2,273 research outputs found

    On uncertainty propagation in image-guided renal navigation: Exploring uncertainty reduction techniques through simulation and in vitro phantom evaluation

    Get PDF
    Image-guided interventions (IGIs) entail the use of imaging to augment or replace direct vision during therapeutic interventions, with the overall goal is to provide effective treatment in a less invasive manner, as an alternative to traditional open surgery, while reducing patient trauma and shortening the recovery time post-procedure. IGIs rely on pre-operative images, surgical tracking and localization systems, and intra-operative images to provide correct views of the surgical scene. Pre-operative images are used to generate patient-specific anatomical models that are then registered to the patient using the surgical tracking system, and often complemented with real-time, intra-operative images. IGI systems are subject to uncertainty from several sources, including surgical instrument tracking / localization uncertainty, model-to-patient registration uncertainty, user-induced navigation uncertainty, as well as the uncertainty associated with the calibration of various surgical instruments and intra-operative imaging devices (i.e., laparoscopic camera) instrumented with surgical tracking sensors. All these uncertainties impact the overall targeting accuracy, which represents the error associated with the navigation of a surgical instrument to a specific target to be treated under image guidance provided by the IGI system. Therefore, understanding the overall uncertainty of an IGI system is paramount to the overall outcome of the intervention, as procedure success entails achieving certain accuracy tolerances specific to individual procedures. This work has focused on studying the navigation uncertainty, along with techniques to reduce uncertainty, for an IGI platform dedicated to image-guided renal interventions. We constructed life-size replica patient-specific kidney models from pre-operative images using 3D printing and tissue emulating materials and conducted experiments to characterize the uncertainty of both optical and electromagnetic surgical tracking systems, the uncertainty associated with the virtual model-to-physical phantom registration, as well as the uncertainty associated with live augmented reality (AR) views of the surgical scene achieved by enhancing the pre-procedural model and tracked surgical instrument views with live video views acquires using a camera tracked in real time. To better understand the effects of the tracked instrument calibration, registration fiducial configuration, and tracked camera calibration on the overall navigation uncertainty, we conducted Monte Carlo simulations that enabled us to identify optimal configurations that were subsequently validated experimentally using patient-specific phantoms in the laboratory. To mitigate the inherent accuracy limitations associated with the pre-procedural model-to-patient registration and their effect on the overall navigation, we also demonstrated the use of tracked video imaging to update the registration, enabling us to restore targeting accuracy to within its acceptable range. Lastly, we conducted several validation experiments using patient-specific kidney emulating phantoms using post-procedure CT imaging as reference ground truth to assess the accuracy of AR-guided navigation in the context of in vitro renal interventions. This work helped find answers to key questions about uncertainty propagation in image-guided renal interventions and led to the development of key techniques and tools to help reduce optimize the overall navigation / targeting uncertainty

    Exploiting Temporal Image Information in Minimally Invasive Surgery

    Get PDF
    Minimally invasive procedures rely on medical imaging instead of the surgeons direct vision. While preoperative images can be used for surgical planning and navigation, once the surgeon arrives at the target site real-time intraoperative imaging is needed. However, acquiring and interpreting these images can be challenging and much of the rich temporal information present in these images is not visible. The goal of this thesis is to improve image guidance for minimally invasive surgery in two main areas. First, by showing how high-quality ultrasound video can be obtained by integrating an ultrasound transducer directly into delivery devices for beating heart valve surgery. Secondly, by extracting hidden temporal information through video processing methods to help the surgeon localize important anatomical structures. Prototypes of delivery tools, with integrated ultrasound imaging, were developed for both transcatheter aortic valve implantation and mitral valve repair. These tools provided an on-site view that shows the tool-tissue interactions during valve repair. Additionally, augmented reality environments were used to add more anatomical context that aids in navigation and in interpreting the on-site video. Other procedures can be improved by extracting hidden temporal information from the intraoperative video. In ultrasound guided epidural injections, dural pulsation provides a cue in finding a clear trajectory to the epidural space. By processing the video using extended Kalman filtering, subtle pulsations were automatically detected and visualized in real-time. A statistical framework for analyzing periodicity was developed based on dynamic linear modelling. In addition to detecting dural pulsation in lumbar spine ultrasound, this approach was used to image tissue perfusion in natural video and generate ventilation maps from free-breathing magnetic resonance imaging. A second statistical method, based on spectral analysis of pixel intensity values, allowed blood flow to be detected directly from high-frequency B-mode ultrasound video. Finally, pulsatile cues in endoscopic video were enhanced through Eulerian video magnification to help localize critical vasculature. This approach shows particular promise in identifying the basilar artery in endoscopic third ventriculostomy and the prostatic artery in nerve-sparing prostatectomy. A real-time implementation was developed which processed full-resolution stereoscopic video on the da Vinci Surgical System

    Image-based registration methods for quantification and compensation of prostate motion during trans-rectal ultrasound (TRUS)-guided biopsy

    Get PDF
    Prostate biopsy is the clinical standard for cancer diagnosis and is typically performed under two-dimensional (2D) transrectal ultrasound (TRUS) for needle guidance. Unfortunately, most early stage prostate cancers are not visible on ultrasound and the procedure suffers from high false negative rates due to the lack of visible targets. Fusion of pre-biopsy MRI to 3D TRUS for targeted biopsy could improve cancer detection rates and volume of tumor sampled. In MRI-TRUS fusion biopsy systems, patient or prostate motion during the procedure causes misalignments in the MR targets mapped to the live 2D TRUS images, limiting the targeting accuracy of the biopsy system. In order to sample smallest clinically significant tumours of 0.5 cm3with 95% confidence, the root mean square (RMS) error of the biopsy system needs to be The target misalignments due to intermittent prostate motion during the procedure can be compensated by registering the live 2D TRUS images acquired during the biopsy procedure to the pre-acquired baseline 3D TRUS image. The registration must be performed both accurately and quickly in order to be useful during the clinical procedure. We developed an intensity-based 2D-3D rigid registration algorithm and validated it by calculating the target registration error (TRE) using manually identified fiducials within the prostate. We discuss two different approaches that can be used to improve the robustness of this registration to meet the clinical requirements. Firstly, we evaluated the impact of intra-procedural 3D TRUS imaging on motion compensation accuracy since the limited anatomical context available in live 2D TRUS images could limit the robustness of the 2D-3D registration. The results indicated that TRE improved when intra-procedural 3D TRUS images were used in registration, with larger improvements in the base and apex regions as compared with the mid-gland region. Secondly, we developed and evaluated a registration algorithm whose optimization is based on learned prostate motion characteristics. Compared to our initial approach, the updated optimization improved the robustness during 2D-3D registration by reducing the number of registrations with a TRE \u3e 5 mm from 9.2% to 1.2% with an overall RMS TRE of 2.3 mm. The methods developed in this work were intended to improve the needle targeting accuracy of 3D TRUS-guided biopsy systems. The successful integration of the techniques into current 3D TRUS-guided systems could improve the overall cancer detection rate during the biopsy and help to achieve earlier diagnosis and fewer repeat biopsy procedures in prostate cancer diagnosis

    New Technology and Techniques for Needle-Based Magnetic Resonance Image-Guided Prostate Focal Therapy

    Get PDF
    The most common diagnosis of prostate cancer is that of localized disease, and unfortunately the optimal type of treatment for these men is not yet certain. Magnetic resonance image (MRI)-guided focal laser ablation (FLA) therapy is a promising potential treatment option for select men with localized prostate cancer, and may result in fewer side effects than whole-gland therapies, while still achieving oncologic control. The objective of this thesis was to develop methods of accurately guiding needles to the prostate within the bore of a clinical MRI scanner for MRI-guided FLA therapy. To achieve this goal, a mechatronic needle guidance system was developed. The system enables precise targeting of prostate tumours through angulated trajectories and insertion of needles with the patient in the bore of a clinical MRI scanner. After confirming sufficient accuracy in phantoms, and good MRI-compatibility, the system was used to guide needles for MRI-guided FLA therapy in eight patients. Results from this case series demonstrated an improvement in needle guidance time and ease of needle delivery compared to conventional approaches. Methods of more reliable treatment planning were sought, leading to the development of a systematic treatment planning method, and Monte Carlo simulations of needle placement uncertainty. The result was an estimate of the maximum size of focal target that can be confidently ablated using the mechatronic needle guidance system, leading to better guidelines for patient eligibility. These results also quantified the benefit that could be gained with improved techniques for needle guidance

    Toward optimization of target planning for magnetic resonance image-targeted, 3D transrectal ultrasound-guided fusion prostate biopsy

    Get PDF
    The current clinical standard for diagnosis of prostate cancer (PCa) is 2D transrectal ultrasound (TRUS)-guided biopsy. However, this procedure has a false negative rate of 21-47% and therefore many patients return for repeat biopsies. A potential solution for improving upon this problem is “fusion” biopsy, where magnetic resonance imaging (MRI) is used for PCa detection and localization prior to biopsy. In this procedure, tumours are delineated on pre-procedural MRI and registered to the 3D TRUS needle guidance modality. However, fusion biopsy continues to yield false negative results and there remains a gap in knowledge regarding biopsy needle target selection. Within-tumour needle targets are currently chosen ad hoc by the operating clinician without accounting for guidance system and registration errors. The objective of this thesis was to investigate how the choice of target selection strategy and number of biopsy attempts made per lesion may affect PCa diagnosis in the presence of needle delivery error. A fusion prostate biopsy simulation software platform was developed, which allowed for the investigation of how needle delivery error affects PCa diagnosis and cancer burden estimation. Initial work was conducted using 3D lesions contoured on MRI by collaborating radiologists. The results indicated that more than one core must be taken from the majority of lesions to achieve a sampling probability 95% for a biopsy system with needle delivery error ≥ 3.5 mm. Furthermore, it was observed that the optimal targeting scheme depends on the relative levels of systematic and random needle delivery errors inherent to the specific fusion biopsy system. Lastly, PCa tumours contoured on digital histology images by genitourinary pathologists were used to conduct biopsy simulations. The results demonstrated that needle delivery error has a substantial impact on the biopsy core involvement observed, and that targeting of high-grade lesions may result in higher core involvement variability compared with lesions of all grades. This work represents a first step toward improving the manner in which lesions are targeted using fusion biopsy. Successful integration of these findings into current fusion biopsy system operation could lead to earlier PCa diagnosis with the need for fewer repeat biopsy procedures

    Evaluating Human Performance for Image-Guided Surgical Tasks

    Get PDF
    The following work focuses on the objective evaluation of human performance for two different interventional tasks; targeted prostate biopsy tasks using a tracked biopsy device, and external ventricular drain placement tasks using a mobile-based augmented reality device for visualization and guidance. In both tasks, a human performance methodology was utilized which respects the trade-off between speed and accuracy for users conducting a series of targeting tasks using each device. This work outlines the development and application of performance evaluation methods using these devices, as well as details regarding the implementation of the mobile AR application. It was determined that the Fitts’ Law methodology can be applied for evaluation of tasks performed in each surgical scenario, and was sensitive to differentiate performance across a range which spanned experienced and novice users. This methodology is valuable for future development of training modules for these and other medical devices, and can provide details about the underlying characteristics of the devices, and how they can be optimized with respect to human performance

    Robotically Steered Needles: A Survey of Neurosurgical Applications and Technical Innovations

    Get PDF
    This paper surveys both the clinical applications and main technical innovations related to steered needles, with an emphasis on neurosurgery. Technical innovations generally center on curvilinear robots that can adopt a complex path that circumvents critical structures and eloquent brain tissue. These advances include several needle-steering approaches, which consist of tip-based, lengthwise, base motion-driven, and tissue-centered steering strategies. This paper also describes foundational mathematical models for steering, where potential fields, nonholonomic bicycle-like models, spring models, and stochastic approaches are cited. In addition, practical path planning systems are also addressed, where we cite uncertainty modeling in path planning, intraoperative soft tissue shift estimation through imaging scans acquired during the procedure, and simulation-based prediction. Neurosurgical scenarios tend to emphasize straight needles so far, and span deep-brain stimulation (DBS), stereoelectroencephalography (SEEG), intracerebral drug delivery (IDD), stereotactic brain biopsy (SBB), stereotactic needle aspiration for hematoma, cysts and abscesses, and brachytherapy as well as thermal ablation of brain tumors and seizure-generating regions. We emphasize therapeutic considerations and complications that have been documented in conjunction with these applications

    Neurological Disease Diagnosis and Treatment via Precise Robotic Intervention

    Get PDF
    This work focuses on the development and application of mechatronic systems for measurement, diagnosis and treatment of acute and chronic neurological conditions. The development of an automated tendon reflex stimulation device, as well as analysis and classification methods for both automated and manual stimulus delivery will provide the groundwork for improvements to both diagnosis and treatment of neurological injuries. In a similar vein, development of a variable resonance actuator for Magnetic Resonance Elastography imaging enables tissue property measurement of the intervertebral discs, hopefully providing an early marker and better understanding of degeneration. In addition to MRI based spinal tissue property measurements, an MRI guided high precision robot is developed for direct injection into the spinal cord, along with an accompanying image guided control scheme. The novel parallel plane mechanism enables control of 4 degrees of freedom, while the linear piezoelectric actuators in a direct drive configuration enables superior accuracy. Taken together, these robotic device developments constitute contributions to the field of precision medical robotics with applications to physiological understanding of the human body.Ph.D
    • …
    corecore