1 + lp2−2∗ luv) ≤
(lp2 +lp23). As p2 is the 2nd shortest path in terms of the length (lp2−2∗luv), (lp2−2∗luv) ≤
lp23 ; otherwise, path p23 would be the 2nd shortest path. Thus, (lp1+lp2−2∗luv) ≤ (lp1+lp23).

Now, let (a, b) be an interlacing link between p1 and p23. As p2 is the 2nd shortest path

in terms of the length (lp2−2∗luv), (lp2−2∗luv) ≤ (lp23−lab); otherwise, path p23 would be the

2nd shortest path in terms of the length (lp23−lab). Thus, (lp1 +lp2−2∗luv) ≤ (lp1 +lp23−lab).

Therefore, (lp1 + lp2 − 2 ∗ luv) is minimum.

The result is hardly surprising. The lengths of the link-disjoint shortest paths are real
numbers. If x, y, and z are the length of shortest paths and x ≤ y ≤ z, this implies that
x+ y ≤ x+ z ≤ y + z. Let us generalize the above theorem for k disjoint paths.

Theorem A.2.6. If p1 is the shortest path and ∀j ∈ {2, . . . , k}, pj is the jth shortest path

in terms of the length (lpj
− 2 ∗

∑
luvj

), where
∑
luvj

is the length of all interlacing links

of pj with paths p1, . . . , pj−1, the total length
(
lp1 +

∑k
j=2(lpj

− 2 ∗
∑
luvj

)
)

of k disjoint

paths will be minimum.

Proof. Proof by induction on the number of disjoint paths k. As p1 is the shortest path

between the s−t node pair, length of k = 1 path is minimum. Now, from Theorem A.2.5,

the length of k = 2 disjoint paths (lp1 + lp2 − 2 ∗ luv2) is minimum.

Let us assume that the total length
(
lp1 +

∑n
j=2(lpj

− 2 ∗
∑
luvj

)
)

of n disjoint paths is

minimum.

Let pn+1 be the (n+ 1)th shortest path between s and t in terms of length (lpn+1 − 2 ∗∑
luvn+1), where

∑
luvn+1 is the length of all interlacing links of pn+1 with all the n disjoint

181

shortest paths. If pn+1 is included as the next disjoint shortest paths, pn+1 would contribute

(lpn+1 − 2 ∗
∑
luvn+1) to the total length of (n+ 1) disjoint shortest paths. Now, the total

length of (n+ 1) disjoint paths that includes path pn+1 is
(
lp1 +

∑n
j=2(lpj

− 2 ∗
∑
luvj

)
)

+

(lpn+1 − 2 ∗
∑
luvn+1).

Again, let pn+i be the (n + i)th shortest path between s and t in terms of length

(lpn+i
− 2 ∗

∑
luvn+i

), where i > 1 and
∑
luvn+i

is the length of all interlacing links of pn+i

with all the n disjoint shortest paths. If pn+i is included as the next disjoint shortest paths

instead of pn+1, pn+i would contribute (lpn+i
− 2 ∗

∑
luvn+i

) to the total length of (n + 1)

disjoint shortest paths. Now, the total length of (n + 1) disjoint paths that includes path

pn+i is
(
lp1 +

∑n
j=2(lpj

− 2 ∗
∑
luvj

)
)

+ (lpn+i
− 2 ∗

∑
luvn+i

).

As pn+1 will contribute less than or equal to the contribution of pn+i to the total length,

(lpn+1−2∗
∑
luvn+1) ≤ (lpn+i

−2∗
∑
luvn+i

); otherwise, pn+i would be the (n+1)th shortest

path. Hence,
(
lp1 +

∑n
j=2(lpj

−2∗
∑
luvj

)
)

+ (lpn+1−2∗
∑
luvn+1) will be less than or equal

to
(
lp1 +

∑n
j=2(lpj

− 2 ∗
∑
luvj

)
)
+ (lpk+i

− 2 ∗
∑
luvk+i

).

Thus,
(
lp1+

∑n
j=2(lpj

−2∗
∑
luvj

)
)

+ (lpn+1−2∗
∑
luvn+1), i.e.,

(
lp1+

∑n+1
j=2 (lpj

−2∗
∑
luvj

)
)

is minimum.

Theorem A.2.6 indicates that the disjoint shortest paths can be searched sequentially.
However, in the presence of interlacing links, a successor node will have less distance from
node s than that of its predecessor if the predecessor is the other end node of a potential
interlacing link.

Bhandari [13] provides a sketch for k > 2 to prove that interlacing will create negative
weight links but not negative weight cycles during sequential search of link-disjoint shortest
paths between s−t node pair. As a result, Dijkstra’s shortest path algorithm cannot be
used to find minimum weight disjoint shortest paths. Thus, Bhandari modifies Dijkstra’s
algorithm to find the actual next shortest path in the presence of interlacing links.

However, Figure A.1 shows a counter example that interlacing will create negative
cycles during sequential search of node-disjoint shortest paths between s−t node pair. The
negative cycle is formed by link (3, 7), potential interlacing link (7, 5), and link (5, 3); total
weight of the cycle is -1 because the link cost multiplier for link (7, 5), γ75, is -1. The
negative cycle is created during search for the 3rd node-disjoint shortest paths from node
4 to node 0.

182

0 1 3 4

2

7 5

6

7

1

1 1 1

4

1

1

1

1

3

3 1 2 9

1
st

Figure A.1: An example of a negative cycle created during search of 3rd node-disjoint

shortest path from node 4 to node 0. The first and the second node-disjoint shortest paths

are marked with arrows. The negative cycle is 3 → 7 → 5 → 3. (the figure is adapted

from the figures in Chapter 7 of the book [13])

Bhandari in [13] has proposed vertex splitting technique to find node-disjoint paths in
sequence. The technique effectively prevents traversal of negative cycles during subsequent
search for node-disjoint shortest paths. Instead of using vertex splitting, the method
proposed in this appendix ensures that unidirectional link (u, v) is relaxed from node u iff
v is not an ancestor of u to avoid negative cycles during subsequent search for node-disjoint
shortest paths. Thus, node-disjoint shortest paths derived sequentially may or may not
be optimal. Proving optimality of node-disjoint shortest paths needs further investigation.
We will deal with the problem in future.

A.3 Algorithms for Link-Disjoint Shortest Paths

We propose a novel method in Algorithm A.1 to find link-disjoint shortest paths. The
algorithm will find at most k link-disjoint shortest paths between s − t node pair in the
network Gst; s − t node pair can be chosen arbitrarily. If t is behind the min-cut from s
that has less than k links, the number of disjoint paths from s to t will be at most the

183

number of the links in the cut-set as per Menger Theorem [3]. The algorithm uses function
Bellman-Ford-for-Link-Disjoint-Shortest-Path to find link-disjoint shortest paths one at a
time.

Algorithm A.1: Link-Disjoint Path Finding Method
Input: Gst(V,E), s, t, k
Output: D
begin

1 D ← φ, n← 0
while n < k do

2 p(t)← Bellman-Ford-for-Link-Disjoint-Shortest-Path(Gst, s, t)
3 if p(t) == φ then Exit the loop.
4 Poison each unidirectional link of p(t) in Gst.

foreach undirected link (u, v) ∈ V do
if both unidirectional links (u, v) and (v, u) are poisoned then

5 Normalize both (u, v) and (v, u).

6 n← n+ 1

7 Delete all non-poisoned unidirectional links from Gst.
8 Normalize all poisoned unidirectional links in Gst.

while n > 0 do
Find p(t) from s to t in Gst.

9 D ← p(t)
10 Delete each unidirectional link of p(t) from Gst.
11 n← n− 1

12 Return D

The first while loop will find at most k link-disjoint shortest paths between the s − t
node pair in Gst. In line 2, next link-disjoint shortest path p(t) is derive by calling the
helper function Bellman-Ford-for-Link-Disjoint-Shortest-Path. The helpher function finds
the next link-disjoint shortest path considering all interlacing links. At any time, if the
next link-disjoint shortest path p(t) is not found, there will be no more link-disjoint path
between the s− t node pair in Gst. Thus, new link-disjoint paths will not be searched any
more and the first while loop will be terminated in line 3.

If the next link-disjoint shortest path p(t) is found in Gst, each unidirectional link of the
path is poisoned in line 4. Note that each poisoned unidirectional link in Gst is traversed
by a link-disjoint shortest path found so far. In line 5, interlacing links will be excluded
from each path pair to make them link-disjoint again as stated in Theorem A.2.2.

Once either k or the maximum number of link-disjoint shortest paths between the s− t
node pair are derived, all the unidirectional links not traversed by the link-disjoint paths,

184

which are non-poisoned unidirectional links, are deleted in line 7. Then, all the directional
links traversed by the link-disjoint paths, which are poisoned unidirectional links, are
normalized in line 8. At this point, Gst consists of only unidirectional links traversed by
the link-disjoint shortest paths from node s to node t.

The second while loop will identify link-disjoint shortest paths in Gst. Each iteration
of the loop finds one shortest path between nodes s and t by identifying connected links,
assigns the shortest path to D, and delete each unidirectional link of the path from Gst.
D is returned in line 12.

The helper function Bellman-Ford-for-Link-Disjoint-Shortest-Path is a simple extension
of the basic Bellman-Ford algorithm to derive the next shortest path from node s to node
t in Gst. In fact, we introduce only link cost multiplier γuv for unidirectional link (u, v) in
order to find the next shortest path that is link-disjoint from the existing paths in Gst.

Function Bellman-Ford-for-Link-Disjoint-Shortest-Path(Gst, s, t)
Input: Gst, s, t
Output: p(t)
begin

1 ∀v ∈ V , dv ←∞, pv ← φ, ds ← 0, and p(t)← φ
for i← 1 to |V | − 1 do

foreach unidirectional link (u, v) ∈ E do
2 γuv ← 1
3 if (v, u) is poisoned then γuv ← −1
4 if (u, v) is poisoned then γuv ←∞

if γuv ≤ 1 ∧ dv > du + γuv ∗ cuv then
5 dv ← du + γuv ∗ cuv, pv ← u

6 if dt 6=∞ then Build p(t) from s to t using predecessors.
7 Return p(t)

In the beginning, for each node u ∈ V , the distance du of the node from s is ∞ and
predecessor pu of the node is φ. The distance of s is assigned 0. The path p(t) is φ.

The outer for loop iterates |V | − 1 times. In each iteration, every unidirectional link of
the network is relaxed. During relaxation of each unidirectional link (u, v), cost multiplier
γuv for the link is updated in lines 2 to 4. At first γuv is initialized as 1 in line 2. If (v, u) is
in any existing path, γuv is -1 to satisfy Theorems A.2.4 and A.2.6 for link-disjoint paths.
If (u, v) link is included in the next path, it will create an interlacing link. Hence, twice
the cost of the link will be deducted from the total distance of the two relevant paths. On
the other hand, if (u, v) is in any existing path, the unidirectional link cannot be a part of

185

the next path. Hence, γuv is assigned ∞. Note that both (u, v) and (v, u) cannot be part
of two previously found disjoint paths.

If a shorter path from s to v via u that is link-disjoint from the previously identified
shortest paths is found, the distance of v, dv, is updated in line 5 by using link cost cuv
of undirected link (u, v) and the link cost multiplier γuv of unidirectional link (u, v). The
predecessor of v, pv, is also updated in line 5. In this case, u become new predecessor of v.

An example will make clear how the values of the link cost multipliers are assigned.
Let node v1 be connected with nodes v2, v3, . . . , v5. Assume that pv1 is v3. If v1 is not
traversed by any existing shortest path, each link cost multiplier will be 1, i.e., γv1v2 = 1,
γv1v3 = 1, γv1v4 = 1, and γv1v5 = 1. However, if v1 is traversed by an exiting shortest path
sp, link cost multipliers will assume different values. Let (v2, v1) and (v1, v5) are traversed
by sp. The link cost multipliers will be γv1v2 = −1, γv1v3 = 1, γv1v4 = 1, and γv1v5 =∞.

In line 6, if distance of t, dt, is finite, which indicates a disjoint shortest path is found,
path p(t) is formed using predecessors of the nodes in the path. In line 7, p(t) is returned,
which may be φ.

Now we derive worst-case complexity of the method. The first while loop iterates
k times. To find a shortest path, O(|V ||E|) steps are required by the helper function.
Poisoning links of p(t) in line 4 takes O(|E|) steps. Normalization of links poisoned both
way in line 5 takes O(|E|) steps. Thus, the first while loop takes O(k|V ||E|) steps to find
at most k shortest paths. Deletion of the non-poisoned links in line 7 takes O(|E|) steps.
Restoration of the poisoned links in line 8 also takes O(|E|) steps. The second while loop
takes O(|E|) steps using depth-first search to find link disjoint paths and to form m-trail
based on those paths as Gst at this point has links of the disjoint paths only. The overall
complexity of the method is O(k|V ||E|).

A.4 Algorithms for Node-Disjoint Shortest Paths

We extend Algorithm A.1 to find node-disjoint shortest paths. The method given in
Algorithm A.2 will find at most k node-disjoint shortest paths between s− t node pair in
the network Gst; s − t node pair can be chosen arbitrarily. The algorithm uses function
Bellman-Ford-for-Node-Disjoint-Shortest-Path to implement Corollary A.2.3 and Theorem
A.2.6 in order to find node-disjoint shortest paths one at a time.

In Algorithm A.2, only line 5 and the for loop in line 7 are new codes. Using node
coloring, the new codes identify if any existing shortest path traverses a node or not.

186

Initially each node is black. In line 5, each node traversed by the next shortest path is
colored red. In line 8, if all the links connected with a node become normalized, the color of
the node is changed back from red to black because no existing shortest path traverses the
node at this point. This will happen if an interlacing link is in fact an interlacing segment.
Node coloring along with interlacing will be used in the helper function to ensure that the
next shortest path is node-disjoint from all the previously identified shortest paths.

Algorithm A.2: Node-Disjoint Path Finding Method
Input: Gst(V,E), s, t, k
Output: D
begin

1 D ← φ, n← 0, and ∀u ∈ V , color[u] ← black
while n < k do

2 p(t)← Bellman-Ford-for-Node-Disjoint-Shortest-Path(Gst, s, t, color)
3 if p(t) == φ then Exit the loop.
4 Poison each unidirectional links of p(t) in Gst.
5 ∀u ∈ p(t), color[u] ← red

foreach undirected link (u, v) ∈ V do
if both unidirectional links (u, v) and (v, u) are poisoned then

6 Normalize both (u, v) and (v, u) in Gst.

7 foreach u ∈ p(t) do
if color[u] is red ∧ each unidirectional link (u, v) ∈ E is not poisoned then

8 color[u] ← black

9 n← n+ 1

10 Delete all non-poisoned unidirectional links from Gst.
11 Normalize all poisoned unidirectional links in Gst .

while n > 0 do
Find p(t) from s to t in Gst.

12 D ← p(t)
13 Delete each unidirectional links of p(t) from Gst.
14 n← n− 1

15 Return D

Similarly, the helper function Bellman-Ford-for-Node-Disjoint-Shortest-Path is an ex-
tension of the helper function Bellman-Ford-for-Link-Disjoint-Shortest-Path to derive the
next shortest node-disjoint path from node s to node t in Gst. In Bellman-Ford-for-Node-
Disjoint-Shortest-Path, only portions of the function related with link cost multiplier and
link relaxation are modified.

However, in addition to normal distance du from s to u and related normal predecessor
pu, each node u ∈ V has to keep track of three more variables: alternate distance idu from s

187

Function Bellman-Ford-for-Node-Disjoint-Shortest-Path(Gst, s, t, color)
Input: Gst, s, t, color
Output: p(t)
begin

1 ∀u ∈ V , du ←∞, pu ← φ, idu ←∞, ipu ← φ, apu ← false, ds ← 0, and p(t)← φ
for i← 1 to |V | − 1 do

foreach unidirectional link (u, v) ∈ E do
2 γuv ← 1
3 if (v, u) is poisoned then γuv ← −1
4 else if (u, v) is poisoned then γuv ←∞

else if u 6= s ∧ color[u] is red ∧ (u, pu) is not poisoned then
5 γuv ← 2

if v is not an ancestor of u then
if γuv ≤ 1 ∧ dv > du + γuv ∗ cuv then

6 dv ← du + γuv ∗ cuv, pv ← u, apv ← false

if γuv == 2 ∧ dv > idu + cuv then
7 dv ← idu + cuv, pv ← u, apv ← true

if γuv == −1 ∧ idv > du + γuv ∗ cuv then
8 idv ← du + γuv ∗ cuv, ipv ← u

if dt 6=∞ then
9 Build p(t) from s to t using predecessors, alternate predecessors, and alternate predecessor

flags.

10 Return p(t)

to u through a u adjacent interlacing link, alternate predecessor node ipu on the path from
s through the u adjacent interlacing link, and alternate predecessor flag apu. The alternate
predecessor flag apu will indicate whether the shortest path through an interlacing link to
the predecessor of u is used for updating du or not. In line 1, du and idu are initialized as
∞, pu and ipu are initialized as φ, and apu is initialized as false.

In line 5, link cost multiplier γuv for unidirectional link (u, v) is assigned 2 if a node
u ∈ V \s is traversed by an existing shortest path sp but its predecessor pu is not traversed
by sp, and either unidirectional link (v, u) or (u, v) is not traversed by sp. This new value of
the multiplier will block a normal path from s to v via u and will help to find an alternate
path from s to v via u if necessary.

Again, an example will make clear how the values of the link cost multipliers are
assigned. Let node v1 that is not s be connected with nodes v2, v3, . . . , v5. Assume that
pv1 is v3. If v1 is not traversed by any existing shortest path, each link cost multiplier will
be 1, i.e., γv1v2 = 1, γv1v3 = 1, γv1v4 = 1, and γv1v5 = 1. However, if v1 is traversed by

188

an exiting shortest path sp, link cost multipliers will assume different values. Let (v2, v1)
and (v1, v5) are traversed by sp. The link cost multipliers will be γv1v2 = −1, γv1v3 = 2,
γv1v4 = 2, and γv1v5 =∞. On the other hand, if pv1 is v5, (v1, pv1) will be a poisoned link.
As a result, the link cost multipliers will be γv1v2 = −1, γv1v3 = 1, γv1v4 = 1, and γv1v5 =∞.

To avoid negative cycles, distance dv from s to v and predecessor pv of v can be updated
if v is not an ancestor of u. In line 6, if γuv ≤ 1 and a shorter path from s to v through u
that is not traversing a u adjacent interlacing link is found, dv is updated from du and u
will be the predecessor pv of v; in this case the alternate parent flag apv of v will be false.
On the other hand, if γuv = 2, dv cannot be updated from du because the shortest path via
node u will be blocked to ensure that p(t) is node-disjoint from an existing shortest path
sp. However, the path through the potential interlacing link to u is perfectly valid node-
disjoint path. Thus, if a shorter path from s to v through u and the potential interlacing
link to u is found, distance dv is updated using alternate distance idu in line 7. In this
case, u will be the predecessor pv of v and alternate parent flag apv of v will become true.
Thus, a lower cost blocked path to a node cannot prevent a higher cost non-blocked path
through an interlacing link to the node to be used.

In line 8, alternate distance idv from s and alternate predecessor ipv of v are updated
if unidirectional link (u, v) is a potential interlacing link and a lower value of idv is found.

In line 9, if distance of t is finite, which indicates a disjoint shortest path is found, path
p(t) is formed using predecessors, alternate predecessors, and alternate predecessor flags
of the nodes in the path. If alternate predecessor flag apu of any node u is true, the new
shortest path from t to s through u and pu will follow the interlacing link from pu toward
interlacing parent of pu. In line 10, p(t) is returned, which may be φ.

Now we derive the worst-case complexity of the method. The first while loop iterates k
times. To find a shortest path, O(|V |2|E|) steps are required by the helper function. The
basic Bellman-Ford algorithm needs O(|V ||E|) steps. In Bellman-Ford-for-Node-Disjoint-
Shortest-Path, additional O(|V |) steps are required to check if v is an ancestor of u or not
before each link (u, v) is relaxed. Poisoning links of p(t) in line 4 takes O(|E|) steps. In line
5, O(|V |) steps are needed for node coloring. Normalization of links poisoned both way in
line 6 takes O(|E|) steps. The for loop in line 7 needs O(|V |+ |E|) steps. Thus, the first
while loop takes O(k|V |2|E|) steps to find at most k shortest paths. Deletion of the non-
poisoned links in line 10 takes O(|E|) steps. Restoration of the poisoned links in line 11
also takes O(|E|) steps. The second while loop takes O(|E|) steps using depth-first search
to find link disjoint paths and to form m-trail based on those paths as Gst at this point
has links of the disjoint paths only. The overall complexity of the method is O(k|V |2|E|).

189

A.5 Numerical Results

We have conducted numerical experiments to find disjoint paths between each pair of
nodes in all the networks given in Appendix B, where each link weight is equal to 1, and
the network given in Chapter 7 of the book [13] with all the suggested link weights. Both
the algorithms are able to find the maximum possible number of disjoint paths between
each node pair of the networks.

A.6 Conclusions

The algorithms developed in this appendix utilize, simplify, or extend the Ford-Fulkerson
maximum flow algorithm [18], Suurballe’s algorithm for shortest pairs of disjoint paths
[50], and Bhandari’s algorithm for disjoint paths [12] to derive the maximum number of
link-disjoint or node-disjoint shortest paths between any arbitrary node pair of a network.

190

Appendix B

Networks Used in the Experiments

The following networks are used in various numerical experiments done for the thesis. The
MN in each network is arbitrarily chosen.

v0

v1

v2v3
MN

Figure B.1: Tetrahedron: A network with 4 nodes and 6 links. (Refer to [3])

v0

v1

v2v3

v4

MN

Figure B.2: Network A: A network with 5 nodes and 8 links.

191

v0

v4

v5

v1

v2

v3

MN

Figure B.3: Network B: A network with 6 nodes and 9 links.

v0 v1

v2

v4

v3 v5

MN

Figure B.4: Octahedron: A network with 6 nodes and 12 links. (Refer to [3])

v0

v4

v5 v6

v1

v2

v3

MN

Figure B.5: Network C: A network with 7 nodes and 12 links.

192

v0 v1

v3

v5

v2

v6

v7v4

MN

Figure B.6: Cube: A network with 8 nodes and 12 links. (Refer to [3])

v0 v1

v4

v6

v8 v2

v3

v7

v5

MN

Figure B.7: Network D: A network with 9 nodes and 14 links.

v0

v9

v3

v8

v4

v7

v5

v6
v1

v2

MN

Figure B.8: CERNet: A network with 10 nodes and 16 links. (Refer to [56])

193

v0

v9

v3

v8

v4

v7

v5

v6
v1

v2

MN

Figure B.9: CERNet + 1 link: A network with 10 nodes and 17 links. One undirected link

(v3, v9) is added to make the network 3-connected. (Refer to [56])

v6

v7 v8

v9

v0

v2 v3

v5

v1 v4

MN

Figure B.10: SmallNet: A network with 10 nodes and 22 links. (Refer to [70])

v0 v3

v1

v2

v4

v5

v6

v11

v10

v7

v8

v9

v12

v13
MN

Figure B.11: NSFNet + 2 links: A network with 14 nodes and 23 links. Two undirected

links (v1, v6) and (v6, v10) are added to make the network 3-connected. (Refer to [70])

194

v1

v0

v2

v7

v9

v8

v10

v6v11

v5

v13

v4

v14

v3

v12

MN

Figure B.12: Bellcore + 1 link: A network with 15 nodes and 29 links. One undirected

link (v13, v14) is added to make the network 3-connected. (Refer to [70])

195

References

[1] S. Ahuja, S. Ramasubramanian, and M. Krunz. SRLG Failure Localization in All-
Optical Networks using Monitoring Cycles and Paths. In the proceedings of IEEE
INFOCOM, 2008, pages 181–185, 2008.

[2] S. Ahuja, S. Ramasubramanian, and M. Krunz. Single Link Failure Detection in All-
Optical Networks using Monitoring Cycles and Paths. IEEE/ACM Transactions on
Networking (TON), 17(4):1080–1093, August 2009.

[3] J. M. Aldous and R. J. Wilson. Graph and Applications: An Introductory Approach.
Springer, ISBN 1-85233-259-X, 2000.

[4] M. L. Ali, P.-H. Ho, and J. Tapolcai. Fault Localization in Linear and Ring Networks.
To be submitted.

[5] M. L. Ali, P.-H. Ho, and J. Tapolcai. SRLG Fault Localization using Nested M-trails.
To be submitted.

[6] M. L. Ali, P.-H. Ho, and J. Tapolcai. SRLG Fault Localization via M-Burst Frame-
work. In IEEE ICC’13 ONS (to be presented), Budapest, Hungary, June 2013.

[7] M. L. Ali, P.-H. Ho, J. Tapolcai, and B. Shihada. M-Burst: A Framework of SRLG
Failure Localization in All-Optical Networks. IEEE/OSA Journal of Optical Commu-
nications and Networking, 4(8):628–638, August 2012.

[8] M. L. Ali, P.-H. Ho, J. Tapolcai, and S. Subramaniam. SRLG Fault Localization via
M-Burst Framework. To be submitted.

[9] M. L. Ali, P.-H. Ho, B. Wu, J. Tapolcai, and B. Shihada. Monitoring Burst (M-Burst)-
A Novel Framework of Failure Localization in All-Optical Mesh Networks. In the
proceedings of the 8th International Workshop on Design of Reliable Communication
Networks, IEEE DRCN 2011, Krakow, Poland, October 2011.

196

[10] P. Babarczi, J. Tapolcai, and P.-H. Ho. Adjacent Link Failure Localization with Moni-
toring Trails in All-Optical Mesh Networks. IEEE/ACM Transactions on Networking,
19(3):907–920, June 2011.

[11] R. Bhandari. Optimal Diverse Routing in Telecommunication Fiber Networks. In
the proceedings of IEEE Infocom ’94, volume 3, pages 1498–1508, Toronto, On, 12-16
June 1994.

[12] R. Bhandari. Optimal Physical Diversity Algorithms and Survivable Networks. In the
proceedings of IEEE Symposium on Computer and Communication, pages 433–441,
1-3 July 1997.

[13] R. Bhandari. Survivable Networks: Algorithms for Diverse Routing. Kluwer Academic
Publishersr, ISBN 0-7923-8381-8, 1999.

[14] S. Bregni, G. Guerra, and A. Pattavina. State of the Art of Optical Switching Tech-
nology for All-Optical Networks. In Communications World, Rethymo, Greece, 2001.
WSES Press.

[15] Demeester et al. Resilience in Multi-Layer Networks. IEEE Communication Magazine,
37(8):70–76, 1999.

[16] R. H. Deng, A. A. Lazar, and W. Wang. A Probabilistic Approach to Fault Diagnosis
in Linear Lightwave Networks. IEEE Journal on Selected Areas in Communications,
11(9):1438–1448, December 1993.

[17] E. A. Doumith, S. A. Zahr, and M. Gagnaire. Monitoring-Tree: an Innovative Tech-
nique for Failure Localization in WDM Translucent Networks. In the proceedings of
IEEE Globecome Conference, Miami, Florida, USA, December 2010.

[18] L.R. Ford, Jr and D.R. Fulkerson. Maximal flow through a network. Canadian Journal
of Mathematics, 8:399–404, 1956.

[19] H.-B. Guo and G.-S. Kuo. Improvements on Fault Localization in GMPLS-based
Networks. In the proceedings of 2005 Workshop on High Performance Switching and
Routing, 2005 HPSR, pages 94–99, 12–14 May 2005.

[20] A. Haddad, E. A. Doumith, and M. Gagnaire. A Meta-Heuristic Approach for Moni-
toring Trail Assignment in WDM Optical Networks. In the proceedings of IFIP/IEEE
RNDM Conference, Moscow, Russia, October 2010.

197

[21] N. Harvey, M. Pătraşcu, Y. Wen, S. Yekhanin, and V. W. S. Chan. Non-Adaptive
Fault Diagnosis for All-Optical Networks via Combinatorial Group Testing on Graphs.
In the proceedings of IEEE INFOCOM 2007, pages 697–705.

[22] W. He, B. Wu, P.-H. Ho, and J. Tapolcai. Monitoring Trail Allocation for Fast Link
Failure Localization without Electronic Alarm Dissemination. In the proceedings of
IEEE ONDM 2011, 2011.

[23] W. He, B. Wu, P.-H. Ho, and J. Tapolcai. Monitoring Trail Allocation for SRLG
Failure Localization. In the proceedings of IEEE Globecom 2011, Houston, Texas,
USA, December 2011.

[24] I. Katzela and M. Schwartz. Schemes for Fault Identification in Communication Net-
works. IEEE/ACM Transactions on Networking, 3(6):753–764, December 1995.

[25] M. Khair. Fault Localization for Next Generation Survivable All-Optical Networks.
PhD thesis, University of Ottawa, On, Canada, 2008.

[26] M. Khair, B. Kantarci, J. Zheng, and H. T. Mouftah. Optimization for Fault Local-
ization in All-optical Networks. Journal of Lightwave Technology, 27(21), November
2009.

[27] M. Khair, J. Zheng, and H. T. Mouftah. Distributed Fault Localization for Multi-
Domain All-Optical Networks with Partial Power Monitoring. In the proceedings of
IEEE Symposium on Computers and Communications (ISCC’08), Marrakech, Mo-
rocco, July 2008.

[28] M. Khair, J. Zheng, and H. T. Mouftah. Distributed Fault Localization for Multi-
Domain All-Optical Networks without Power Monitoring. In the proceedings of 13th
International Telecommunications Network Strategy and Planning Symposium (NET-
WORKS 2008), Budapest, Hungary, Sept.-Oct. 2008.

[29] M. Khair, J. Zheng, and H. T. Mouftah. Distributed Multi-Failure Localization Pro-
tocol for All-Optical Networks. In the proceedings of 13th international conference on
Optical Network Design and Modeling, ONDM 2009, pages 1–6, IEEE Press Piscat-
away, NJ, USA, 2009.

[30] Y. Kobayashi, Y. Tada, S. Matsuoka, N. Hirayama, and K. Hagimoto. Supervisory
Systems for All-Optical Network Transmission Systems. In the proceedings of the
IEEE GLOBECOM 1996, pages 933–937, 1996.

198

[31] M. Laguna. A guide to Implementing Tabu Search. Investgación Operativa, 4(1):5–25,
April 1994.

[32] J. Lang, editor. Link Management Protocol (LMP). IETF RFC 4204, October 2005.

[33] J. P. Lang and J. Drake. Link Management Protocol (LMP). In Internet Draft,
draft-lang-mpls-lmp-00.txt. Work in Progress, 2000.

[34] J. H. Lee, N. Yoshikane, T. Tsuritani, and T. Otani. Optical Link Performance Moni-
toring using Extended Link Management Protocol for Transparent Optical Networks.
In the proceedings of the Optical Fiber Communication Conference, OFC 2009, San
Diego, CA, 2009.

[35] C.-S. Li and R. Ramaswami. Automatic Fault Detection, Isolation, and Recov-
ery in Transparent All-optical Networks. IEEE Journal of Lightwave Technology,
15(10):1784–1793, October 1997.

[36] M. Maier. Optical Switching Networks. Cambridge University Press, New York, NY,
USA, 2008.

[37] C. Mas, I. Tomkos, and O. K. Tonguz. Failure Location Algorithm for Transparent
Optical Networks. IEEE Journal on Selected Areas in Communications, 23(8):1508–
1519, August 2005.

[38] A. Pal, A. Mukherjee, M. K. Naskar, and M. Nasipuri. Minimal Monitor Activation
and Fault Localization in Optical Networks. Optical Switching and Networking, 8:46–
55, 2011.

[39] D. Papadimitriou and E. Mannie, editors. Analysis of Generalized Multi-Protocol Label
Switching (GMPLS)-based Recovery Mechanisms (including Protection and Restora-
tion). IETF RFC 4428, March 2006.

[40] C. Qiao and M. Yoo. Optical Burst Switching (OBS) - a New Paradigm for an Optical
Internet. Journal of High Speed Networks, 8(1):69–84, 1999.

[41] R. Ramaswami and K. N. Sivaranjan. Optical Networks: A Practical Perspective.
Morgan Kaufmann Publishers, San Francisco, CA, USA, 2002.

[42] N. S. V. Rao. Computational Complexity Issues in Operative Diagnosis of Graph-
based Systems. IEEE Transactions Computers, 42(4):447–457, April 1993.

199

[43] A. V. Sichani and H. T. Mouftah. Rolling Back Signaling Protocol - A Novel Fault
Localization WDM Mesh Networks. In China Communications, December 2004.

[44] A. V. Sichani and H. T. Mouftah. Limited-Perimeter Vector Matching Fault-
Localization Protocol for Transparent All-optical Communication Networks. IEEE
IET Communications, 1(3):472–478, June 2007.

[45] S. Stanic, G. Sahin, H. Choi, S. Subramaniam, and H.-A. Choi. Monitoring and
Alarm Management in Transparent Optical Networks. In the proceedings of IEEE
BROADNETS, 2007.

[46] S. Stanic and S. Subramaniam. Fault Localization in All-Optical Networks with User
and Supervisory Lightpaths. In the proceedings of IEEE ICC 2011.

[47] S. Stanic, S. Subramaniam, H. Choi, G. Sahin, and H.-A. Choi. On Monitoring
Transparent Optical Networks. In the proceedings of International Conference on
Parallel Processing Workshops, pages 217–223, August 2002.

[48] S. Stanic, S. Subramaniam, G. Sahin, H. Choi, and H.-A. Choi. Active Monitoring
and Alarm Management for Fault Localization in Transparent All-optical Networks.
IEEE Transactions on Network and Service Management, 7(2), June 2010.

[49] J. W. Suurballe. Disjoint paths in a Network. Networks, 4:125–145, 1974.

[50] J. W. Suurballe and R. E. Tarjan. A Quick Method for Finding Shortest Pairs of
Disjoint Paths. Networks, 14:325–336, 1984.

[51] J. Tapolcai, P.-H. Ho, L. Rónyai, P. Babarczi, and B. Wu. Failure Localization for
Shared Risk Link Groups in All-Optical Mesh Networks using Monitoring Trails. Jour-
nal of Lightwave Technology, 29(10):1597–1606, 15 May 2011.

[52] J. Tapolcai, P.-H. Ho, L. Rónyai, and B. Wu. Network-Wide Local Unambiguous
Failure Localization (NWL-UFL) via Monitoring Trails. IEEE/ACM Transactions on
Networking, to appear in 2013.

[53] J. Tapolcai, L. Rónyai, and P.-H. Ho. Optimal Solutions for Single Fault Localization
in Two Dimensional Lattice Networks. In the proceedings of IEEE Infocom 2010.

[54] J. Tapolcai, B. Wu, and P.-H. Ho. On Monitoring and Failure Localization in Mesh
All-Optical Networks. In the proceedings of IEEE InfoCom 09, pages 1008–1016,
April 2009.

200

[55] J. Tapolcai, B. Wu, P.-H. Ho, and L. Rónyai. A Novel Approach for Failure Lo-
calization in All-Optical Mesh Networks. IEEE/ACM Transactions on Networking,
19(1):275–285, February 2011.

[56] R. Wang, L. Xu, D. Wu, and S. Huang. An Effecive Mult-Fault Localization Algorithm
for Optical Networks. In the proceedings of 2009 Third International Symposium on
Intelligent Information Technology Application Workshops, 2009.

[57] Y. Wen, V. W. S. Chan, and L. Zheng. Efficient Fault-Diagnosis Algorithms for
All-Optical WDM Networks with Probabilistic Link Failures. IEEE/OSA Journal of
Lightwave Technology, 23(10):3358–3371, October 2005.

[58] Y. Wen, V. W. S. Chan, and L. Zheng. Efficient Fault Detection and Localization
for All-Optical Networks. In the proceedings of GlobeCom06, San Francisco, CA,
December 2006.

[59] Y. Wen, V. W. S. Chan, and L. Zheng. Efficient Fault Diagnosis for All-Optical
Networks: An Information Theoretic Approach. In the proceedings of ISIT06, Seattle,
WA, July 2006.

[60] B. Wu, P.-H. Ho, J. Tapolcai, and P. Babarczi. Optimal Allocation of Monitoring
Trails for Fast SRLG Failure Localization in All-Optical Networks. In the proceedings
of IEEE Global Telecommunication Conference (GLOBEOCOM) 2010, pages 1–5,
2010.

[61] B. Wu, P.-H. Ho, J. Tapolcai, and X. Jiang. A Novel Framework of Fast and Unam-
biguous Link Failure Localization via Monitoring Trails. In the proceedings of IEEE
Infocom 2010 WIP, 2010.

[62] B. Wu, P.-H. Ho, and K. L. Yeung. Monitoring Trail: a New Paradiam for Fast Link
Failure Localization in WDM Mesh Networks. In the proceedings of IEEE GLOBE-
COM 08, 2008.

[63] B. Wu, P.-H. Ho, and K. L. Yeung. Monitoring Trail: on Fast Link Failure Localization
in All-Optical WDM Mesh Networks. IEEE/OSA Journal of Lightwave Technology,
27(18):4175–4185, September 2009.

[64] B. Wu and K. L. Yeung. M2-CYCLE: an Optical Layer Algorithm for Fast Link Failure
Detection in All-Optical Mesh Networks. In the proceedings of IEEE GLOBECOM
’06, pages 1–5, December 2006.

201

[65] B. Wu and K. L. Yeung. Monitoring Cycle Design for Fast Link Failure Detection in
All-Optical Networks. In the proceedings of IEEE GLOBECOM 07, November 2007.

[66] B. Wu, K. L. Yeung, and P.-H. Ho. Monitoring Cycle Design for Fast Link Failure
Localization in All-Optical Networks. IEEE/OSA Journal of Lightwave Technology,
27(10):1392–1401, May 2009.

[67] R. Yadav and R. R. Aggarwal. Survey and Comparison of Optical Switch Fabrication
Techniques and Architectures. Journal of Computing, ISSN 2151-9617, 2(4), April
2010.

[68] H. Yan, R.-Y. Wang, Q.-J. Mao, and D.-P. Wu. A Fast Multi-fault Localization
Mechanism for Multi-domain All-optical Networks. In the proceedings of 2010 3rd
International Conference on Advance Computer Theory and Engineering (ICACTE),
2010.

[69] J. Y. Yen. Finding the K Shortest Loopless Paths in a Network. Management Science,
17(11):712–716, July 1971.

[70] H. Zeng, C. Huang, and A. Vukovic. Spanning-Tree based Monitoring-Cycle Con-
struction for Fault Detection and Localization in Meshed AONs. In the proceedings
of IEEE international Conference on Communications 2005, Seoul, Korea, 16-20 May
2005.

[71] H. Zeng, C. Huang, and A. Vukovic. A Novel Fault Detection and Localization Scheme
for Mesh All-Optical Networks based on Monitoring-Cycles. Photonic Network Com-
munications, 11(3):277–286, May 2006.

[72] H. Zeng, C. Huang, A. Vukovic, and Savoie M. Fault Detection and Path Performance
Monitoring in Meshed All-Optical Networks. In the proceedings of IEEE GLOBECOM
’04, 2004.

[73] H. Zeng and A. Vukovic. The Variant Cycle-Cover Problem in Fault Detection and
Localization for Mesh All-Optical Networks. Photonic Network Communications,
14(2):111–122, 2007.

[74] H. Zeng, A. Vukovic, and C. Huang. A Novel End-to-End Fault Detection and Local-
ization Protocol for Wavelength-Routed WDM Networks. In the proceedings of SPIE
2005, Photonics North, pages 1–8, Toronto, ON, Canada, 5970 (59702D), September
2005.

202

	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Background
	Motivation
	Statement of Problem
	Organization of the Thesis

	Literature Review
	Introduction
	Single-Link SRLG Fault Localization
	In-band Methods
	Probing Methods
	Out-of-band Methods
	Hybrid Methods
	Non-Alarm Disseminating Methods

	Multi-Link SRLG Fault Localization
	In-band Methods
	Probing Methods
	Out-of-band Methods
	Non-Alarm Disseminating Methods

	Fault Localization via M-Burst Framework
	Conclusions

	The M-Burst Framework
	Introduction
	Description of the Framework
	Problem Formulation
	M-Trail Allocation
	M-Burst Launching Time Scheduling
	Node Switch Fabric Configuration Scheduling

	Conclusions

	M-Burst on Single-Link SRLGs
	Introduction
	Problem Analysis
	M-Burst Launching Time Scheduling
	Node Switch Fabric Configuration Scheduling

	Joint Optimization
	ILP Formulation for Joint Optimization
	Numerical Results

	Separate Optimization
	ILP Formulation for M-Cycle Allocation
	ILP Formulation for M-Burst Launching Time Scheduling
	Numerical Results

	Heuristic Algorithms
	M-Cycle Allocation Method
	M-Burst Launching Time Scheduling
	Numerical Results

	Conclusions

	M-Burst on Multi-Link SRLGs
	Introduction
	MCF: A Multi-Link SRLG Fault Localization Method
	Theoretical Analysis
	ILP Formulation for the MCF Method
	Heuristic Algorithm for M-Trail Allocation
	Numerical Results

	DMCF: A Disjoint Path-Based Extension of the MCF Method
	Theoretical Analysis
	ILP Formulation for the DMCF Method
	Heuristic Algorithms for the DMCF Method
	Numerical Results

	Conclusions

	M-Burst using Nested M-Trails
	Introduction
	Single-Link SRLG Fault Localization in Linear Networks
	M-Trail Allocation in Linear Networks
	M-Burst Launching Time Scheduling in Linear Networks
	Node Switch Fabric Configuration Scheduling in Linear Networks
	Numerical Results

	Dual-Link SRLG Fault Localization in Ring Networks
	M-Trail Allocation in Ring Networks
	M-Burst Launching Time Scheduling in Ring Networks
	Node Switch Fabric Configuration Scheduling in Ring Networks
	Numerical Results

	Dual-Link SRLG Fault Localization in Mesh Networks
	M-Trail Allocation for Dual-Link Fault Localization
	M-Burst Launching Time Scheduling
	Node Switch Fabric Configuration Scheduling

	Multi-Link SRLG Fault Localization in Mesh Networks
	M-Trail Allocation for Multi-Link Fault Localization
	M-Burst Launching Time Scheduling
	Node Switch Fabric Configuration Scheduling

	ILP to Decompose Mesh Networks
	Heuristic to Decompose Mesh Networks
	Numerical Results
	Application of Nested M-Trails in Adaptive Probing
	Dual-Link SRLG Fault Localization in Mesh Networks
	Multi-Link SRLG Fault Localization in Mesh Networks

	Conclusions

	Conclusions and Future Work
	Introduction
	Contributions
	Publications
	Future Work
	Conclusions

	APPENDICES
	Simple Disjoint Path Algorithms
	Introduction
	Theoretical Analysis
	Link-Disjoint Shortest Paths
	Node-Disjoint Shortest Paths
	Numerical Results
	Conclusions

	Networks Used in the Experiments
	References

