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Abstract 

Prostate biopsy is the clinical standard for cancer diagnosis and is typically performed 

under two-dimensional (2D) transrectal ultrasound (TRUS) for needle guidance.  

Unfortunately, most early stage prostate cancers are not visible on ultrasound and the 

procedure suffers from high false negative rates due to the lack of visible targets.  Fusion 

of pre-biopsy MRI to 3D TRUS for targeted biopsy could improve cancer detection rates 

and volume of tumor sampled.  In MRI-TRUS fusion biopsy systems, patient or prostate 

motion during the procedure causes misalignments in the MR targets mapped to the live 

2D TRUS images, limiting the targeting accuracy of the biopsy system.  

In order to sample smallest clinically significant tumours of 0.5 cm3 with 95% 

confidence, the root mean square (RMS) error of the biopsy system needs to be <2.5 mm.  

In addition to intermittent prostate motion during the procedure, prostate deformation due 

to needle insertion and biopsy gun firing is a potential source of error that limits needle 

targeting accuracy.  Using non-rigid registration of 2D TRUS images, we quantified the 

deformation that occurs during the needle insertion and the biopsy gun firing and showed 

that the tissue deformation was such that throughout the length of the needle axis, 

spherical tumours with radius 2.1 mm or more can be sampled with 95% confidence, 

under the assumption of zero error elsewhere in the biopsy system. 

The target misalignments due to intermittent prostate motion during the procedure 

can be compensated by registering the live 2D TRUS images acquired during the biopsy 

procedure to the pre-acquired baseline 3D TRUS image.  The registration must be 

performed both accurately and quickly in order to be useful during the clinical procedure.  

We developed an intensity-based 2D-3D rigid registration algorithm and validated it by 
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calculating the target registration error (TRE) using manually identified fiducials within 

the prostate.  We discuss two different approaches that can be used to improve the 

robustness of this registration to meet the clinical requirements.  Firstly, we evaluated the 

impact of intra-procedural 3D TRUS imaging on motion compensation accuracy since 

the limited anatomical context available in live 2D TRUS images could limit the 

robustness of the 2D-3D registration.  The results indicated that TRE improved when 

intra-procedural 3D TRUS images were used in registration, with larger improvements in 

the base and apex regions as compared with the mid-gland region.  Secondly, we 

developed and evaluated a registration algorithm whose optimization is based on learned 

prostate motion characteristics.  Compared to our initial approach, the updated 

optimization improved the robustness during 2D-3D registration by reducing the number 

of registrations with a TRE > 5 mm from 9.2% to 1.2% with an overall RMS TRE of 2.3 

mm.  

The methods developed in this work were intended to improve the needle 

targeting accuracy of 3D TRUS-guided biopsy systems.  The successful integration of the 

techniques into current 3D TRUS-guided systems could improve the overall cancer 

detection rate during the biopsy and help to achieve earlier diagnosis and fewer repeat 

biopsy procedures in prostate cancer diagnosis. 

 

Keywords: prostate biopsy, three-dimensional ultrasound, transrectal ultrasound, 

prostate motion, motion compensation, image registration, 2D-3D registration, 

registration optimization 

  



 

 

iv 

 

Co-Authorship 

This thesis is an integration of four articles, each constituting a chapter; the journal 

publications listed in the following are either published, in revision, or in preparation for 

submission.  

Chapter 2: Quantification of prostate deformation due to needle insertion during TRUS-

guided biopsy: Comparison of hand-held and mechanically stabilized systems, Medical 

Physics, 38 (3), 1718-32 (2011). 

 

My contributions for this work included data preparation, development of software to 

perform image registration, manual identification of fiducials for validation, 

implementation of software for results analysis and validation, and manuscript 

preparation. C. Romagnoli and J. Izawa acquired the necessary clinical images to perform 

the experiments.  The work was motivated by A. Ward who contributed many ideas 

related to image registration and statistical data analysis in a supervisory role and helped 

in manuscript preparation.  All authors helped in manuscript review.  The work was 

performed under the supervision of J. Samarabandu and A. Fenster. 

 

Chapter 3: 2D-3D rigid registration to compensate for prostate motion during 3D TRUS-

guided biopsy, Medical Physics, 40(2), 022904, (2013). 

 

My contributions for this chapter included data selection and preparation, development of 

software algorithms to perform registrations, manual identification of fiducials for 

validation, developing software code for validation, and manuscript preparation.  C. 

Romognoli acquired clinical images for this retrospective study and L. Gardi helped with 

the data acquisition, recording and clinical integration of the software to the biopsy 

platform.  R. Zhao helped with the graphics processing unit (GPU) implementation of the 



 

 

v 

 

code.  All authors helped in the manuscript preparation and review.  The work was 

conducted under the supervision of A. Ward and A. Fenster. 

 

Chapter 4: Evaluating the utility of intra-procedure 3D TRUS image information in 

guiding registration for motion compensation during prostate biopsy, submitted to 

Medical Physics, January, 2014 - currently under revision. 

 

My contributions to this work included data preparation, writing software to perform 

image registration experiments, writing software code to perform validation, and 

manuscript preparation.  D. Cool and C. Romagnoli were involved in clinical image 

acquisition.  D. Cool manually identified fiducials in the images for validation and 

provided clinical perspectives with many brainstorming sessions. All authors aided in 

manuscript preparation. This work was performed under the supervision A. Ward and A. 

Fenster. 

 

Chapter 5: Robust 2D-3D registration optimization using learned prostate motion data, 

this work is currently under preparation to IEEE TMI. 

 

Preliminary version of this work was published in the proceedings of Medical Image 

Computing and Computer Assistant Intervention (MICCAI), 2013.  My contributions to 

this work included data preparation, development and implementation of registration 

algorithms, writing software code to perform validation, and manuscript preparation.  D. 

Cool and C. Romagnoli were involved in clinical image acquisitions.  D. Cool manually 

identified fiducials in the images for validation. The work was performed under the 

supervision of A. Ward and A. Fenster. 

  



 

 

vi 

 

Acknowledgements 

The support and guidance of many individuals were instrumental to the completion of the 

work presented in this thesis.  Firstly, I would like to thank Dr. Aaron Fenster for the 

mentorship and supervision provided throughout my graduate studies.  I am profoundly 

inspired by his experienced perspectives in vastly diverse areas and his passionate 

enthusiasm in graduate supervision.  His influence moulded my research trajectory during 

my graduate studies and cultivated the motivation to continue to grow as a researcher. 

I was extremely fortunate to have been able to work with Dr. Aaron Ward from 

the very beginning of my graduate studies. I would like to express my utmost gratitude 

for his enormous amount of time and effort that nourished this work and instilled in me a 

continuous passion for research.  His availability to engage in illuminating brainstorming 

sessions, his perspectives on research methodology and his detailed feedback to improve 

written/oral presentation skills when disseminating research work were instrumental in 

shaping my academic and personal growth during these years.  

I am indebted to Dr. Jagath Samarabandu for providing me the opportunity to 

reach greater heights in research and his guidance and encouragement provided 

throughout the years in many different ways as a supervisor. I would also like to thank 

Dr. Abbas Samani for his guidance and mentorship as a member of the advisory 

committee. 

Many individuals in Dr. Fenster’s lab and Western University contributed to build 

an academically stimulating environment to perform cutting-edge research.  I would like 

to especially thank Dr. Derek Cool for his involvement and enthusiasm shown for this 

research.  He provided me with invaluable perspectives that elevated my understanding 



 

 

vii 

 

of the problems in the clinical domain.  I am also grateful for Lori Gardi and Dr. David 

Tessier for being very helpful with the work related to the laboratory prototype of the 

biopsy system.  Lori integrated and tested the new software solutions in the biopsy 

system and always willing to help with new experiments and protocols.  David managed 

the clinical trials in an efficient manner and assisted with many daily activities in the lab.   

I would also like thank Ren Zhao for his help with the GPU implementation.  I was also 

fortunate to work with Dr. Jing Yuan including many brainstorming sessions where he 

shared his knowledge and expertise in optimization algorithms applicable to image 

registration problems.  

There are many individuals in Dr. Fenster’s and Dr. Ward’s labs who need to be 

recognized for their contributions to my research as well as the companionship that made 

my stay during the lab a memorable one.  My sincere gratitude goes to Vaishali Karnik, 

Dr. Cesare Romagnoli, Igor Gyackov, Dr. Chandima Edirisinghe, Dr. Eranga Ukwatta,  

Dr. Jeremy Cepek, Eli Gibson, Hamid Neshat, Bon Ryu, Yue Sun, Dr. Wu Qiu, Dr. 

Derek Cool, Peter Martin, Sarah Mattonen, Yiwen Xu, Mehrnoush Salarian, Jessica 

Kishimoto, Dr. Harish Sharma, Maysam Shahedi, Jacques Montreuil, Kevin Barker, Dr. 

Suha Ghoul, Dr, Bahram Marami, Manale Saikaly, Matt Gravett, Matt Kramers, Tom 

Hrinivich and many other colleagues in different labs at the Robarts Research Institute 

and Western University who continuously supported me at multiple stages during my 

graduate studies.  Finally, I would like to thank my parents, my siblings and other 

extended family and friends for their incredible support and encouragement along every 

step during this journey. 

  



 

 

viii 

 

Table of Contents 

 

Abstract ii 

Co-Authorship iv 

Table of Contents viii 

List of Tables xii 

List of Figures xiii 

List of Abbreviations xviii 

Chapter 1. Introduction 1 
1.1 Prostate cancer and its prevalence............................................................................ 3 

1.2 Prostate cancer diagnosis ......................................................................................... 6 
1.2.1 Digital rectal examination (DRE) .................................................................. 6 
1.2.2 Prostate specific antigen (PSA) test ............................................................... 6 

1.2.3 Prostate biopsy ............................................................................................... 7 
1.3 Prostate cancer imaging ......................................................................................... 10 

1.3.1 Ultrasound imaging ...................................................................................... 10 
1.3.2 Computed tomography (CT) and nuclear imaging ...................................... 13 

1.3.3 MR imaging ................................................................................................. 13 
1.4 3D-guided prostate biopsy systems ........................................................................ 16 

1.4.1 Direct MR-guided biopsy systems ............................................................... 17 

1.4.2 MR-TRUS fusion biopsy systems ............................................................... 19 
1.5 Challenges in 3D-guided biopsy systems .............................................................. 21 

1.6 Image-based registration techniques ...................................................................... 24 
1.7 Image registration accuracy required for the clinical application .......................... 26 
1.8 Hypothesis .............................................................................................................. 27 

1.9 Objectives ............................................................................................................... 27 
1.10 Thesis outline ....................................................................................................... 28 

1.10.1 Chapter 2 - Quantification of prostate deformation due to needle 

insertion during TRUS-guided biopsy: Comparison of hand-held and 

mechanically stabilized systems ............................................................... 28 

1.10.2 Chapter 3 - 2D-3D rigid registration to compensate for prostate motion 

during 3D TRUS-guided biopsy ............................................................... 29 
1.10.3 Chapter 4 – Evaluating the utility of intra-procedural 3D TRUS image 

information in guiding registration for displacement compensation 

during prostate biopsy. .............................................................................. 31 
1.10.4 Chapter 5 – Robust 2D-3D registration optimization to motion 

compensation using learned prostate motion data .................................... 33 
References ................................................................................................................... 34 



 

 

ix 

 

Chapter 2. Quantification of prostate deformation due to needle insertion during 

TRUS-guided biopsy: Comparison of hand-held and mechanically stabilized 

systems 46 
2.1 Introduction ............................................................................................................ 46 
2.2 Method ................................................................................................................... 49 

2.2.1 Data Acquisition .......................................................................................... 49 
2.2.2 Image registration ........................................................................................ 51 
2.2.3 Image registration validation ....................................................................... 53 
2.2.4 Quantification of deformation...................................................................... 54 

2.3 Results .................................................................................................................... 63 

2.3.1 Image registration validation ....................................................................... 63 
2.3.2 Quantification of deformation...................................................................... 63 

2.4 Discussion .............................................................................................................. 69 

2.4.1 Image registration validation ....................................................................... 69 
2.4.2 Quantification of deformation...................................................................... 70 
2.4.3 Limitations ................................................................................................... 72 

2.5 Conclusion ............................................................................................................. 74 

References ................................................................................................................... 77 

Chapter 3. 2D-3D rigid registration to compensate for prostate motion during 

3D TRUS-guided biopsy 79 
3.1 Introduction ............................................................................................................ 79 
3.2 Materials and methods ........................................................................................... 84 

3.2.1 Data acquisition ........................................................................................... 84 

3.2.2 2D-3D registration – biopsy protocol .......................................................... 85 
3.2.3 Incremental 2D-3D registration for continuous intra-biopsy motion 

compensation ............................................................................................ 88 

3.2.4 2D-3D registration – probe pressure protocol ............................................. 88 
3.2.5 Validation ..................................................................................................... 89 

3.2.6 GPU implementation ................................................................................... 93 
3.2.7 Correlation between image similarity metric and misalignment ................. 93 
3.2.8 TRE as a function of distance to the probe tip ............................................. 94 

3.3 Results .................................................................................................................... 95 
3.3.1 Validation: biopsy protocol data .................................................................. 95 
3.3.2 Validation: probe pressure protocol data ..................................................... 98 

3.3.3 Speed of execution ..................................................................................... 100 

3.3.4 Correlation between image similarity measure and misalignment ............ 100 

3.3.5 TRE as a function of distance to the probe tip ........................................... 104 
3.4 Discussion ............................................................................................................ 104 

3.4.1 Accuracy of registration ............................................................................. 104 
3.4.2 Change of TRE with time during biopsy ................................................... 106 
3.4.3 Probe pressure protocol.............................................................................. 107 

3.4.4 Correlation between similarity metric and TRE ........................................ 108 
3.5 Conclusions .......................................................................................................... 108 
References ................................................................................................................. 110 



 

 

x 

 

Chapter 4. Evaluating the utility of intra-procedural 3D TRUS image 

information in guiding registration for motion compensation during prostate 

biopsy 112 
4.1 Introduction .......................................................................................................... 112 
4.2 Materials and methods ......................................................................................... 115 

4.2.1 Materials .................................................................................................... 115 
4.2.2 Image registration ...................................................................................... 117 
4.2.3 Registration error measurement ................................................................. 120 
4.2.4 Experimental methods ............................................................................... 120 
4.2.5 TRE for different fixed image configurations ........................................... 121 

4.2.6 TRE for base, mid-gland and apex regions ................................................ 122 
4.3 Results .................................................................................................................. 123 

4.3.1 TRE for different fixed image configurations ........................................... 123 

4.3.2 TRE for base, mid-gland and apex regions ................................................ 126 
4.4 Discussion ............................................................................................................ 128 

4.4.1 TRE for different fixed image configurations ........................................... 130 
4.4.2 TRE for base, mid-gland and apex regions ................................................ 131 

4.4.3 Limitations ................................................................................................. 131 
4.5 Conclusion ........................................................................................................... 133 

References ................................................................................................................. 134 

Chapter 5. Robust 2D-3D registration optimization to motion compensation 

using learned prostate motion data 137 
5.1 Introduction .......................................................................................................... 137 

5.2 Materials and Methods ......................................................................................... 139 
5.2.1 Data acquisition ......................................................................................... 139 
5.2.2 Modelling rigid prostate motion ................................................................ 140 

5.2.3 Robust search strategy during registration optimization ........................... 142 
5.2.4 Experiments ............................................................................................... 146 

5.3 Results .................................................................................................................. 146 
5.4 Discussion ............................................................................................................ 150 
5.5 Conclusions .......................................................................................................... 152 

References ................................................................................................................. 153 

Chapter 6. Conclusions and Directions for Future Work 155 
6.1 Conclusions .......................................................................................................... 155 

6.2 Suggestions for future work ................................................................................. 159 

6.2.1 Applications in ongoing clinical studies .................................................... 159 

6.2.2 Applications in other clinical procedures .................................................. 160 
6.2.3 Applications in image-based tracking ........................................................ 161 

References ................................................................................................................. 163 

Appendix A 164 
A.1 Permission to reproduce previously published material in Chapters 2, 3 and 4 . 164 
A.2 Permission to reproduce previously published material in Chapters 5 ............... 165 



 

 

xi 

 

Curriculum Vitae 169 
 

  



 

 

xii 

 

List of Tables 

Table 1.1: TNM staging of prostate cancer........................................................................ 8 

Table 1.2: A comparison of some commercially available 3D TRUS-guided biopsy 

systems. ............................................................................................................................. 20 

Table 2.1: Comparison of TRE before and after registration for each tested 

registration method.  Registration 1 captures tissue motion during needle insertion 

and biopsy gun firing, registration 2 captures needle insertion only, and registration 3 

captures biopsy gun firing only......................................................................................... 63 

Table 3.1: Errors before and after probe protocol registration. ....................................... 99 

Table 4.1: Mean execution times for registration with different fixed image 

configurations ................................................................................................................. 126 

Table 4.2: RMS ± std TREs for registrations at different sextant probe positions. ....... 127 

Table 5.1: Comparisons of performance before and after registration with new and 

initial methods, and FRE................................................................................................. 147 

Table 5.2: Comparison of performance for registrations with TRE >5 mm with the 

initial approach................................................................................................................ 148 

 

  



 

 

xiii 

 

 

List of Figures 

Figure 1.1: (a) Anatomical position of the prostate relative to the neighboring organs 

in a sagittal view. (b) Primary anatomic regions of the prostate in a sagittal view. ........... 3 

Figure 1.2: Central zone (CZ), peripheral zone (PZ), transition zone (TZ), anterior 

fibromuscular stroma (AZ) constituting the zonal anatomy of the prostate in a sagittal 

view. .................................................................................................................................... 5 

Figure 1.3: The appearance of (a) a calcification, and (b) a cyst in a 2D TRUS image. . 12 

Figure 1.4: Multiparametric MR images of the prostate with suspicious region for 

cancer indicated by the yellow arrow: (a) T2-weighted image showing a region with 

hypo intensity. (b) DCE image not showing any contrast for this patient in the 

suspicious area. ................................................................................................................. 14 

Figure 2.1: Mechanically assisted 3D TRUS-guided biopsy system.  The biopsy gun 

is retained in a clip and the needle is coupled to the TRUS probe using a needle guide.  

A spring-based counter balancing system maintains probe position and orientation 

even when the physician removes his hand from the probe. ............................................ 50 

Figure 2.2: Images in a biopsy sequence, and the names used for the three indicated 

registrations throughout this paper.  The first image occurs immediately prior to the 

physician's insertion of the biopsy needle.  The second image occurs immediately 

prior to firing the biopsy gun, and the third image occurs immediately after the biopsy 

gun has been fired.  The dotted curves indicate portions of the prostate boundary that 

interact with the needle, which lies between the two solid vertical segments in the 

second and third images; note the deformation at the lower piercing point. .................... 51 

Figure 2.3: Overall process used in this work. The moving image (from an earlier 

time point) is registered to the fixed image (from a later time point) using non-rigid 

registration.  This yields a deformation vector field that is used to quantify the 

underlying motion of the tissue.  The error in the non-rigid registration algorithm is 

measured by calculating a TRE based on corresponding intrinsic fiducial markers.  

Measurements, incorporating the TRE, are then taken from the deformation vector 

field to characterize the underlying motion of the prostate tissue in response to the 

insertion of the biopsy needle and firing of the biopsy gun. ............................................. 53 

Figure 2.4: (a) Deformation vector field magnitude with prostate boundary and 

needle location indicated. (b) Lateral (x) components of the deformation field. (c) 

Axial (y) components of the deformation field. The needle axis lies between the 

vertical white line is each image. ...................................................................................... 53 

Figure 2.5: Calcifications used to validate the registration algorithms, indicated by 

arrows. ............................................................................................................................... 54 

Figure 2.6: Diagram depicting a prostate contoured on a 2D TRUS image with the 

needle axis As to the left of the probe, as in all of our images. The perpendicular 



 

 

xiv 

 

distance DA of a point P to the needle axis is shown. The lower piercing point ls is 

indicated, as is the distance Dl between P and the lower piercing point........................... 60 

Figure 2.7: Diagram depicting prostate anatomy in a sagittal view, indicating the 

peripheral zone (PZ), central zone (CZ), transition zone (TZ), and anterior zone (AZ). 

Three biopsy targets are shown as A, B, and C. The biopsy needle enters the prostate 

on the posterior side by penetrating the rectal wall, as shown. ......................................... 61 

Figure 2.8: Deformation versus distance to the needle axis.  Dashed curve: the signed 

mean of the deformation (D̅r(Pd
A)).  Dotted curve: the 95% confidence interval 

around the tissue deformation (σ̃r(Pd
A)).  Solid curve: the 95% confidence interval 

incorporating the TRE (σr(Pd
A)). (a, b): registration 1, (c, d): registration 2, (e, f): 

registration 3.  (a, c, e): hand held, (b, d, f): mechanically assisted. ................................. 65 

Figure 2.9: Deformation versus distance to the lower piercing point.  Dashed curve: 

the signed mean of the deformation (D̅r(Pd
l)).  Dotted curve: the 95% confidence 

interval around the tissue deformation (σ̃r(Pd
l)).  Solid curve: the 95% confidence 

interval incorporating the TRE (σr(Pd
l)). (a, b): registration 1, (c, d): registration 2, (e, 

f): registration 3.  (a, c, e): hand held, (b, d, f): mechanically assisted. ............................ 66 

Figure 2.10: Lateral-axial decompositions of the 95% confidence intervals shown in 

Figures 8 and 9, for registration 1.  (a, b): Deformation versus distance to the needle 

axis.  Solid curve: the 95% confidence interval around the tissue deformation 

incorporating the TRE (σr(Pd
A)).  Dashed curve: the lateral (x) component of this 

confidence interval (σ1
x(Pd

A))  Dotted curve: the axial (y) component (σ1
y
(Pd

A)).  (c, d): 

Deformation versus distance to the lower piercing point.  Solid curve: the 95% 

confidence interval around the tissue deformation incorporating the TRE (σr(Pd
l)).  

Dashed curve: the lateral (x) component of this confidence interval (σ1
x(Pd

l)).  Dotted 

curve: the axial (y) component (σ1
x(Pd

l)) (a, c): hand held, (b, d): mechanically 

assisted. ............................................................................................................................. 68 

Figure 2.11: Deformation as a function of lateral position of the needle relative to the 

prostate, for registration 1. The distance to the left edge of the prostate is shown on 

the horizontal axis (0 = left edge, 0.5 = middle, 1 = right edge). The vertical axis 

shows the width of the 95% confidence interval on the tissue deformation within a 

region lying 5 mm on either side of the needle axis (σ1(P5 mm
AR )). The best fit line is 

plotted, showing a weak negative relationship (r = -0.17). ............................................... 69 

Figure 3.1:2D-3D registration workflow ......................................................................... 86 

Figure 3.2: Sample fiducials identified. ........................................................................... 91 

Figure 3.3: TRE before registration, after registration and after continuous 

registration every second for each biopsy in prostate biopsy protocol. ............................ 96 

Figure 3.4: Images before and after registration immediately prior to taking a biopsy 

sample. Left column: Real-time 2D TRUS images. Middle column: Corresponding 

images before registration assuming no prostate motion (from the transformation 



 

 

xv 

 

given by the mechanical tracking system). Right column:  Corresponding images after 

registration. ....................................................................................................................... 97 

Figure 3.5: TRE as a function of time elapsed from the start of the biopsy. (a) TRE 

before registration.  (b) TRE after registration. (c) TRE after registering the images 

acquired every second. ...................................................................................................... 97 

Figure 3.6: Histograms for TRE before and after registration for probe pressure 

protocol data.  Left: TRE distribution before registration Middle: TRE distribution 

after registration. Right: TRE distribution with the best rigid alignment for the 

identified fiducials. ........................................................................................................... 99 

Figure 3.7: TRE of each fiducial as a function of distance to the registration plane.  

The black line represents the least-square fit to the scattered points. ............................... 99 

Figure 3.8: TRE as a function of metric value during the optimization. Initial points 

(circles), converged (squares) and converging points (crosses). .................................... 100 

Figure 3.9: TRE distributions before registration, during convergence and after 

registration. ..................................................................................................................... 100 

Figure 3.10: Mean and standard deviations of normalized cross-correlation values for 

16 image pairs of eight patients in the six-degrees-of-freedom transformation space, 

one degree-of-freedom varying at a time.  The zero location in the x-axis corresponds 

to real-time 2D-TRUS frame. ......................................................................................... 102 

Figure 3.11: Normalized cross-correlation values for a single image pair of a biopsy 

for 3 patients (each biopsy represented by a separate line pattern) in the six-degrees-

of-freedom transformation space, one degree-of-freedom varying at a time.  The zero 

location in the x-axis corresponds to real-time 2D-TRUS frame. .................................. 103 

Figure 3.12: TRE as a function of distance to the probe tip. ......................................... 104 

Figure 4.1: (a) Coronal view (from the posterior perspective of the TRUS probe) of 

relative positions of the probe tip during image acquisition (B: baseline, 1-6: sextant 

locations) (b) Transverse view showing the necessary reorientation of the probe to 

acquire images at baseline and targets 2 and 5. .............................................................. 116 

Figure 4.2: Fixed image configurations used in this paper: notation and schematics of 

planes from a probe-axis view. ....................................................................................... 118 

Figure 4.3: Overall workflow in methods and validation. ............................................. 119 

Figure 4.4: Distribution of manually identified fiducials used for registration 

validation. Each fiducial is shown with its Anterior/Posterior (A/P), Left/Right (L/R) 

and Inferior/Superior (I/S) position within the normalized prostate in which the 

boundaries extend from 0 to 1 along each direction. ...................................................... 121 

Figure 4.5: Example of the identified fiducials for three pairs of images.  Arrows 

point to homologous fiducial pairs in each row.  Baseline images with the fiducials 

are shown in the left and the sextant images of the same patient with corresponding 

fiducials are shown in the right. ...................................................................................... 122 



 

 

xvi 

 

Figure 4.6: TRE histograms for registrations using different fixed images, with the 

RMS ± std TRE shown in the top left of each histogram.  To provide context for the 

TRE distributions, row 1, column 1 shows the error distribution prior to registration 

and row 2, column 1 shows the error distribution after optimal rigid registration using 

the fiducials (FRE). ......................................................................................................... 123 

Figure 4.7: Comparison of TRE distribution parameters for different fixed image 

configurations. ................................................................................................................ 125 

Figure 4.8: Histogram of TRE differences between I0 and I0-179. .................................. 125 

Figure 4.9: Corresponding transverse 2D planes from; (a) fixed image, (b)-(d) 

transformed moving image after registration using the fixed image configurations as 

indicated, (e) moving image before registration. ............................................................ 126 

Figure 5.1: Probe positions during image acquisition shown relative to (a) coronal 

view (b) axial view.......................................................................................................... 140 

Figure 5.2: Diagram depicting the improvement (i.e., decrease) of the condition 

number (λ2/λ1) of a 2D objective function by scaling the search space according to 

the eigenvalues (λ2, λ1) of the matrix A of the objective function. (a) Initial search 

space of the objective function. (b) Situation after the search space is scaled according 

to λ2, λ1.  Black ellipsoids/circles show the function iso-contours, with larger 

circles/ellipses indicating less optimal values of the objective function. The red circle 

shows an example initial search location and the red arrow shows a typical Powell’s 

method initial search direction. ....................................................................................... 143 

Figure 5.3: Scaling the search space according to the eigen values (λ2, λ1) of the 

covariance matrix C of the observed motion vectors. (a) Initial distribution of the 

motion vectors in the search space. (b) After the search space is scaled according to 

λ2, λ1 in the principal directions.  The points representing the observed motion vectors 

(i.e., objective function optima). The red circle shows an example initial search 

location and the red arrow show a typical Powell’s method initial line search 

direction. ......................................................................................................................... 145 

Figure 5.4: TRE histograms (a) TRE before registration. (b) TRE after registration 

without using learned prostate motion characteristics. (c) TRE after registration using 

the proposed method. ...................................................................................................... 147 

Figure 5.5: Images before and after registration for 5 patients. Top row: extracted 2D 

images ( Ipi ). Middle row: corresponding frames from the registered  IB. Bottom row: 

corresponding frames before registration obtained from IB after tracking the probe. .... 148 

Figure 5.6: Comparisons of TREs in the two methods.  The gray circles indicate 

biopsies for which the TRE from the initial method was <= 5 mm. The coloured 

symbols indicate biopsies for which the TRE from the initial method was > 5 mm. 

The coloured squares indicate TREs from the initial method, and the coloured 

triangles indicate TREs from the new method.  Upward-pointing triangles show cases 

where the TRE from the new method was larger than the TRE from the initial 

method.  Downward-pointing triangles indicate cases where the TRE from the new 



 

 

xvii 

 

method was smaller than the TRE from the initial method. A symbol of a given 

colour corresponds to a specific registration. ................................................................. 149 

Figure 5.7: Comparison of NCC at convergence in the two methods. The gray circles 

indicate biopsies for which the TRE from the initial method was <= 5 mm. The 

coloured symbols indicate biopsies for which the TRE from the initial method was > 

5 mm. The coloured squares indicate NCCs from the initial method, and the coloured 

triangles indicate NCCs from the new method.  Downward-pointing triangles show 

cases where the NCC from the new method was smaller than the NCC from the initial 

method.  Upward-pointing triangles indicate cases where the NCC from the new 

method was larger than the NCC from the initial method.  A symbol of a given colour 

corresponds to a specific registration. ............................................................................. 150 

 

  



 

 

xviii 

 

List of Abbreviations 

2D Two-Dimensional 

3D Three-Dimensional 

ADC Apparent Diffusion Coefficient 

AZ Anterior Fibromuscular Stroma 

BPH Benign Prostatic Hyperplasia 

CEUS Contrast-enhanced Ultrasound 

CT Computed Tomography 

CUDA Compute Unified Device Architecture 

CZ Central Zone 

DCE Dynamic Contrast-Enhanced 

DRE Digital Rectal Examination 

EM Electromagnetic 

ESUR European Society of Urogenital Radiology 

FEA Finite Element Analysis 

FLE Fiducial Localization Error 

FRE Fiducial Registration Error 

GPU Graphics Processing Unit 

MRI Magnetic Resonance Imaging 

MRSI Magnetic Resonance Spectroscopy Imaging 

NCC Normalized Cross-Correlation 

PET Positron Emission Tomography 

PI-RADS Prostate Imaging and Reporting Data System 

PSA Prostate Specific Antigen 

PZ Peripheral Zone 

RCM Remote Center of Motion 

RMS Root Mean Square 

SPECT Single Photon Emission Computed Tomography 

SSD Sum-of-Squared Difference 

TRE Target Registration Error 



 

 

xix 

 

TRUS Transrectal Ultrasound 

TZ Transition Zone 



 

 

1 

 

Chapter 1. 

Introduction 

Prostate biopsy is the clinical standard for prostate cancer diagnosis, which is a procedure 

usually performed under two-dimensional (2D) transrectal ultrasound (TRUS) guidance.  

Unfortunately, most early stage prostate cancers are not visible on ultrasound, so the 

procedure is routinely performed in a systematic, but ultimately random fashion, where 

biopsy cores are collected following a standard sextant plan with the aim of sampling any 

tumors that are occult on ultrasound [1].  The procedure suffers from a false negative rate 

as high as 30% due to the lack of visible targets [2].  Prostate magnetic resonance 

imaging (MRI) is more sensitive to detection of small lesions and its use for pre-biopsy 

target identification is rapidly growing [3-5].  With the objective of improving the cancer 

detection rate during biopsy, systems have been developed to perform a targeted biopsy 

by fusing pre-biopsy MRI with 3D TRUS [6-11].  In many such systems, prior to 

performing biopsy, suspicious lesions delineated as targets in a pre-biopsy MR image are 

mapped to the static baseline 3D TRUS image acquired at the beginning of the biopsy 

session [12-15].  Biopsy is subsequently performed, targeting each suspicious lesion 

using the live 2D TRUS images acquired while tracking the ultrasound probe position 

and orientation relative to the baseline 3D TRUS image. 

Prostate biopsy is an outpatient procedure that is performed when the patient is 

awake in the lateral decubitus position under local anaesthesia.  We have observed that 

patient discomfort can lead to intermittent prostate motion/displacement during the 

procedure.  TRUS probe pressure is another source of prostate motion, when the 
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physician maneuvers the probe to reach different regions within the prostate; although the 

prostate is attached to the surrounding tissue, it can move as a unit within the pelvis in 

response to probe pressure at different prostate locations [16]. The variability in applied 

TRUS probe pressure could also deform the prostate, particularly in the posterior region.  

In a targeted approach to biopsy where suspicious locations for cancer need to be 

sampled, intermittent prostate motion during the procedure could limit accuracy in 

maintaining the correspondence between live TRUS images and the targets defined in the 

baseline 3D TRUS image.  Identification of the errors due to prostate motion and the 

development of accurate and fast registration methods to compensate for patient and 

prostate motion during the procedure are therefore helpful to improve needle targeting 

accuracy of 3D TRUS-guided biopsy systems. 

The focus of this thesis is to quantify and compensate for the errors due to patient 

and prostate motion during biopsy in the mechanically assisted 3D TRUS-guided biopsy 

system [8] previously developed in our lab.   This would help to detect clinically 

significant tumours at an early stage using the emerging MR-targeted, 3D TRUS-guided 

approach to performing biopsy and could impact the overall prostate cancer detection rate 

from biopsy, leading to fewer biopsy sessions, earlier diagnosis, and appropriate 

treatment selection.  The remainder of the chapter describes the current status in prostate 

cancer prevalence, the available diagnostic methods, 3D-guided biopsy systems and how 

image-based registration could help improve their clinical outcomes in practice with 

hypothesis and specific objectives of the thesis. 
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1.1 Prostate cancer and its prevalence 

Prostate cancer is the most commonly diagnosed non-skin cancer among Canadian men 

contributing to 25% (~24, 000) of all estimated new cancer cases in 2013 [17].   It is also 

reported to be the third largest contributor to estimated cancer deaths among Canadian 

men in 2013, representing 10% of all deaths [17].  Approximately 1 in 7 men will be 

diagnosed with prostate cancer during his lifetime and 1 in 37 will die of this disease.  

Prostate cancer incidence increases with age, with 34% of men in their 50s and 70% of 

the men at the age 80 showing histologic evidence of prostate cancer [18].  Prostate 

cancer exhibits a wide variation of natural history, with the existence of clinically 

indolent tumours in some men and aggressive, metastatic, lethal tumours with 

considerable morbidity in others.  Therefore, the ability to differentiate between indolent 

and aggressive disease during the diagnosis is paramount for successful prostate cancer 

management in the population. 

 

Figure 1.1: (a) Anatomical position of the prostate relative to the neighboring organs in a sagittal view. (b) 

Primary anatomic regions of the prostate in a sagittal view. 
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The prostate in a healthy adult male is a walnut sized organ, approximately 20 

cm3 in volume, sitting on the pelvic floor, surrounding the urethra, and proximal to the 

bladder neck (Figure 1.1(a)).  The base, the mid-gland and the apex constitute the three 

primary anatomic regions of the prostate (Figure 1.1(b)).  The superior region of the 

prostate proximal to the bladder neck is identified as the base, while the inferior region 

proximal to the urogenital diaphragm is identified as the apex.  The prostate has also been 

divided anatomically into four different lobes: (1) anterior lobe, (2) posterior lobe, (3) 

lateral lobes, and (4) median lobe. McNeal [19-21] proposed a zonal model, which is 

widely used in pathology, to describe prostate glandular anatomy, dividing the prostate 

into three distinct zones: (1) central zone; (2) peripheral zone; and (3) transition zone 

(Figure 1.2). The central zone (CZ) is a wedge-shaped volume containing about 25% of 

the glandular tissue of the prostate, in the region between the bladder neck to 

verumontanum.  The peripheral zone (PZ) is the largest zone lying distal to the central 

zone containing about 70% of the glandular tissue within the prostate.  The transition 

zone (TZ) comprises 5% to 10% of prostate glandular tissue lying on either side of the 

urethra just above the ejaculatory duct openings.  The anterior fibromuscular stroma (AZ) 

is another portion consisting of approximately one-third of the prostate organ.  It is 

composed of non-glandular tissue [21], although some consider it to be the fourth zone 

[22]. 
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Figure 1.2: Central zone (CZ), peripheral zone (PZ), transition zone (TZ), anterior fibromuscular stroma 

(AZ) constituting the zonal anatomy of the prostate in a sagittal view. 

Most men tend to have some enlargement of the prostate with aging, sometimes 

causing a common urologic condition known as benign prostatic hyperplasia (BPH). This 

enlargement affects primarily the transition zone, occurring above the level of 

verumontanum.  Since the prostate wraps around the urethra, prostate enlargement can 

obstruct the flow of urine.  Therefore, urinary obstructive symptoms such as urinary 

retention, frequent urination and nocturnal voiding are possible with BPH patients. 

However, BPH patients do not show increased risk of developing prostate cancer [23].   

BPH is not the only cause of prostate growth in aging men.  Prostate cancer 

tumours could cause growth and create hard nodules within the prostate.  Prostate cancers 

can be multi focal, and about two thirds are found in the peripheral zone, causing an 

asymmetric growth of the prostate.  Unlike BPH, however, early stage prostate cancers 

are asymptomatic, making timely diagnosis very challenging.  Although current 

understanding of what causes prostate cancer is limited [24], endogenous factors such as 

age, family history and ethnicity have shown association with cancer risk [25]. 
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1.2 Prostate cancer diagnosis 

1.2.1 Digital rectal examination (DRE) 

Early detection of prostate cancer is critical to devise successful treatment methods in 

order to reduce morbidity and mortality.  Since early stage prostate cancer is 

asymptomatic, there are screening tests advocated with the goal of improving diagnostic 

outcomes among the average to high-risk population.  Digital rectal examination (DRE) 

is the first screening method introduced as early as in 1905, in which the physician 

palpates the prostate with a gloved finger inserted into the patient’s rectum.  The 

physician examines for discrete hard nodules, prostate asymmetry and firmness as 

characteristics that are suspicious for cancer. Although this is an easy, inexpensive test, it 

suffers from poor sensitivity with cancer detection rates < 50%, missing most early stage 

tumours [26].   Most cancers were detected at an advanced stage with this method and the 

diagnostic decisions were prone to high inter-examiner variability [27].   

1.2.2 Prostate specific antigen (PSA) test 

The serum level of prostate specific antigen (PSA) in the blood is another screening test 

introduced in the late 1980s.  The probability of cancer increases with concentration of 

PSA in blood, with the most commonly used threshold being 4 ng/ml for prostate cancer 

detection.  Although PSA has high sensitivity for cancer detection, the PSA level in the 

blood can increase due to conditions unrelated to cancer, such as BPH, infection or 

inflammation, resulting in poor specificity of the test [28, 29].  Although the use of PSA 

screening since 1985 has impacted the patterns in cancer incidence and mortality [30], the 

poor sensitivity of screening tests for detecting cancer and the challenges in 
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differentiating between indolent and aggressive disease could potentially result in 

overdiagnosis and overtreatment.  Currently, the American Cancer Society recommends 

that average-risk, asymptomatic men at age 50 to make an informed decision with the 

physician to be screened for prostate cancer [31].    The clinical standard for definitive 

diagnosis of prostate cancer is prostate biopsy.     

1.2.3 Prostate biopsy  

Patients with elevated PSA or abnormal DRE are referred to prostate biopsy. Needle 

biopsy remains the clinical standard for prostate cancer diagnosis, a procedure performed 

with the objective of detecting aggressive tumours that could cause potential harm.  It is 

an outpatient procedure conventionally performed using 2D transrectal ultrasound 

(TRUS) guidance.  It is usually performed when the patient is in left lateral decubitus 

position with local or topical anesthesia. The physician samples tissue locations following 

a sextant template biopsy scheme using a spring-loaded 18-gauge biopsy needle.  Several 

systematic biopsy schemes have been proposed [1, 32, 33] and usually 6-12 biopsy cores 

are taken during the procedure under these schemes.  The tissue samples are then 

processed and examined by urological pathologists in search for any histological 

abnormalities and to assess the severity and extent of the disease.    

Assessing the extent of the disease is a vital component before devising 

appropriate treatment methods.  The most commonly used method to categorize the 

disease extent is the TNM staging system [34].  According to this scheme, cancer is 

classified into four major stages (T1 – T4) evaluating three main areas: (1) primary 

tumour, (2) metastatic disease, and (3) involvement of nearby lymph nodes.  Table 1.1 

shows the diagnostic criteria for classification of the different stages of cancer.  Prostate 
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biopsy results, prostate cancer imaging and manual palpation of the prostate could aid in 

determining the disease stage during diagnosis.  TRUS has been the conventional and 

most widely used imaging modality in examining the extent of hypoechoic regions in the 

prostate  for suspicion of cancer [35].  However, MRI has recently shown promise, with 

improved sensitivity (73-86%) and specificity (77-94%) in determining cancer stage [36, 

37]. 

Table 1.1: TNM staging of prostate cancer 

Stage Criteria 

T1 Tumour at incidental stage, but impalpable and not detectable by imaging 

T2 Locally confined palpable tumour 

     -T2a Tumour exists in half or less than half of one of the two lobes 

     -T2b Tumour exists in more than half of only one lobe 

     -T2c Tumour exists in both the lobes 

T3 Tumour has spread through the prostatic capsule 

T4 Tumour has invaded to other neighboring organs 
 

 

 

In measuring the severity of prostate cancer, the Gleason grading system [38] is 

the most widely accepted and commonly used method.  In this system, the glandular 

pattern of the tumour in biopsy cores is identified and assigned a grade from 1 to 5 at a 

relatively low magnification level.  The scoring is based on the differentiation of prostate 

cancer cells, with 1 the most differentiated and 5 the least differentiated.  Both the 

primary tissue grade – score given to the most prevalent pattern containing the tumour –, 

and the secondary grade –  the score given to the second most prevalent pattern 

containing the tumour – are assessed independently and summed to get the overall 

Gleason score.  Thus, the Gleason score can range from 2 (1+1) to 10 (5+5), with 2 being 

the lowest grade given to insignificant disease and 10 being the highest grade given to 

advanced disease.  A Gleason score of 7 (4 +3) indicates that the patient has the most 
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common glandular pattern with a score 4 and the second most common pattern with a 

score 3.  A Gleason score of 7 (4 + 3) is less desirable than a score of 7 (3 + 4), since the 

most common glandular pattern is less aggressive in the latter. 

Based on the results of PSA, staging and grading, cancer patients can be classified 

into three risk groups [39-41].  According to the classification by D’Amico et al. [41], 

patients with Gleason score 8-10, stage ≥T2c or PSA >20 ng/ml are considered high risk, 

with aggressive tumours and advanced disease.  While these patients are not 

recommended for localized therapy, the typical treatment options are radical 

prostatectomy and external beam radiotherapy.  Patients with Gleason score 7, stage T2b 

or PSA 10.1-20 ng/ml are considered to be intermediate risk.  These patients with organ 

confined disease are amenable to be treated with localized treatment methods such as 

focal laser ablation and high intensity focused ultrasound. On the other hand, the patients 

with Gleason score 2-6, stage T1-T2a, and/or PSA <10 ng/ml are considered to be low 

risk and clinically insignificant. 

The prostate biopsy results play a critical role in differentiating between 

aggressive and indolent disease and in selecting treatment options for tumours that need 

attention.  While underdiagnosis and undertreatment of aggressive cancers could cause 

lethal effects on patients, overdiagnosis and overtreatment could lead to undesirable 

health outcomes like urinary incontinence and erectile dysfunction.  Unfortunately, the 

“blind” approach to systematic prostate biopsy has high false negative rates in the range 

10-30% [32, 42-44], leaving uncertainty in the generated results during its role as the 

diagnostic tool for prostate cancer.  As a consequence, clinicians have to base their 

decisions on evidence that is inconclusive and repeat biopsies might need to be 
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performed to increase the certainty of the diagnosis.  For example, an increasing trend in 

PSA level could lead to repeat biopsy in patients who have already undergone prior 

negative biopsies.  Patients who underwent a second biopsy session have reported cancer 

detection rates of 19%, [45] indicating the limitations of the conventional systematic 

biopsy scheme. In order to improve the cancer detection rates, saturation biopsy schemes 

have been proposed by increasing the number of biopsy cores to the range 15-31 [46-48].  

However, the high probability of these schemes to detect clinically indolent cancers, 

increased cost and morbidity have limited their adaptation as the mainstay approach to 

biopsy in comparison to the sextant approach with 6-12 cores.  In fact, a subsequent 

prospective study [49] reported no significant difference in terms of cancer detection rate 

in saturation and sextant approaches.  

1.3 Prostate cancer imaging 

1.3.1 Ultrasound imaging 

Ultrasound evaluation of the prostate could be achieved via transabdominal, transrectal or 

transperineal access.  TRUS is the most common approach used in prostate examinations 

to detect pathology and calculation of prostate volume [50]. The transrectal approach 

provides better access to peripheral zone tumours in prostate posterior, where 70-80% of 

the prostate cancers arise [51] and  improves the ability to direct needles into regions of 

interest during biopsy procedures. 

A transducer containing transmitting elements, electrodes, and protective face 

generates ultrasound waves [52].  High frequency ultrasound transducers within the range 

5-10 MHz are used for TRUS imaging.  Commercially available TRUS probes are either 
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side-firing or end-firing, with end-firing probes more suitable for image guidance during 

trans-rectal prostate biopsy [53].  Some probes come with enhanced functionality to 

simultaneously acquire dual-orthogonal (transverse and sagittal) planes or full 3D 

imaging.  While the acquisition rate is 10-20 frames per second using single-plane 2D-

TRUS probes, 3D image acquisition could take up to 5 s using enhanced probes.  

Ultrasound waves are reflected as they penetrate through different tissues and 

anatomical structures.  The degree of reflectance depends on the acoustic impedance 

between two layers of tissue.  Structures that reflect most of the ultrasound waves appear 

as bright regions in images while the structures that reflect the least appear as dark 

regions.  Relative to the medium-gray echogenicity of the peripheral zone, structures that 

appear brighter are termed hyperechoic and those that appear darker are termed 

hypoechoic.   The pubic bone and prostatic calcifications are examples of hyperechoic 

anatomical structures that appear bright on ultrasound.  On the other hand, fluid-filled 

structures like seminal vesicles, vas deferens, ejaculatory ducts, cysts, and the gall 

bladder appear hypoechoic in ultrasound.  Figure 1.3 shows examples of the appearance 

of a calcification and a cyst in 2D TRUS images.  The boundaries between zonal 

anatomical structures can often be identified in ultrasound images as hypoechoic linear 

demarcations.  Prostate cancer in the peripheral zone is typically considered to appear as 

hypoechoic on TRUS [54], while transition zone cancers have shown more heterogeneity 

in appearance.  However, elusive nature of cancer appearance in TRUS has posed many 

challenges in using it as an imaging modality to detect suspicious regions for prostate 

cancer [55, 56] and has been reported with low sensitivity (35-91%) and specificity (24-

81%) values in prostate cancer screening [57-61]. 
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Figure 1.3: The appearance of (a) a calcification, and (b) a cyst in a 2D TRUS image. 

With the objective of improving cancer detection using ultrasound imaging 

modality and providing guidance to suspicious target regions during biopsy, several 

enhanced techniques have been investigated.  Color and power Doppler ultrasound 

imaging has been applied to evaluate blood flow and vascularity within the prostate tissue 

[62, 63].  Due to the formation of new vessels in tumours, cancerous tissues tend to 

demonstrate hypervascularity [64].  Contrast-enhanced ultrasound (CEUS) is another 

approach to improve tumour visibility in imaging where encapsulated gas microbubbles 

are injected into the small vessels to improve their ultrasound reflectivity in highly 

vascular regions formed potentially due to cancer [65, 66].  Elastography is another 

ultrasound-based imaging technique that is currently being investigated to detect tumours 

using mechanical properties of tissues.  Since the tissue stiffness properties differ in 

cancerous tissues, elasticity imaging techniques could potentially be used to identify them 

in real time [67].    Although some of these ultrasound-based imaging methods are the 

subject of active research, the benefits of such approaches in improving clinical outcomes 

over systematic biopsy have not yet been proven [68, 69]. 

(a) (b)
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1.3.2 Computed tomography (CT) and nuclear imaging 

Other modalities like CT, positron emission tomography (PET) and single photon 

emission computed tomography (SPECT) have been used to image the prostate.  

However, their use has been primarily focused on radiotherapy planning and prognostic 

evaluation of metastatic disease. CT images are sometimes acquired for the purpose of 

determining the cancer stage when it has spread at a macroscopic level to the perineal 

floor and lymph nodes [70], but are rarely acquired for primary prostate evaluation.  

Similarly, PET and SPECT imaging are used in identification of metastatic spread of 

cancer to the bones. 

1.3.3 MR imaging 

Although moderate staging performance was observed for images obtained from early 

MR scanners [71], with recent improvements in signal-to-noise ratio and image quality 

[72], multi-parametric MR images have shown promise in detecting and localizing 

prostate cancer.   T1-weighted imaging has been demonstrated to be useful in TRUS-

guided biopsy hemorrhage artifact detection, but has limited use in prostate cancer 

imaging due to low contrast.  T2-weighted MR is the most widely used sequence for 

prostate cancer imaging and it can clearly differentiate the prostate zonal anatomy. On 

T2-weighted images, the typical peripheral zone has high-signal intensity, greater than 

nearby structures [73].  In prostate cancer, the loss of normal glandular morphology tends 

to cause regions with low-intensity level.  Benign conditions like BPH typically have a 

nodular appearance on T2-weighted imaging; however, loss of glandular morpohology 

can also cause BPH to appear as a low-intensity signal.  Due to these confounding 
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factors, prostate cancer detection using T2-weighted imaging alone could be challenging 

[74].  However, different functional MR techniques can be used in combination to 

improve the differentiation of cancerous tissue.  

Diffusion-weighted MR imaging is a functional imaging technique in which 

proton diffusion properties in water are used to generate image contrast by quantifying 

the average random motion of hydrogen nuclei within the body.  The apparent diffusion 

coefficient (ADC) quantifies the direction and distance of water molecules due to both 

perfusion and diffusion within the interpulse time of an applied motion-encoding gradient 

in MR that cause proton movements and phase shifts.  Healthy prostate peripheral zone 

tissue contains tubular structures that allow abundant diffusion of water molecules in 

these regions, resulting in high ADC values.  Prostate cancer, in contrast, tends to destroy 

the tubular structures and replace ducts often showing lower ADC values when compared 

with healthy prostate tissue [75, 76].  However, conditions like BPH and prostatitis could 

result in lower ADC values, which could limit the ability to make a definitive diagnosis 

using this information alone [77, 78]. 

 

Figure 1.4: Multiparametric MR images of the prostate with suspicious region for cancer indicated by the 

yellow arrow: (a) T2-weighted image showing a region with hypo intensity. (b) DCE image not showing 

any contrast for this patient in the suspicious area. (c) ADC map showing a region of hypointensity. 

(a) (b) (c)
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Dynamic contrast-enhanced (DCE) MR imaging is another functional imaging 

method to aid in the detection of cancerous regions by noninvasively examining tumor 

angiogenesis.  It consists of a series of T1-weighted images acquired successively after 

injection of a gadolinium contrast agent to evaluate tumour vascular function.  Since 

prostate cancer tumours are highly vascular, a comparison of pre- and post-gadolinium 

images could be used to identify regions suspicious for prostate cancer [79].  When 

compared with healthy tissue, prostate cancer tends to show rapid wash-in and wash-out 

with the contrast agent injection [80].  Magnetic resonance spectroscopy imaging (MRSI) 

[81], MR elastography [82] and sodium imaging [83] are some other emerging 

techniques that have the potential to aid prostate cancer detection via imaging. 

Developing mechanisms for prostate cancer detection and localization is a non-

trivial task considering the biological and pathological complexity of the disease.  

Although different MR imaging sequences have their strengths and limitations, 

combination of different techniques could help to mitigate the limitations of individual 

sequences and help improve the accuracy in making a definitive diagnosis.  Figure 1.4 

shows the appearance of a suspicious cancer region of a patient in T2-weighted, DCE and 

DWI images.  The European Society of Urogenital Radiology (ESUR) has recently 

published a report [84] providing guidelines for MRI of prostate cancer based on 

published evidence and expert opinion. This report recommends the use of a combination 

of high-resolution T2-weighted images and at least two functional MRI techniques when 

detecting cancer with a multiparametric MRI examination. The guidelines also include a 

structured scoring system (Prostate Imaging and Reporting Data System [PI-RADS]) for 

classification and reporting of tumours during the diagnosis.  While the clinical protocols 
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using multiparametric MRI for prostate cancer are becoming standardized, currently 

active research is focused on investigation of MR to histopathology correlation to further 

improve the detection of cancer using in vivo imaging [85-88].  Although currently 

reported sensitivity (73-86%) and specificity (77-94%) results [89-91] for prostate cancer 

detection in MR imaging does not permit replacement of needle biopsy as the clinical 

standard of diagnosis, multi-parametric MR has the potential utility in guiding biopsy 

towards target regions and subsequently could be used in conjunction with biopsy results 

to make informative assessment during staging and grading of cancer.  Detecting cancer 

using in vivo imaging is also beneficial in contouring tumours for localized treatment of 

intermediate-risk prostate cancer. 

1.4 3D-guided prostate biopsy systems 

While the standard sextant approach to prostate biopsy under 2D TRUS-guidance usually 

lacks visible tumour targets, multi-parametric MRI has shown promise in non-invasive 

detection of cancer.  The addition of the MR-detected cancer suspicious regions as targets 

during biopsy could impact and improve the limited sensitivity and specificity of the 

conventional sextant template schemes.  Aligning the biopsy needle trajectories with the 

regions identified in MR requires accurate localization of target locations within the 3D 

anatomy of the prostate.  In order to achieve this objective, the physician could initially 

identify the target locations in MR and then mentally map those locations into the space 

of intra-procedural TRUS imaging for targeting.   Such an approach to performing biopsy 

with cognitive MR-TRUS fusion can be implemented with existing conventional 2D 

TRUS-guided biopsy systems, eliminating the need for the development and integration 
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of additional hardware and/or software components [92].  However, previous studies [15, 

93, 94] have not shown convincing results in terms of improvement in cancer detection 

rates with this approach in comparison to random systematic biopsy.  In addition, a 

cognitive fusion of images of two modalities is, in principle, operator dependent and 

needle targeting accuracy is likely to be correlated with the 3D cognitive spatial skills and 

experience level of the physician with this task.  Moreover, rotational symmetry and the 

limited discrete anatomical landmarks of the prostate available in 2D TRUS images could 

pose challenges in accurate localization of the target locations in 3D.  Thus, the 

anatomical and spatial context achieved with conventional 2D TRUS guidance alone 

might not yield the desired level of accuracy to guide needles to successfully sample 

tissue from target locations.     

With the objective of improving needle targeting accuracy during biopsy, systems 

[6, 8, 95, 96] have been developed to provide 3D guidance during biopsy.  In addition to 

providing a richer 3D context within which to guide biopsy needle insertion, these 

systems can record and archive biopsy locations in 3D.  These archived locations could 

assist in determining the biopsy target locations if repeat biopsies are required either to 

avoid targeting previously sampled locations or to take a sample closer to a previously 

biopsied location.  MR-identified target locations have been mapped to the intra-

procedural imaging space using two major approaches in the emerging 3D-guided biopsy 

systems: (1) direct MR-guided biopsy systems, and (2) MR-TRUS fusion biopsy systems. 

1.4.1 Direct MR-guided biopsy systems 

There are multiple systems [97] developed that are capable of acquiring MR images 

directly during the procedure for guidance and recording of biopsy locations in 3D.  In 
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these systems, the patient usually lies in the prone position and the needles are inserted 

via either transrectal or transperineal access.  Some of the systems have been designed to 

perform the MR-guided biopsy in an open bore [98-100], while some others perform the 

biopsy in a closed bore [95, 101, 102].  Although open bore systems have less confined 

space during needle manipulation, the image quality is poor due to the use of low field 

magnets.  On the other hand, although closed-bore MR scanners can generate superior 

image quality for better guidance, the confined space inside the bore could pose 

challenges in tool design and manipulation.  During the typical workflow in these 

systems, suspicious target delineation is performed using a previously acquired 

diagnostic MR image prior to the procedure, and identified locations are mapped to the 

intra-procedural imaging space and verified using serial MR scans acquired immediately 

prior to needle placement.  Ultrasound images are not acquired with these systems, and 

the ability to perform the biopsy using a single image modality eliminates complications 

arising when fusing data between two modalities.   Although there has been previously 

published work [103] suggesting improved cancer detection rates with this approach, 

there are several disadvantages limiting its mainstream use as a standard tool for prostate 

cancer diagnosis.  In-bore biopsy procedures have been reported [95] to require more 

than an hour and the patient is usually sedated using general anaesthesia.  Lengthy MR 

scanner time and patient recovery times could impose a huge cost burden on the 

healthcare system, considering the large number of biopsies that needs to be performed in 

a given year.  However, this approach, if proven to have superior targeting accuracy, 

could be amenable to be used in patients who have to undergo multiple repeat biopsies 

sessions due to previously inconclusive biopsy results.  This approach is also valuable to 
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MRI-histology correlative research studies, since an MR image can be acquired with the 

needle in place, allowing for a spatial record of the location of this histologic sample 

within the coordinate system of the MR image. 

1.4.2 MR-TRUS fusion biopsy systems 

Mapping of MR targets to TRUS image space via software-based image fusion is the 

other major approach to 3D-guided biopsy system design. During the clinical workflow 

in these systems, the diagnostic MR image is typically acquired on a day prior to biopsy 

to identify suspicious lesions for cancer.  These targets are then mapped to a baseline 3D 

TRUS image acquired immediately prior to performing the biopsy via MR to 3D-TRUS 

image registration.  The co-registration of the MR and 3D TRUS images needs to be 

performed using a non-rigid transformation to account for the differences in prostate 

deformation due to pressures exerted from the endorectal coil (if used during MR image 

acquisition) or alternatively, the lack of pressure from the body coil, and the manually 

held TRUS probe in the 3D TRUS image acquisition [104, 105].  Live 2D TRUS images 

are typically acquired during the biopsy procedure for real-time image guidance.  The 

correspondence between live 2D TRUS and the baseline 3D TRUS images, into which 

the MRI targets have been mapped, is established via tracking of the TRUS probe’s 

position and orientation in space.  During the procedure, the physician is able to see a 

visualization interface that displays the MRI-identified target locations and relative 

TRUS probe positions and orientations in a 3D context.  Thus, in this approach, tumour 

locations identified from MRI are ultimately targeted with the aid of 3D TRUS image 

guidance.  Hence, the complementary advantages of high soft tissue contrast in MRI and 

real-time, less expensive TRUS imaging, can be exploited to build an economically 



 

 

20 

 

feasible solution with the aim of improving clinical outcomes of prostate cancer 

diagnosis.  In addition, this enables the prostate biopsy to be still performed as an 

outpatient procedure under local anesthesia, similarly to the conventional 2D TRUS-

guided biopsy procedure. Software tools, that accurately co-register MR targets with the 

baseline 3D TRUS image and intraprocedural TRUS imaging, are thus an essential 

component to the success of this approach.   

Table 1.2: A comparison of some commercially available 3D TRUS-guided biopsy systems. 

System Needle access US probe type 
US probe 

tracking 

Initial 3D US 

image acquisition 

Uronav (In Vivo, 

USA) 

Transrectal 2D TRUS Magnetic tracking Free hand axial 

sweep 

Artemis (Eigen, 

USA) 

Transrectal 2D TRUS Mechanical 

articulated arm 

Rotational sweep  

Urostation 

(Koelis, France) 

Transrectal 3D TRUS Image-based 

tracking 

Panoramic image 

from 3 volume 

acquisitions  

Biopsee (Pi 

Medical, Greece) 

Transperineal Bi-plane TRUS Mechanical 

stepper 

Rotational sweep 

 

 

There are several solutions developed with different hardware and software 

designs to provide image guidance for accurate needle targeting using a MR-TRUS 

fusion approach.  Table 1.2 contains a comparison of some commercially available 

systems showing the approach to image acquisition, tracking and needle placement in the 

different designs.  While some systems are designed to retrofit existing 2D TRUS probes, 

others utilize TRUS probes with enhanced functionality that can simultaneously acquire 

bi-plane of full 3D imaging.  In systems that use conventional 2D TRUS probes, a 3D 

TRUS image is acquired at the beginning of the procedure via rotational or translational 

sweep of the 2D TRUS probe, followed by a reconstruction of the resulting 2D planes to 

obtain a 3D image.  Although enhanced 3D TRUS probes can be more convenient during 

3D image acquisition, the ability to retrofit existing ultrasound systems could be a 
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desirable feature in translating the technology to the widespread clinical use due to the 

potential to leverage the substantial investment in existing equipment.  Accurate and 

reliable TRUS probe tracking is essential to facilitate 3D guidance in these systems.  The 

Uronav system is equipped with electromagnetic (EM) tracking using an external 

magnetic field generator and a freehand TRUS probe [10].  The major disadvantage of 

EM tracking systems is the disruptive influence on tracking arising from potential 

interference from nearby metal devices in the biopsy environment.  The system proposed 

by Bax et al. [8] uses a mechanically articulated arm to track the motion of the probe 

during the procedure.  While this system provides mechanical stabilisation of the probe, it 

also supports locking of all joints during 3D initial image acquisition permitting only 

axial probe rotation.  This design is aimed to minimize prostate motion while the 3D 

image is being acquired, thus minimizing errors during 3D image reconstruction.  The 

system proposed in [6] performs an image-based tracking that completely relies upon the 

information contained within the image acquired using a specialized probe that can 

simultaneously reconstruct a 3D volume.  Eliminating the hardware tracking devices is a 

major advantage of this system to come with a compact design.  However, this system 

requires a specialised 3D TRUS imaging system to acquire rich 3D information for 

tracking purposes.       

1.5 Challenges in 3D-guided biopsy systems 

In order to achieve accurate cancer detection, the 3D-guided biopsy system needs to 

accurately sample tissues from the smallest clinically significant tumours.  There is a 

debate in the clinical community regarding the size of the smallest clinically significant 



 

 

22 

 

tumour.  Epstein et al. [26] suggested a minimum significant prostate tumour volume of 

0.5 cm3 and we refer to this work when discussing the desired level of accuracy in biopsy 

systems.  Assuming we have correctly identified and delineated tumours on MR imaging, 

there are several potential sources of error that limit 3D-guided biopsy systems in 

achieving a level of accuracy that allows for needle targeting with high confidence: (1) 

MR-TRUS co-registration errors, (2) tracking errors in the system, (3) imaging and 

calibration errors, and (4) errors due to patient and prostate motion/displacement during 

the procedure.  Quantification and minimization of these errors are essential to improving 

the needle targeting accuracy in 3D biopsy systems.  The errors due to sources (1)-(3) 

have been previously quantified and mitigated [8, 105] in the context of the 

mechanically-assisted 3D TRUS-guided biopsy system described in [8].  

Prostate motion/deformation can cause target misalignment during 3D TRUS-

guided biopsy [106].  Since the patient is awake and under local anesthesia, he can move 

due to discomfort during procedure, which is approximately 15 minutes in duration.  The 

TRUS probe pressure applied while the physician navigates the probe to different regions 

of the prostate is another potential cause of prostate motion.  The needle insertion and 

biopsy gun firing procedure could also cause some additional motion.  These motions 

during the procedure can disrupt the correspondence between live 2D TRUS images and 

the targets defined in the coordinate system of the baseline 3D TRUS image, causing 

target misalignments and needle targeting errors.  Studying prostate motion during biopsy 

and finding methods for motion compensation is critical to improving the needle 

targeting accuracy of 3D TRUS-guided biopsy systems. 
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Recent clinical studies [12, 14, 107, 108] comparing 3D versus 2D systematic 

TRUS-guided biopsies have demonstrated evidence suggesting that prostate cancer 

detection rates improve with a 3D-guided approach.  However, evidence from previous 

work [109] analysing prostate motion during biopsy suggests that misalignments due to 

motion can cause substantial errors > 5 mm relative to the clinically significant tumour 

sizes reported in the literature [26, 110].  Therefore, improving needle targeting accuracy 

of biopsy systems could help to further improve cancer detection rates of the 3D TRUS 

guided approach and strengthen the confidence in diagnosing low to intermediate risk 

cancer.   Automatic localization of corresponding anatomical landmarks within the 

anatomy is one potential approach to track motion during biopsy.  Surface-based 

registration algorithms are an example where the segmentation of the prostate boundary 

can be used to achieve correspondence.  While this approach relies upon an accurate, 

automatic segmentation algorithm of the prostate, developing such an algorithm that is 

sufficiently robust can be a challenging task in ultrasound images. Therefore, using the 

image intensity information could lead to more robust image registration solutions and 

simplify the workflow by eliminating the need for prostate segmentation. Development 

and successful clinical translation of rapid image intensity-based registration methods to 

compensate for misalignments due to prostate motion is an indispensable step towards 

improving targeting accuracy to enable sampling of clinically significant tumours during 

prostate biopsy.          
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1.6 Image-based registration techniques 

Image registration is the process of transforming multiple images to spatially align them 

in a single coordinate system.  In image-based registration, the alignment is achieved 

using the information in image signal intensities.  A quantitative measure that reflects the 

desirable properties of a good alignment is defined as the objective function, and can 

comprise of an image similarity metric and a regularization term.  For rigid registration 

applications, the objective function is typically the image similarity metric.  One image is 

transformed, interpolated and compared with the other image to calculate the image-

similarity metric. In a rigid, affine or non-rigid transformation space, optimization 

techniques are utilised to find the optimum metric value in an efficient manner.  Thus, the 

registration framework constitutes of multiple components: (1) image similarity metric, 

(2) optimization technique, (3) transformation (e.g., rigid, affine or non-rigid), and (4) 

interpolator. These components need to be specified in developing the image-registration 

technique. 

Live 2D TRUS images acquired during the procedure need to be co-registered 

with the baseline 3D TRUS image acquired at the beginning of the procedure to 

compensate for motion during the biopsy session.  The development of accurate and fast 

2D-3D registration methods could be challenging due to the limited information available 

in the live 2D TRUS image.   In solving uni-modality registration problems [10], the 

sum-of-squared difference (SSD) and normalized cross-correlation (NCC) could be 

suitable image similarity metrics.  While SSD assumes the same level of image intensity 

at homologous pixels in the two images, NCC tolerates a linear relationship in intensities. 

Therefore, NCC is invariant to the changes in intensity scaling and shift.  These metrics 
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can be inherently parallelized to achieve high-speed implementations to be useful for 

clinical application.  The capture range of the metric is another important consideration 

when selecting a useful metric.  If the metric has a wide capture range within the 

transformation space, large misalignments can be compensated using local optimizers to 

successfully converge at the desired solutions. 

Since brute-force searching of the transformation space is intractable due to 

registration time requirements, the optimization technique is an essential component of 

the registration algorithm to traverse the transformation space in an efficient manner.  

While local optimization techniques are widely used in registration problems that have 

convex, quasi-convex or monotonic objective function landscapes [111], some methods 

in the literature [112, 113] have investigated  the development of global optimization 

techniques to improve registration accuracy and robustness.  Multi-start [114], simulated 

annealing [115], particle swarm [116], genetic [117] approaches have been used in 

registration problems with the objective of improving robustness.  However, this could 

lead to an increase in computation times due to the increase in the number of image 

similarity metric evaluations and slower convergence properties.  Efficient 

implementation of optimization algorithms using graphics processing units (GPU) [113] 

and development of algorithms with improved convergence properties [118] could be 

helpful in adopting such algorithms for applications that require rapid registration. 

The properties of some optimization techniques can be more desirable in 

achieving high speed performance in principle. Multiple local optimization techniques 

(e.g., Newton’s method, quasi-Newton method, conjugate gradient method, Powell’s 

method) developed over the years are derived from a quadratic model and have quadratic 
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convergence properties.  These methods assume and approximate second order 

characteristics of the function within its local neighborhood and are capable of finding 

the optimum of the function in a finite number of function/derivative evaluations given a 

reasonable satisfaction of the quadratic model assumption.  This is a useful property that 

aids fast convergence when optimizing a multi-dimensional function in image 

registration.  Techniques that rely on first order properties of the function (e.g., gradient 

descent/steepest descent [119, 120]), on the other hand, have linear convergence 

properties.  There is another classification of optimization methods based on whether the 

calculation of the objective function’s derivative is required.  Some optimization methods 

(e.g., conjugate gradient method, Newton’s method) explicitly calculate the derivative of 

the objective function, while some others (e.g., Powell’s method [121], CMA-ES method 

[122]) are derivative-free and the optimization is achieved using only function 

evaluations.  Derivative-free methods can be useful if the explicit calculation of the 

function derivative is either time consuming or not straightforward.  

1.7 Image registration accuracy required for the clinical application 

The work in this thesis is focused on the errors due to prostate motion that limit the 

biopsy system in achieving the desired targeting accuracy, but had not been previously 

quantified and mitigated from the potential sources of error that we have enumerated in 

section 1.5.  Given that the suspicious tumour locations have been identified in the 

baseline 3D TRUS image, errors due to intermittent patient and prostate 

motion/displacement during the procedure and due to prostate deformation during the 

needle insertion and the biopsy-gun firing could challenge the accurate targeting of those 
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locations using a 3D TRUS-guided biopsy system.  On the other hand, there is evidence 

suggesting that tumours > 0.5 cm3 are clinically significant [26, 110]; such tumours have 

a radius of 5 mm under the spherical assumption. In order to accurately target a 5 mm 

radius spherical tumour with 95% probability, the root mean square (RMS) error of the 

biopsy system should be ≤ 2.5 mm.  

1.8 Hypothesis 

The central hypothesis is that image-based 2D-3D registration of TRUS images can 

correct for intermittent prostate displacement during the biopsy procedure, with an RMS 

target registration error (TRE) ≤ 2.5 mm. 

1.9 Objectives 

To test the central hypothesis, the four major objectives of this thesis work are: 

I. To quantify the prostate motion and deformation due to needle insertion and 

biopsy-gun firing procedure and calculate the 95% prediction interval around the 

tissue deformation and compare this deformation in handheld and mechanically-

assisted systems. 

II. To (a) develop a 2D-3D registration technique with sufficient accuracy and speed 

for prostate motion compensation during biopsy, and (b) validate this registration 

method retrospectively using live 2D TRUS images and baseline 3D TRUS 

images acquired during human clinical biopsy procedures using a mechanically-

assisted 3D TRUS-guided biopsy system [8].  

III. To (a) evaluate the utility of intra-procedural 3D TRUS images in guiding 

registration during motion compensation to robust solutions, (b) identify the 
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anatomical regions that benefit the most from such additional intra-procedural 3D 

information, and (c) test whether a robust rigid registration is sufficient to achieve 

clinically desired level of accuracy.    

IV. To (a) improve the robustness of registration optimization using learned 

characteristics from observed prostate motion data, (b) measure the major patterns 

of prostate motion during biopsy, and (c) modify Powell’s direction set method 

initialization to incorporate learned motion characteristics. 

1.10 Thesis outline 

1.10.1 Chapter 2 - Quantification of prostate deformation due to needle 

insertion during TRUS-guided biopsy: Comparison of hand-held and 

mechanically stabilized systems 

In this chapter, we describe our work to quantify the deformation that occurs during the 

needle insertion and the biopsy-gun firing procedure using non-rigid registration of 2D 

TRUS images acquired during human clinical biopsy procedures.  We calculated the 

spatially varying 95% confidence interval on the prostate tissue motion and analysed this 

motion both as a function of distance to the biopsy needle and as a function of distance to 

the lower piercing point of the prostate. The former is relevant because biopsy targets lie 

along the needle axis, and the latter is of particular importance due to the reported high 

concentration of prostate cancer in the peripheral zone, a substantial portion of which lies 

on the posterior side of the prostate where biopsy needles enter the prostate after 

penetrating the rectal wall during transrectal biopsy.  
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The results showed that for both systems, the tissue deformation is such that 

throughout the length of the needle axis, including regions proximal to the lower piercing 

point, spherical tumours with radius 2.1 mm or more can be sampled with 95% 

confidence, under the assumption of zero error elsewhere in the biopsy system. More 

deformation was observed in the direction orthogonal to the needle axis, compared to the 

direction parallel to the needle axis; this is of particular importance given the long, 

narrow shape of the biopsy core. We measured lateral tissue motion proximal to the 

needle axis of not more than 1.5 mm, with 95% confidence. We observed a statistically 

significant, but clinically insignificant maximum difference of 0.38 mm in the 

deformation resulting from the hand held and mechanically assisted systems along the 

needle axis, and the mechanical system resulted in a lower relative increase in 

deformation proximal to the needle axis during needle insertion, as well as lower 

variability of deformation during biopsy gun firing. 

1.10.2 Chapter 3 - 2D-3D rigid registration to compensate for prostate 

motion during 3D TRUS-guided biopsy 

The error due to needle insertion and biopsy gun-firing procedure, described in Chapter 

2, occurs during a very short period of time and is challenging to compensate.  

Intermittent patient and prostate motion cause larger misalignments [109] challenging the 

needle targeting accuracy to meet this requirement. To compensate for this motion, we 

implemented and tested an intensity-based 2D-3D rigid registration algorithm optimizing 

the NCC using Powell’s method.  The 2D TRUS images acquired during the procedure 

prior to biopsy gun firing were registered to the baseline 3D TRUS image acquired at the 
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beginning of the procedure.  The accuracy was measured by calculating the TRE using 

manually identified fiducial markers (henceforth fiducials) within the prostate for eight 

patients. These fiducials were used for validation only and were not provided as inputs to 

the registration algorithm.  We also measured the accuracy when the registrations were 

performed continuously throughout the biopsy procedure by acquiring and registering 

live 2D TRUS images every second.  This measured the improvement in accuracy 

resulting from performing the registration continuously compensating for motion during 

the procedure.  To further validate the method using a more challenging data set from 10 

patients, registrations were performed using 3D TRUS images acquired by intentionally 

exerting different levels of ultrasound probe pressures in order to measure the 

performance of our algorithm when the prostate tissue was intentionally deformed.  In 

this data set, biopsy scenarios were simulated by extracting 2D frames from the 3D 

TRUS images and registering them to the baseline 3D image.  A GPU-based 

implementation was used to improve the registration speed. We also studied the 

correlation between NCC and TREs.   

With the GPU based implementation, the registrations were performed with a 

mean time of 1.1 s.  The TRE values before, during and after registration showed a weak 

correlation (r2 = 0.23) with the similarity metric.  However, we measured a generally 

convex shape of the metric around the ground truth registration, which may explain the 

rapid convergence of our algorithm to accurate results.  The RMS TRE of registrations 

performed prior to biopsy gun firing was found to be 1.87 ± 0.81 mm.  This was an 

improvement over 4.75 ± 2.62 mm before registration.  When the registrations were 

performed every second during the biopsy, the RMS TRE was reduced to 1.63 ± 0.51 
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mm.  However, for a 3D data set acquired under a more controlled range of probe 

pressures intended to test the robustness of the algorithm, the RMS TRE was found to be 

3.18 ± 1.6 mm. This was an improvement from 6.89 ± 4.1 mm before registration.  

Assuming this TRE and the TRE resulting from tissue displacement during needle 

insertion (Chapter 2) are independent, they can be added in quadrature to determine an 

overall TRE that can be compared against the 2.5 mm TRE threshold in the central 

hypothesis.  From Chapter 2, we measured an RMS TRE of 1.1 mm; adding (in 

quadrature) a further TRE of 2.3 mm to this 1.1 mm yields a total of 2.5 mm.  Thus, for 

the central hypothesis of this work to be confirmed, an image registration algorithm with 

RMS TRE ≤ 2.3 mm is required. While the results in this chapter showed encouraging 

results in improving the accuracy in needle targeting, the measured 3.18 mm RMS TRE 

suggests that further improvements in accuracy and robustness could be helpful to meet 

the clinical requirements for successful translation of this method.   

1.10.3 Chapter 4 – Evaluating the utility of intra-procedural 3D TRUS 

image information in guiding registration for displacement compensation 

during prostate biopsy. 

The 2D-3D registration for motion compensation described in Chapter 3 can be 

challenging in cases where a single plane 2D TRUS plane does not capture enough 

anatomical context to drive the registration algorithm to the desired solution.  While 2D 

TRUS images are widely used for intra-procedural guidance, some solutions utilize richer 

intra-procedural images such as bi- or multi-planar TRUS or 3D TRUS, acquired by 

specialized probes. In this chapter, the impact of such richer intra-procedural imaging on 
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motion compensation accuracy was measured to evaluate the tradeoff between cost and 

complexity of intra-procedural imaging versus improved motion compensation.  Baseline 

and intra-procedural 3D TRUS images were acquired from 29 patients at standard 

sextant-template biopsy locations. Planes extracted from 3D TRUS images acquired at 

sextant positions were used to simulate 2D and 3D intra-procedural information available 

in different potential clinically-relevant scenarios for co-registration with the baseline 3D 

TRUS image. In practice, intra-procedural 3D information can be acquired either via the 

use of specialized ultrasound probes (e.g., multi-planar or 3D probes) or via axial rotation 

of a tracked 2D TRUS probe. Registration accuracy was evaluated by calculating the 

TRE using manually-identified homologous intrinsic fiducial markers (micro-

calcifications). The TRE was analysed separately at the base, mid-gland and apex regions 

of the prostate. 

The results indicated that TRE improved gradually as the number of intra-

procedural imaging planes used in registration was increased, implying that 3D TRUS 

information assisted the registration algorithm to robustly converge to more accurate 

solutions. The acquisition of a partial volume up to the angle of rotation supported more 

accurate motion compensation than acquiring bi-plane configurations. Additional intra-

procedural 3D TRUS image information was more beneficial to registration accuracy in 

the base and apex regions as compared with the mid-gland region 
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1.10.4 Chapter 5 – Robust 2D-3D registration optimization to motion 

compensation using learned prostate motion data 

In the previous chapter, we investigated a mechanism to achieve robust registration for 

motion compensation during biopsy by acquiring additional intra-procedure image 

information.  In this chapter, we discuss an alternative approach to registration to 

improve accuracy and robustness.  We developed and evaluated a registration algorithm 

in which the optimization is based on learned prostate motion characteristics of the 

prostate. We performed an unsupervised clustering of rigid prostate motion vectors 

observed in our data set.  We developed a multi-start search strategy, starting at each 

cluster mean and then directing the search towards the areas where motion vectors  had 

already been observed by appropriately scaling the search space and specifying the initial 

search directions during optimization using the Powell’s direction set method.   

Prostate motion analysis and registration validation was performed using a leave-

one-out-cross-validation approach using the 3D TRUS images acquired from 29 patients 

at baseline and sextant template biopsy locations.  With this method the RMS TRE ± std 

improved from 4.9 ± 2.35 mm to 2.3 ± 1.1 mm. The initial approach described in Chapter 

3 yielded an accuracy of 3.1 ± 1.7 mm with this data set.  Compared to the initial 

approach, the updated optimization method improved the robustness during 2D-3D 

registration by reducing the number of registrations with a TRE > 5 mm from 9.2% to 

1.2%.  With a total execution time of 2.8 s to perform motion compensation, this method 

is amenable to useful integration into a clinical 3D guided prostate biopsy workflow. 
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Chapter 2. 

Quantification of prostate deformation due to needle 

insertion during TRUS-guided biopsy: Comparison of 

hand-held and mechanically stabilized systems 

2.1 Introduction 

Prostate biopsy is currently the clinical standard for definitive diagnosis, and two-

dimensional (2D) transrectal ultrasound (TRUS) is the most common imaging modality 

used for guidance during biopsy. However, TRUS-guided biopsy suffers from significant 

limitations related to difficulties in targeting predefined locations within the prostate, 

resulting in a false negative rate as high as 29.1% [1].  The limited anatomic information 

provided by 2D TRUS makes navigation to predefined 3D locations challenging [2], and 

does not permit a 3D record of biopsy locations, which can be useful in a repeat session 

wherein previously-determined suspicious targets may need to be rebiopsied.   In order to 

overcome these drawbacks, magnetic resonance imaging (MRI) and TRUS guided 

systems have been developed to provide biopsy location information in 3D [3-5].  In 

these systems, biopsy target locations can be determined from previous biopsy sessions, 

or the radiologist's assessment of an image from a different modality. 

In order to be translated to clinical use, a biopsy system should meet the criterion 

of sampling tumours greater than or equal to a clinically significant minimum size with 

95% confidence.  A minimum significant prostate cancer volume of 0.5 cm3 (5 mm 

radius under an assumption of spherical tumour shape) has been previously established 

[6]. To meet the targeting criterion, the root-mean-square (RMS) error of a biopsy 
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system's delivery of needles to targets must be less than 2.5 mm [7].  There are several 

potential sources of error in biopsy systems: (1) mechanical guidance system errors, (2) 

imaging and calibration errors, (3) patient and prostate motion due to discomfort during 

the procedure, (4) prostate deformation due to biopsy needle insertion prior to firing the 

biopsy gun, and (5) prostate deformation due to biopsy gun firing.  The effects of the first 

three sources of error have been quantified previously [3, 5, 7].  The cumulative effect of 

all of the above sources has been quantified in the context of MRI-guided biopsy [8].  We 

hypothesize that deformations due to needle insertion and biopsy gun firing are different 

in the context of TRUS-guided biopsy due to several important differences in physical 

configuration.  In contrast to the robotic procedure described in Xu et al. [8], where an 

endorectal coil in a cylindrical housing is placed parallel to the rectal wall for imaging, 

TRUS-guided biopsy is typically conducted using an end-firing ultrasound transducer, 

where the spherical transducer tip is manipulated against the anterior rectal wall in order 

to obtain images.  The MR-guided robot in Xu et al. [8] inserts needles into the prostate 

through the rectal wall at an oblique angle to the endorectal coil housing, whereas in end-

firing TRUS biopsy, the needles are nearly parallel to the probe axis.  It is reasonable to 

expect that these differences in physical configuration may lead to differing mechanical 

dynamics at the time of biopsy needle insertion and gun firing, resulting in different 

prostate deformation characteristics.  The effect of needle insertion on prostate motion 

has been studied extensively in the context of brachytherapy procedures [9, 10], where 

the patient is under general anesthesia and the brachytherapy needles are inserted slowly 

(relative to the rapid firing speed of a biopsy gun) through the perineum.  It is reasonable 

to consider that the effect of the needle in the context of biopsy may be different due to 
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the reactions (e.g., in the form of pelvic floor muscle contractions) of an awake, 

uncomfortable patient and the high speed of needle insertion by the biopsy gun. 

The objective of this work was to quantify the deformation caused by the needle 

insertion and biopsy gun firing procedure.  The three main contributions of the present 

work are: (1) to compute clinically relevant confidence intervals around the tissue 

deformation, accounting for the measured error in our approach to measuring this 

deformation; (2) to compare the amount of lateral deformation, in the direction 

orthogonal to the needle, to the amount of axial deformation, in the direction parallel to 

the needle; and (3) to compare the deformation resulting from the traditional approach to 

2D TRUS-guided biopsy where the probe is hand held with that resulting from the use of 

mechanically assisted biopsy system [5].  With respect to contribution (1), we computed 

a spatially varying confidence interval around the amount of tissue deformation induced 

during these two actions in order to permit the determination the difference between the 

location sampled by the biopsy needle and the planned target location.  This is a useful 

measure from a clinical standpoint, since this confidence interval can be used to 

determine the smallest tumour that can be accurately sampled with 95% confidence, 

under the assumption of zero error in all other aspects of the biopsy system.  Our initial 

work on this problem, addressed this quantification in terms of a spatially varying mean 

and standard deviation of the deformation magnitudes [11].  With respect to contribution 

(2), given the long, narrow (19 mm × 0.8 mm) cylindrical shape of the biopsy core, it is 

useful to decompose the tissue motion into its axial and lateral components, since axial 

motion poses less of a problem for targeting, compared to lateral motion.  With respect to 

contribution (3), we hypothesize that the characteristics of prostate deformation may 
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differ when using a hand held TRUS probe during needle insertion and gun firing, as 

compared with using our mechanically stabilized system where the interaction between 

the physician and the system is more controlled.   

2.2 Materials and Methods 

2.2.1 Data Acquisition 

We acquired images using a conventional hand held 2D-TRUS biopsy system and a 

mechanically assisted 3D TRUS biopsy guidance system developed in our laboratory [5] 

as part of a larger human subjects research ethics board approved MRI-3D TRUS fusion 

biopsy study of our institution.  This system consists of passive mechanical components 

for guiding, tracking and stabilizing the position and orientation of a conventional TRUS 

probe (Figure 2.1).  The stabilization is accomplished using a mechanical spring-loaded 

counter-balancing system that maintains the position and orientation of the probe even 

when the physician removes his hand from the handle.  This permits smooth motion of 

the transducer with a light touch of the physician's hand.  In addition, the configuration of 

the device is such that there exists a remote center of motion (RCM) at a point near to the 

tip of the TRUS probe.  The RCM is intended to minimize prostate motion during 

reorientation of the probe to aim for different targets in the biopsy plan. 
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Figure 2.1: Mechanically assisted 3D TRUS-guided biopsy system.  The biopsy gun is retained in a clip 

and the needle is coupled to the TRUS probe using a needle guide.  A spring-based counter balancing 

system maintains probe position and orientation even when the physician removes his hand from the probe. 

  

For both the hand held and mechanically assisted approaches, we used a 

Philips/ATL HDI 5000 ultrasound machine with a 5-9 MHz end-firing TRUS transducer 

probe (model C9-5, Philips, Bothell, WA, USA) to acquire images, and a Magnum 

biopsy gun (C. R. Bard, AZ, USA) to take biopsy samples.  We utilized a video capture 

board to acquire and digitize video from the ultrasound machine's composite video output 

at a minimum of 10 Hz, recording the 2D ultrasound images (with isotropic pixels of size 

0.19 mm) obtained during the entire biopsy procedure for each patient.  Across 16 

patients, 𝑁𝑠 = 190 biopsies were obtained (i.e., an average of 12 biopsies per patient).  96 

biopsies were taken from 9 patients using the hand held system, and 94 biopsies were 

taken from 7 patients using the mechanically assisted system.  For each biopsy, we 

manually selected 3 video frames, denoting each frame triplet as a biopsy sequence, each 

of which is assigned a number 𝑠 between 1 and 𝑁𝑠.  The sequence consists of (1) the 

image 𝐼𝑠1 acquired immediately prior to needle insertion, (2) the image 𝐼𝑠2 acquired 

Biopsy gun clip

Spring loaded 

counterbalance

Needle guide
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immediately prior to biopsy gun firing, and (3) the image 𝐼𝑠3 acquired immediately after 

biopsy gun firing (Figure 2.2).  Formally, 𝐼𝑠𝑖: Ω → ℝ, where 𝑖 ∈  {1,2,3}, 𝑠 ∈  {1…𝑁𝑠}, 

and Ω ⊂  ℝ2 represents the domain of the image. 

 

Figure 2.2: Images in a biopsy sequence, and the names used for the three indicated registrations 

throughout this paper.  The first image occurs immediately prior to the physician's insertion of the biopsy 

needle.  The second image occurs immediately prior to firing the biopsy gun, and the third image occurs 

immediately after the biopsy gun has been fired.  The dotted curves indicate portions of the prostate 

boundary that interact with the needle, which lies between the two solid vertical segments in the second and 

third images; note the deformation at the lower piercing point. 

2.2.2 Image registration 

Our method is described at a high level in the block diagram given in Figure 2.3.   The 

process begins with the registration of an image pair, where one image is designated as 

the fixed image, and the other is designated as the moving image.  For each biopsy 

sequence, we performed three such registrations, described in Figure 2.3.  Throughout the 

remainder of this paper, for a biopsy sequence 𝑠, registration 1 refers to the registration of 

𝐼𝑠1 to 𝐼𝑠3 and reports the combined deformation resulting from both the needle insertion 

and the biopsy gun firing procedures.  Registration 2 refers to the registration of 𝐼𝑠1 to 𝐼𝑠2 

and reports the deformation resulting from needle insertion only.  Registration 3 refers to 

the registration of 𝐼𝑠2 to 𝐼𝑠3 and reports the deformation resulting from biopsy gun firing 

only.  For each indicated image pair, we designated the image at the earlier time point as 

the moving image and the image at the later time point as the fixed image, since these 

Registration 1 Registration 2

Registration 3

After needle insertion

Before needle insertion After biopsy gun firing
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designations reflect the movement of the tissue through time during the procedure.  We 

normalized the images with respect to the position of the biopsy needle by flipping the 

images (if necessary) so that the needle lies to the left of the probe; this normalization 

allows for the straightforward quantification of deformation with respect to measured 

spatial distances to the needle.  We then non-rigidly registered the moving image to the 

fixed image, yielding a deformation vector field that we used to quantify the tissue 

deformation captured by the registration.  The deformation field resulting from 

registration 𝑟 of biopsy sequence 𝑠 is denoted 𝑉𝑠𝑟: Ω → ℝ2 and gives the magnitude and 

direction of deformation at each location in the image domain.  We refer to the lateral (𝑥) 

and axial (𝑦) components of the deformation field as 𝑉𝑠𝑟
𝑥: Ω → ℝ and 𝑉𝑠𝑟

𝑦
: Ω → ℝ, 

respectively; Figure 2.4 provides an illustration of the magnitudes of 𝑉𝑠𝑟, 𝑉𝑠𝑟
𝑥, and 𝑉𝑠𝑟

𝑦
 for 

one sequence.  We tested the following three registration algorithms, with the specified 

tuning parameters: (1) Demons [12] (standard deviation of smoothing kernel: 1 mm, 

number of histogram levels: 1024, number of match points: 7), symmetric forces Demons 

[13] (using the same parameters as for the Demons algorithm) and B-spline [14] (B-

spline order: 3, grid spacing: 0.72 mm, similarity metric: normalized cross correlation). 
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Figure 2.3: Overall process used in this work. The moving image (from an earlier time point) is registered 

to the fixed image (from a later time point) using non-rigid registration.  This yields a deformation vector 

field that is used to quantify the underlying motion of the tissue.  The error in the non-rigid registration 

algorithm is measured by calculating a TRE based on corresponding intrinsic fiducial markers.  

Measurements, incorporating the TRE, are then taken from the deformation vector field to characterize the 

underlying motion of the prostate tissue in response to the insertion of the biopsy needle and firing of the 

biopsy gun. 

 

Figure 2.4: (a) Deformation vector field magnitude with prostate boundary and needle location indicated. 

(b) Lateral (x) components of the deformation field. (c) Axial (y) components of the deformation field. The 

needle axis lies between the vertical white line is each image. 

2.2.3 Image registration validation 

The accuracy of a deformation vector field in describing the motion of the tissue depicted 

in the registered images is influenced by the error of the registration algorithm that 

generated the deformation vector field.    We evaluated each image registration algorithm 

by estimating its TRE using manually marked, anatomically homologous intrinsic 

fiducial markers (naturally occurring calcifications) visible in a subset of the images to be 

registered (Figure 2.5).  The TRE is calculated as the RMS error of the spatial locations 
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of corresponding fiducials, post-registration [15].  To compute the TRE for each 

algorithm, we performed registrations 1, 2, and 3 on 21 biopsy sequences taken from 4 

patients.  A total of 390 fiducials were identified and localized in the tested images.  To 

determine the location of each fiducial, an operator localized the fiducial five times 

during separate sessions, and the centroid (arithmetic mean) of the operator's five selected 

locations was taken as the estimate of the location of the fiducial.  These repeated 

localizations were also used to compute the fiducial localization error (FLE) as 𝐹𝐿𝐸 =

 √
1

𝑁
∑ 𝐹𝐿𝐸𝑘

2
𝑘 , where 𝐹𝐿𝐸𝑘

2 = 𝜎2(𝑥𝑘) + 𝜎2(𝑦𝑘), and 𝜎2(𝑥𝑘) and 𝜎2(𝑦𝑘) are the 

variances of the 𝑥- and 𝑦-coordinates, respectively, of the repeated localizations of the 𝑘th 

fiducial. 

 

Figure 2.5: Calcifications used to validate the registration algorithms, indicated by arrows. 

2.2.4 Quantification of deformation 

A clinical objective of image-guided prostate biopsy is to obtain tissue samples from 

regions of the prostate defined as biopsy targets.  In conventional 2D TRUS-guided 
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biopsy, these targets may be determined according to a predefined pattern (e.g., as in 

sextant biopsy), or may be determined at time of biopsy based on a visual assessment of 

the ultrasound image by the physician.  In 3D TRUS-guided systems [3, 5], targets may 

be determined via the physician's assessment of an image of a different modality (e.g., 

MRI) or based on biopsy targets in a previous 3D TRUS-guided biopsy session [7].  

Regardless of the means of defining the target, the physician will insert the biopsy needle 

through the rectal wall with a trajectory intersecting with the target, advancing the needle 

tip sufficiently such that the target lies within the throw of the biopsy gun, and then 

activate the trigger to fire the gun and obtain a sample.  It is therefore of interest to 

quantify the deformation of the prostate tissue proximal to the trajectory of the needle 

throughout this procedure, in order to determine how far the target may move from the 

needle path.  There are two key aspects to this quantification: (1) defining the appropriate 

statistical descriptions of the deformation field to characterize the underlying tissue 

motion within a confidence interval, and (2) defining relevant spatial regions within 

which these statistics are to be calculated.  We define the statistics in Section 2.2.4.1 and 

the spatial regions in Section 2.2.4.2.  In Section 2.2.4.2, we describe the specific 

measurements computed in this paper using the defined statistics and regions. 

2.2.4.1 Deformation vector field statistics 

We calculated three statistics: (1) a signed mean of the deformation vector field, to 

measure coherent tissue motion in some direction; (2) a standard deviation of the vector 

field, to obtain a confidence interval around the amount of deformation observed in the 

tissue; and (3) a standard deviation of the vector field that incorporates the measurement 

error given by the TRE. 
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Statistic 1: Signed mean of the deformation field. This statistic was computed 

by summing each of the two signed components of the deformation vectors 

independently, and squaring and adding the results to obtain a measure of coherence in 

the motion depicted by the deformation vector field.  The signed mean distance across all 

sequences for a particular registration 𝑟 (1, 2 or 3) is defined as 

𝐷̅𝑟(𝑃) =  ‖
1

𝑁𝑠
∑ (

1

|𝑃𝑠|
)∑ 𝑉𝑠𝑟(𝒑𝑖 ∈  𝑃𝑠)

|𝑃𝑠|
𝑖=1

𝑁𝑠
𝑠=1 ‖, (2.1) 

where 𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑁𝑠} is a set of point sets, one per sequence, and |𝑃𝑠| is taken to be 

the cardinality of set 𝑃𝑠. The parameter 𝑃 allows for the specification of the region of the 

deformation vector field over which the statistic is to be computed. The elements of 

𝑃 allow for the definition of a different region for each sequence.  

Statistic 2: Standard deviation of the deformation field. The standard deviation 

of the distribution of deformation vectors for all sequences for a registration 𝑟 is  

𝜎̃𝑟(𝑃) = √𝐷̂𝑟(𝑃)2 − 𝐷̅𝑟(𝑃)2, (2.2) 

where the RMS of the deformation is defined as 

𝐷̂𝑟(𝑃) =  
1

𝑁𝑠
∑ (

1

|𝑃𝑠|
∑ ‖𝑉𝑠𝑟(𝒑𝑖 ∈  𝑃𝑠)‖
|𝑃𝑠|
𝑖=1 )

𝑁𝑠
𝑠=1 . (2.3) 

The standard deviation 𝜎̃𝑟(𝑃) is a useful statistic in that it permits the calculation 

of a confidence interval around the amount of tissue motion in a region of interest defined 

by 𝑃. However, 𝜎̃𝑟(𝑃) represents the variability of the deformation of the prostate tissue 

under the assumption of zero measurement error, i.e., zero TRE. Our motivation for 

performing this calculation is to compare it with the analogous calculation (defined in the 

next paragraph) that incorporates the TRE, in order to assess the impact of the 

registration error on the computed confidence interval on the estimated tissue motion. 
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Statistic 3: Standard deviation of the deformation field, incorporating the 

TRE.  In a given registration of a moving image to a fixed image, every point in the 

moving image has an anatomically homologous point in the fixed image to which it 

would be transformed by an ideal registration algorithm.  In practice, a given registration 

algorithm transforms each point in the moving image to a point which is some (possibly 

nonzero) distance away from its anatomically homologous point in the fixed image.  If 

we define the anatomically homologous point given by the ideal registration algorithm as 

our “true target”, the error of a non-ideal registration algorithm places the transformed 

points from the moving image around the true target according to some distribution.  

Under the assumption that this distribution is normal, the TRE gives an estimate of its 

standard deviation.  Deformation vector fields generated by a registration algorithm with 

a nonzero TRE therefore give an approximate measure of the deformation of the tissue, 

which is reflected in a larger confidence interval on the estimated tissue deformation due 

to needle insertion and biopsy gun firing.  The TRE, measured as an RMS error, adds 

uncertainty regarding the tissue motion to the uncertainty described by the measured 

standard deviation of the deformation vector field.  These uncertainties are combined by 

taking their quadratic sum [16] as 

𝜎𝑟(𝑃) = √𝜎̃𝑟(𝑃)2 + 𝑇𝑅𝐸2, (2.4) 

The 95% confidence interval on the magnitude of the prostate tissue displacement 

is given by 1.96𝜎𝑟(𝑃). To measure the tissue deformation along the lateral (𝑥) and axial 

(𝑦) directions separately, we computed  

𝜎𝑟
𝑥(𝑃) = √𝜎̃𝑟

𝑥(𝑃)2 + (𝑇𝑅𝐸𝑥)2 and (2.5) 
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𝜎𝑟
𝑦(𝑃) = √𝜎̃𝑟

𝑦
(𝑃)2 + (𝑇𝑅𝐸𝑦)2, 

(2.6) 

respectively, where 𝑇𝑅𝐸𝑥 and 𝑇𝑅𝐸𝑦 are the dimensional components of the TRE, and  

𝜎̃𝑟
𝑥(𝑃) = √𝐷̂𝑟

𝑥(𝑃)2 − 𝐷̅𝑟
𝑥(𝑃)2,  

  𝐷̅𝑟
𝑥(𝑃) =  ‖

1

𝑁𝑠
∑ (

1

|𝑃𝑠|
)∑ 𝑉𝑠𝑟

𝑥(𝒑𝑖 ∈  𝑃𝑠)
|𝑃𝑠|
𝑖=1

𝑁𝑠
𝑠=1 ‖,  

 

𝐷̂𝑟
𝑥(𝑃) =  

1

𝑁𝑠
∑ (

1

|𝑃𝑠|
∑ ‖𝑉𝑠𝑟

𝑥(𝒑𝑖 ∈  𝑃𝑠)‖
|𝑃𝑠|
𝑖=1 )

𝑁𝑠
𝑠=1 .  

(and similarly for the 𝑦 dimension). 

2.2.4.2 Measured regions 

We calculated the statistics of deformation vector fields lying within three different types 

of image regions: (1) regions at a specific signed distance to the needle axis, (2) regions 

within an unsigned distance of the needle axis, and (3) regions at a specific unsigned 

distance to the point where the biopsy needle enters the prostate (henceforth referred to as 

the lower piercing point). 

Region 1: Deformation vectors at a signed distance to the needle axis. The set 

of points in the image domain lying at a distance 𝑑 from the needle axis 𝐴 for sequence 𝑠 

is defined as 

𝑃𝑠𝑑
𝐴 = {𝒑𝑖 ∈ Ω | 𝐷𝐴(𝐴𝑠, 𝒑𝑖) = 𝑑}, (2.7) 

where 

𝐴𝑠 = {𝒍𝑠 +  𝑡𝒂𝑠 | 𝑡 ∈ ℝ},  

defines the needle axis for sequence 𝑠, with 𝒍𝑠 defining the lower piercing point and 𝒂𝑠 

defining the needle axis direction. 𝐷𝐴(𝐴𝑠, 𝒑𝑖) gives the signed perpendicular distance 
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between 𝒑𝑖 and the needle axis, with negative distance values defined for points lying to 

the left of the needle axis. 𝑃𝑑
𝐴 = {𝑃1𝑑

𝐴 , 𝑃1𝑑
𝐴 , … , 𝑃𝑁𝑠𝑑

𝐴 } the set of such regions at distance 𝑑 

for all sequences.  

Region 2: Deformation vectors within an unsigned distance of the needle axis. 

The set of points from sequence 𝑠 in the image domain lying within a region of the 

needle axis (“axis region” denoted as 𝐴𝑅) defined by a distance 𝑑 is defined as 

𝑃𝑠𝑑
𝐴𝑅 = {𝒑𝑖 ∈ Ω | 𝐷𝐴(𝐴𝑠, 𝒑𝑖)  ≤ 𝑑}. (2.8) 

𝑃𝑑
𝐴𝑅 = {𝑃1𝑑

𝐴𝑅 , 𝑃1𝑑
𝐴𝑅 , … , 𝑃𝑁𝑠𝑑

𝐴𝑅 }, the set of such regions at distance 𝑑 for all sequences. 

Region 3: Deformation vectors at a specific unsigned distance to the lower 

piercing point.  The set of points in the image domain lying at a distance d from the 

lower (denoted as “𝑙”) piercing point for sequence 𝑠 is defined as 

𝑃𝑠𝑑
𝑙 = {𝒑𝑖 ∈ Ω | 𝐷𝑙(𝒍𝑠, 𝒑𝑖) = 𝑑}, (2.9) 

where 𝐷𝑙(𝒍𝑠, 𝒑𝑖) gives the unsigned Euclidean distance between 𝒑𝑖 and the lower 

piercing point. 𝑃𝑑
𝑙 = {𝑃1𝑑

𝑙 , 𝑃1𝑑
𝑙 , … , 𝑃𝑁𝑠𝑑

𝑙 }, the set of such regions at distance 𝑑 for all 

sequences. 

2.2.4.3 Prostate tissue deformation measurements 

Using the statistics and regions defined above, we computed four different measures of 

prostate tissue deformation, defined in the paragraphs below. 

Measurement 1: Deformation as a function of distance to the needle axis. The 

signed mean, 𝐷̅𝑟(𝑃𝑑
𝐴), the standard deviation, 𝜎̃𝑟(𝑃𝑑

𝐴), and the standard deviation 

incorporating the TRE, 𝜎𝑟(𝑃𝑑
𝐴), were determined for regions 𝑃𝑑

𝐴 at specific signed 

distances 𝑑 to the needle axis (Figure 2.6). These measurements were performed 
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separately for 𝑟 = 1,2,3, with 𝑑 = [-15 mm, 50 mm], a sufficiently large domain to cover 

all of the prostates in our study.  The purpose of these measurements was to find the 95% 

confidence interval (1.96𝜎𝑟(𝑃𝑑
𝐴)) on the estimated prostate tissue motion, as well any 

directionally coherent tissue motion (𝐷̅𝑟(𝑃𝑑
𝐴)), as a function of distance to the needle 

axis.  Since the biopsy target is presumably near to the needle axis, these measurements 

allow for the interrogation of a region of clinical interest to determine the amount by 

which the tissue may move away from the needle during biopsy.  Comparing the 95% 

confidence interval on the tissue motion that incorporates the measured TRE with the 

corresponding confidence interval computed under the assumption of zero TRE permits 

the assessment of the effect of the registration error on the confidence interval estimate. 

 

Figure 2.6: Diagram depicting a prostate contoured on a 2D TRUS image with the needle axis 𝐴𝑠 to the 

left of the probe, as in all of our images. The perpendicular distance 𝐷𝐴 of a point 𝑃 to the needle axis is 

shown. The lower piercing point 𝑙𝑠 is indicated, as is the distance 𝐷𝑙 between 𝑃 and the lower piercing 

point. 

Measurement 2: Deformation as a function of distance to the lower piercing 

point. The signed mean, 𝐷̅𝑟(𝑃𝑑
𝑙 ), the standard deviation, 𝜎̃𝑟(𝑃𝑑

𝑙), and the standard 

deviation incorporating the TRE, 𝜎𝑟(𝑃𝑑
𝑙), were determined for regions 𝑃𝑑

𝑙  at specific 
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unsigned distances 𝑑 to the lower piercing point (Figure 2.6). These measurements were 

performed separately for 𝑟 = 1, 2, 3, with 𝑑 = [0 mm, 30 mm], a sufficiently large domain 

to cover all of the prostates in our study. The purpose of these measurements was to find 

the 95% confidence interval (1.96𝜎𝑟(𝑃𝑑
𝑙)) on the estimated prostate tissue motion, as well 

any directionally coherent tissue motion (𝐷̅𝑟(𝑃𝑑
𝑙 )), as a function of distance to the lower 

piercing point. These measurements allow for the comparison of the amounts by which 

the tissue may move away from the biopsy needle when the target is proximal to the 

piercing point (e.g., target A in Figure 2.7), and when the target is far from the piercing 

point (e.g., target B in Figure 2.7). This is particularly important since up to 80% of 

prostate cancer is found in the peripheral zone [17, 18], which lies near to the posterior 

side where the biopsy needle enters the prostate after penetrating the rectal wall (Figure 

2.7). 

  

Figure 2.7: Diagram depicting prostate anatomy in a sagittal view, indicating the peripheral zone (PZ), 

central zone (CZ), transition zone (TZ), and anterior zone (AZ). Three biopsy targets are shown as A, B, 

and C. The biopsy needle enters the prostate on the posterior side by penetrating the rectal wall, as shown. 

Measurement 3: Deformation in the lateral and axial directions. The standard 

deviations incorporating the TRE along the lateral (𝑥) and axial (𝑦) directions for 

registration 1, computed as 𝜎1
𝑥(𝑃𝑑

𝐴) (Equation 2.5) and 𝜎1
𝑦(𝑃𝑑

𝐴) (Equation 2.6), 
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respectively, were determined for regions 𝑃𝑑
𝐴 at specific signed distances 𝑑 to the needle 

axis (Equation 2.7). 𝜎1
𝑥(𝑃𝑑

𝑙 )  and 𝜎1
𝑦
(𝑃𝑑

𝑙 )  are also calculated for regions 𝑃𝑑
𝑙  at specific 

unsigned distances 𝑑 to the lower piercing point (Equation 2.9).  These give 

decompositions of the two quantifications described above into the lateral and axial 

directions. The observation of these decompositions is useful because of the highly 

anisotropic (long, narrow) nature of the biopsy core; axial tissue motion parallel to the 

needle poses less of a problem with respect to targeting than does lateral tissue motion. 

Measurement 4: Deformation as a function of lateral position of the needle 

relative to the prostate. The standard deviation incorporating the TRE, computed as 

𝜎1(𝑃5 𝑚𝑚
𝐴𝑅 ), was determined for the region 𝑃5 𝑚𝑚

𝐴𝑅  within 5 mm of the needle axis 

(Equation 2.8). This was calculated for registration 1 as a function of 𝑤, the lateral 

position of the needle normalized with respect to the width of the prostate as seen on the 

2D TRUS image.  At the boundary of the prostate on the 2D TRUS image on the left side 

of the needle, 𝑤 = 0, in the middle of the prostate, 𝑤 = 0.5, and at the boundary of the 

prostate on the right side of the needle, 𝑤 = 1.  The purpose of this measurement is to 

investigate the relationship (if any) between the distance of the target from the edge of 

the prostate, and the amount of tissue deformation that occurs within a clinically 

meaningful distance of the needle axis. This is illustrated by Figure 2.7; this measurement 

permits the determination of the difference in deformation when aiming the needle for 

target A (closer to the middle of the prostate), compared to target C (closer to the edge of 

the prostate). 
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2.3 Results 

2.3.1 Image registration validation 

Table 1 shows the measured TRE values before and after registration for each of the 

tested algorithms. The symmetric forces Demons registration algorithm was selected for 

use in this study since it provided the best overall improvement in the TRE.  This 

algorithm is based on optical flow techniques, which have been shown to be suitable for 

tracking fine-scale structure in ultrasound images in the presence of small tissue 

deformation [19]; this class of algorithms is therefore suitable for our problem.  The 

calculated FLE was 0.11 mm. 

Table 2.1: Comparison of TRE before and after registration for each tested registration method.  

Registration 1 captures tissue motion during needle insertion and biopsy gun firing, registration 2 captures 

needle insertion only, and registration 3 captures biopsy gun firing only. 

Registration method Registration 1 TRE 

(mm) 

Registration 2 

TRE (mm) 

Registration 3 

TRE (mm) 

Before registration 0.51 0.31 0.40 

Demons [12] 0.24 0.13 0.23 

Symmetric Forces Demons [13] 0.23 0.14 0.22 

B-spline [14] 0.46 0.28 0.37 

2.3.2 Quantification of deformation 

Measurement 1: Deformation as a function of distance to the needle axis. Figure 2.8 

plots the mean deformation, 𝐷̅𝑟(𝑃𝑑
𝐴), the 95% confidence interval, 1.96𝜎̃𝑟(𝑃𝑑

𝐴), and the 

95% confidence interval incorporating the TRE, 1.96𝜎𝑟(𝑃𝑑
𝐴), versus the signed distance 

𝑑 to the needle axis.  It can be observed that the coherent tissue motion is relatively small 

compared to the total amount of deformation (comparing the lowermost curve to the 

uppermost curve), and that the TRE makes a relatively small contribution to the width of 

the 95% confidence interval (comparing the middle curve to the uppermost curve).  A 
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local increase in deformation proximal to the needle axis is observed for both systems, 

with biopsy gun firing being the main contributor to this deformation for the hand held 

system, and the only contributor for the mechanically assisted system.  A two-tailed t-test 

showed that 1.96𝜎𝑟(𝑃𝑑
𝐴) was statistically significantly different when comparing the hand 

held system to the mechanically assisted system (p < 0.05), for |𝑑| < 20 mm. 
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Figure 2.8: Deformation versus distance to the needle axis.  Dashed curve: the signed mean of the 

deformation (𝐷̅𝑟(𝑃𝑑
𝐴)).  Dotted curve: the 95% confidence interval around the tissue deformation (𝜎̃𝑟(𝑃𝑑

𝐴)).  
Solid curve: the 95% confidence interval incorporating the TRE (𝜎𝑟(𝑃𝑑

𝐴)). (a, b): registration 1, (c, d): 

registration 2, (e, f): registration 3.  (a, c, e): hand held, (b, d, f): mechanically assisted. 

(a) (b)

(c) (d)

(e) (f)

Reg. 1

Reg. 2

Reg. 3

Hand held Mechanically assisted 
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Figure 2.9: Deformation versus distance to the lower piercing point.  Dashed curve: the signed mean of the 

deformation (𝐷̅𝑟(𝑃𝑑
𝑙 )).  Dotted curve: the 95% confidence interval around the tissue deformation (𝜎̃𝑟(𝑃𝑑

𝑙 )).  

Solid curve: the 95% confidence interval incorporating the TRE (𝜎𝑟(𝑃𝑑
𝑙 )). (a, b): registration 1, (c, d): 

registration 2, (e, f): registration 3.  (a, c, e): hand held, (b, d, f): mechanically assisted. 
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Measurement 2: Deformation as a function of distance to the lower piercing 

point.  Figure 2.9 plots the mean deformation, 𝐷̅𝑟(𝑃𝑑
𝑙), the 95% confidence interval,  

1.96𝜎̃𝑟(𝑃𝑑
𝑙), and the 95% confidence interval incorporating the TRE, 1.96𝜎𝑟(𝑃𝑑

𝑙), versus 

the signed distance 𝑑 to the needle axis.  As in Figure 2.8, it can be observed that the 

coherent tissue motion is small relative to the total amount of deformation and that the 

TRE is not a substantially contributing factor. It can also be observed that in general, 

more deformation occurs proximal to the lower piercing point. A two-tailed t-test showed 

that 1.96𝜎𝑟(𝑃𝑑
𝑙) was statistically significantly different when comparing the hand held 

system to the mechanically assisted system (p < 0.05), for 𝑑  ≥ 1 mm. 

Measurement 3: Deformation in the lateral and axial directions. Figure 

2.10(a-b) plot the 95% confidence interval on the tissue deformation, 1.96𝜎1(𝑃𝑑
𝐴), versus 

distance to the needle axis, and its lateral and axial components, 1.96𝜎1
𝑥(𝑃𝑑

𝐴) and 

1.96𝜎1
𝑦(𝑃𝑑

𝐴), respectively. Figure 2.10(c-d) plot the 95% confidence interval on the tissue 

deformation, 1.96𝜎1(𝑃𝑑
𝑙), versus distance to the lower piercing point, and its lateral and 

axial components, 1.96𝜎1
𝑥(𝑃𝑑

𝑙 ) and 1.96𝜎1
𝑦
(𝑃𝑑

𝑙), respectively.  It can be observed that the 

deformation is predominantly in the lateral (𝑥) direction proximal to the needle axis (a-b).  

Proximal to the lower piercing point (c-d), the situation is the opposite, with dependence 

predominantly in the axial (𝑦) direction. 
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Figure 2.10: Lateral-axial decompositions of the 95% confidence intervals shown in Figures 8 and 9, for 

registration 1.  (a, b): Deformation versus distance to the needle axis.  Solid curve: the 95% confidence 

interval around the tissue deformation incorporating the TRE (𝜎𝑟(𝑃𝑑
𝐴)).  Dashed curve: the lateral (𝑥) 

component of this confidence interval (𝜎1
𝑥(𝑃𝑑

𝐴))  Dotted curve: the axial (𝑦) component (𝜎1
𝑦(𝑃𝑑

𝐴)).  (c, d): 

Deformation versus distance to the lower piercing point.  Solid curve: the 95% confidence interval around 

the tissue deformation incorporating the TRE (𝜎𝑟(𝑃𝑑
𝑙 )).  Dashed curve: the lateral (𝑥) component of this 

confidence interval (𝜎1
𝑥(𝑃𝑑

𝑙 )).  Dotted curve: the axial (𝑦) component (𝜎1
𝑥(𝑃𝑑

𝑙 )) (a, c): hand held, (b, d): 

mechanically assisted. 

Measurement 4: Deformation as a function of lateral position of the needle 

relative to the prostate. Figure 2.11 plots the 95% confidence interval on the tissue 

deformation in the region within 5 mm of the needle axis, 1.96𝜎1(𝑃5 𝑚𝑚
𝐴𝑅 )as a function of 

the position of the biopsy needle relative to the left edge of the prostate as seen on the 2D 

TRUS image (0 is the left edge, 1 is the right edge, and 0.5 is the middle). Since the 

(a) (b)

(c) (d)

Reg. 1

Reg. 2

Hand held Mechanically assisted 
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needle is consistently oriented to the left side of the probe in our images, most of the 

plotted points are at less than 0.5 on the horizontal axis. The correlation ratio was found 

to be -0.17, with a 95% confidence interval of (-0.07, -0.27). The relationship is weak, 

negative as shown in Figure 2.11. 

 

Figure 2.11: Deformation as a function of lateral position of the needle relative to the prostate, for 

registration 1. The distance to the left edge of the prostate is shown on the horizontal axis (0 = left edge, 0.5 

= middle, 1 = right edge). The vertical axis shows the width of the 95% confidence interval on the tissue 

deformation within a region lying 5 mm on either side of the needle axis (𝜎1(𝑃5 𝑚𝑚
𝐴𝑅 )). The best fit line is 

plotted, showing a weak negative relationship (r = -0.17).  

2.4 Discussion 

2.4.1 Image registration validation 

The measured TRE values before and after registration using the symmetric forces 

Demons algorithm demonstrate that the registrations improve the alignment of the 

fiducial markers for registrations 1, 2, and 3.  Overall, for registration 1 (capturing tissue 

deformation occurring during needle insertion and biopsy gun firing), 55% of the pre-

registration fiducial misalignment is eliminated by the algorithm. For registrations 2 

(needle insertion only) and 3 (biopsy gun firing only), 55% and 45% of the pre-

registration fiducial misalignment is eliminated, respectively, suggesting that the 

algorithm was most challenged by the registration of the images occurring before and 
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after biopsy gun firing. Although the FLE accounts for less than half of the TRE for the 

overall biopsy procedure (registration 1), it contributes non-trivial variability, suggesting 

that the actual TRE of this algorithm may in fact be lower than our measurements 

suggest. Our reported confidence intervals are therefore likely to be conservative. 

2.4.2 Quantification of deformation 

Measurement 1: Deformation as a function of distance to the needle axis.  We 

observe a maximum value of 1.96𝜎1(𝑃𝑑
𝐴) = 2.1 mm, occurring at 𝑑 = 0, across both 

systems.  Consequently, spherical tumours with radius 2.1 mm or more can be sampled 

with 95% confidence, under the assumption of zero error elsewhere in the biopsy system.  

Although 1.96𝜎1(𝑃𝑑
𝐴) has a higher plateau for the mechanically assisted system, 

compared to the hand held system, the difference in deformation in the region along the 

needle axis is less than 0.38 mm.  This slight increase in deformation may be explained 

by the fact that the mechanical system, due to its stabilization of the ultrasound probe, 

does not require the physician to maintain constant inward pressure on the probe to keep 

it within the rectum with good acoustic coupling to the prostate.  Although this 

stabilization can reduce the amount of deformation applied to the prostate as the probe is 

reoriented to aim for different targets, the reduced pressure on the prostate may permit 

the observed increase in tissue motion during needle insertion and biopsy gun firing.  In 

addition, there is less variability arising from the mechanical system in the deformation 

on the lateral side of the prostate, to the left of the needle axis (compare Figure 2.8(a,e) to 

Figure 2.8(b,f) for 𝑑 < 0).  Feedback from our collaborating radiologist suggests that this 

may be due to the mechanical system's stability in the absorption of recoil when the 
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biopsy gun is fired; recall that the mechanically assisted system holds the biopsy gun in a 

clip, allowing its mechanical assembly to stabilize the gun and needle during firing.  In 

the hand held system, the physician may be inclined to proactively compensate for recoil 

by driving the biopsy gun forward slightly at the time of firing, causing the observed 

lateral deformation variability. Additionally, there exists a relative increase in 

deformation in the region surrounding the needle axis for the hand held system during 

needle insertion (peak in the curve at 𝑑 = 0 in Figure 2.8(c)); this does not occur in the 

mechanically assisted system (no peak in the curve at 𝑑 = 0 in Figure 2.8(d)).  This may 

be due to a slower speed of needle insertion in the mechanical system due to the fact that 

biopsies taken with this system were targeted using a heads-up display, causing the 

physician to take extra care when setting the initial needle trajectory during penetration of 

the rectal wall. 

Measurement 2: Deformation as a function of distance to the lower piercing 

point. As was observed with the deformation relative to the needle axis, the deformation 

relative to the lower piercing point, 1.96𝜎1(𝑃𝑑
𝑙), is 0.38 mm higher in the mechanically 

assisted system, compared with the hand held system. Overall, the mechanically assisted 

approach yields a deformation that is less dependent on the distance from the lower 

piercing point, compared with the hand held approach (flatter curves in Figure 2.9(b, d, 

f), compared with Figure 2.9(a, c, e)). 

Measurement 3: Deformation in the lateral and axial directions. At 𝑑 = 0, the 

ratio of 𝜎1
𝑥(𝑃𝑑

𝐴) to 𝜎1
𝑦(𝑃𝑑

𝐴) is 1.2 for the mechanically assisted system, and 1.3 for the 

hand held system.  The observed lateral tissue motion proximal to the needle shaft is 

expected, since tissue must be displaced laterally in order to accommodate the insertion 
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of the biopsy needle into the prostate; this observation provides qualitative support for the 

plausibility of the deformation vector fields generated by our chosen registration 

algorithm.  This analysis is motivated by the long, narrow shape of the biopsy core, so it 

is of value to observe the 95% confidence interval around the lateral tissue motion along 

the needle axis.  This quantity is 1.3 mm for the hand held system and 1.5 mm for the 

mechanically assisted system.  In both systems, the ratio of 𝜎1
𝑦
(𝑃𝑑

𝑙 ) to 𝜎1
𝑥(𝑃𝑑

𝑙 ) is greater 

than one proximal to the lower piercing point; this dependence is in the axial direction, 

parallel to the needle axis, and so is of little concern given the shape of the biopsy core. 

Measurement 4: Deformation as a function of lateral position of the needle 

relative to the prostate. The observed weak negative relationship between 

1.96𝜎1(𝑃5 𝑚𝑚
𝐴𝑅 ) and the lateral position of the biopsy needle relative to the prostate 

suggests that although the tissue medial to the prostate may be more stable during biopsy, 

compared with the tissue nearer to the sides, this effect is not large enough to warrant 

compensation during targeting. 

2.4.3 Limitations 

One limitation of this work arises due to the fact that obtaining images at a suitable frame 

rate to capture the deformation occurring during rapid biopsy gun firing necessitates the 

use of 2D, rather than 3D, TRUS imaging. We are therefore able to quantify deformation 

in directions non-parallel to the 2D TRUS imaging plane only indirectly, in several ways. 

First, because the biopsy sequence images in this study were selected in part due to the 

presence of visible micro-calcifications for the purposes of quantifying the TRE and FLE, 

the visibility of such small structures in all three images in each sequence limits the out-
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of-plane tissue motion by a function of calcification size and ultrasound beam thickness. 

Second, the measured in-plane lateral dependence shown in Figure 2.10 suggests a bound 

on the out-of-plane deformation, under the assumption that it is similar to that which is 

observed within the 2D TRUS images. Finally, because we quantified the tissue 

deformation for a large number of biopsies (190) taken during clinical sessions, our in-

plane deformation quantifications are on a representative sampling of differently 

positioned and oriented prostate tissue cross sections imaged by 2D TRUS. 

We calculated the TRE using the fiducials located by a single observer over 

multiple days.  One limitation of this approach is that inter-observer variability in fiducial 

localization is not taken into account.  As a step toward assessing this limitation, a second 

observer located 64 fiducials of four patients five times on five different days.  The 

measured FLE of the second observer (0.09 mm) was similar to that of the first observer 

(0.12 mm), suggesting that inter-observer variability in fiducial localization may not be a 

dominant factor. 

In order to evaluate the tested registration algorithms and incorporate 

measurement error into our tissue deformation estimates, we computed a single TRE for 

each algorithm based on multiple fiducials localized in images of several patients.  This 

approach makes the assumption of a spatially uniform TRE that is invariant to differences 

between subjects.  Although it is theoretically possible to calculate a separate TRE for 

each subject, each biopsy sequence, and even (via TRE interpolation) each pixel of each 

registered image pair, such calculations require a sufficiently regular and dense 

distribution of intrinsic fiducials (calcifications) in every image in order to robustly 

estimate a spatially-varying TRE for every image pair.  With an average of 6.2 naturally 
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occurring calcifications appearing in each of our tested images, the robustness of an 

estimate of a spatially-varying TRE for each image is questionable.  This motivated the 

computation of an overall TRE based on 390 fiducials across multiple patients, under the 

above assumptions. 

Another limitation of this work concerns the assumption of the independence of 

uncertainties in Equation 2.4.  Since the TRE of a registration algorithm may have some 

effect on the standard deviation of the deformation vector fields that it produces, it could 

be argued that there may be some dependence between these uncertainties.  Since the 

strength of the independence assumption is unclear, it is reasonable to consider the effect 

on the results if this assumption is not made.  In this case, the upper bound on the total 

uncertainty is the ordinary sum of the individual uncertainties [16]; i.e., in our case, 

𝜎𝑟(𝑃) would become 𝜎̃𝑟(𝑃) + 𝑇𝑅𝐸.  Using this extremely conservative approach, we 

would observe a maximum value of 1.96𝜎1(𝑃𝑑
𝐴) = 2.3  mm, occurring at 𝑑 = 0, across 

both systems.  Consequently, spherical tumours with radius 2.3 mm or more could be 

sampled with 95% confidence, under the assumption of zero error elsewhere in the 

biopsy system. 

2.5 Conclusion 

In this work, we utilized deformation vector fields given by the symmetric forces 

Demons non-rigid image registration algorithm to quantify the deformation of prostate 

tissue that occurs during needle insertion and biopsy gun firing.  We computed the 

coherence of the tissue motion as well as the 95% confidence interval around the amount 

of tissue motion, incorporating the measurement error given by the TRE.  We calculated 
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these statistics in clinically relevant regions of the deformation vector fields in order to 

observe trends in the deformation as functions of the distances to the needle axis and 

lower piercing point.  We also decomposed the deformation and into its lateral and axial 

components, and computed the relationship of the deformation to the lateral position of 

the needle with respect to the prostate.  All of these measurements were used to compare 

the conventional hand held approach to a mechanically assisted biopsy system developed 

in our laboratory.  Overall, we observed a statistically significant, but clinically 

insignificant, maximum difference of 0.38 mm in the deformation resulting from the hand 

held and mechanically assisted systems along the needle axis.  The mechanical system 

resulted in a lower relative increase in deformation proximal to the needle axis during 

needle insertion, as well as lower variability of deformation during biopsy gun firing.  

The results show that for both systems, the tissue deformation is such that throughout the 

length of the needle axis, including regions proximal to the lower piercing point, 

spherical tumours with radius 2.1 mm or more can be sampled with 95% confidence, 

under the assumption of zero error elsewhere in the biopsy system.  Along the needle 

axis, the deformation was predominantly in the lateral direction; this is of particular 

importance given the long, narrow shape of the biopsy core.  We measured lateral tissue 

motion proximal to the needle axis of not more than 1.5 mm, with 95% confidence.  

There was a weak negative relationship between tissue deformation in a local region 

around the needle and the lateral position of the needle with respect to the prostate; the 

closer was the needle to the center of the prostate, the less was the observed deformation.  

Given the clinical need to biopsy tumours of volume greater than or equal to 0.5 cm3, 
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corresponding to spherical tumours of radius 5 mm or more, the tissue motion induced by 

needle insertion and gun firing contributes to the overall error of the biopsy system 
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Chapter 3. 

2D-3D rigid registration to compensate for prostate 

motion during 3D TRUS-guided biopsy 

 

3.1 Introduction 

With the aim of improving the cancer detection rate, systems have been developed [1, 2] 

that can plan and record biopsy locations in a 3D TRUS image acquired at the beginning 

of the biopsy procedure.  Although early reports of these systems are promising, some 

limitations have been identified that require attention [3].  For instance, patient motion 

and ultrasound probe pressure can cause the prostate to move and deform during the 

biopsy procedure.  In this chapter, we focus on improving the needle targeting accuracy 

of such systems by compensating for prostate motion during the procedure.  Target 

biopsy locations are usually identified with the assistance of an MR image acquired prior 

to the biopsy session, in which cancerous regions are more visible.  These locations are 

mapped to the 3D TRUS image acquired during the biopsy session to provide guidance 

using image information contained in the MR image.  The 3D TRUS image can then act 

as a baseline image, to guide the physician to the target biopsy locations by augmenting 

the 2D TRUS planes acquired during biopsy with 3D contextual information.  However, 

motion during the procedure could lead to a misalignment between the targets identified 

in the initially-acquired 3D image and their corresponding locations within the patient’s 

prostate as depicted by the real-time 2D TRUS images acquired throughout the biopsy 

procedure.  Compensating for the prostate motion and deformation by registering the pre-
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acquired 3D image to the live 2D images acquired throughout the procedure is an 

important step toward improving the targeting accuracy. 

Previous approaches to compensation for prostate motion during biopsy have 

involved mechanical stabilization of the ultrasound probe, 3D tracking of the probe, and 

the use of biplanar or 3D transducers to continuously acquire richer image information 

supporting software-based motion compensation algorithms [1-5].  The mechanically 

assisted 3D TRUS-guided biopsy system developed in our laboratory and described in 

detail in [1], uses a passive mechanical arm to track the position and orientation of the 

ultrasound probe during the biopsy procedure.  The design yields a remote centre of 

motion positioned at the centre of the ultrasound probe tip that provides enhanced 

stability to the US probe minimizing prostate motion.  Several methods have been 

proposed in similar 3D TRUS-guided biopsy systems to register real-time TRUS images 

during the procedure to an initially acquired 3D image [2, 4, 5].  The 3D TRUS-guided 

biopsy system presented in Xu et al. [2] uses a magnetic tracking method to locate the 

ultrasound plane and it then performs an intermittent rigid registration to compensate for 

out-of-plane prostate motion; the registration is invoked when misalignment is detected 

visually by an operator.  The magnetic tracker transform provides an initialization for the 

2D US plane within the world coordinate system in their system.  In that work, however, 

registration accuracy was measured with a phantom study.  Baumann et al. [5] presented 

a method relying on the simultaneous real-time acquisition of dual, orthogonal 2D TRUS 

images acquired from a 3D ultrasound probe.  The same authors presented an algorithm 

[4] to compensate for motion using 3D TRUS volumes acquired continuously throughout 

the biopsy session.  This system does not use any method to track ultrasound probe 
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motion; therefore, it relies only on the image information for tracking and uses a coarse-

to-fine image-based approach to limit the search space during optimization.  In addition, 

this approach requires a special 3D ultrasound probe with enhanced functionality that 

could simultaneously acquire orthogonal 2D TRUS planes and image acquisition occurs 

at a lower frame rate, compared to more conventional 2D TRUS.  Moreover, compared to 

2D TRUS images, orthogonal 2D planes deliver considerably more spatial information; 

registration of a single 2D TRUS plane to a 3D TRUS image is a more challenging 

problem. 

Previous work [6] has assessed the registration accuracy of several algorithms 

intended to register two intra-session 3D TRUS images.  Although the reported 

registration errors in [6] are within a clinically acceptable range, using this method within 

the clinical workflow would require stopping the procedure and acquiring an additional 

3D TRUS image each time prostate motion correction is required, leading to questionable 

feasibility of clinical implementation.  Registration of real-time 2D TRUS images to the 

pre-acquired 3D TRUS image enables motion compensation without adding extra 3D 

image-acquisition time (approximately a minute using 3D TRUS system in [1]) to the 

biopsy protocol, and without requiring the use of a 3D TRUS probe.  To the best of our 

knowledge, no previous work has described and evaluated on human clinical images a 

method for the registration of 2D TRUS to 3D TRUS images for prostate motion 

compensation during biopsy.  Such a technique, if properly validated, will make it 

possible to perform prostate motion compensation on 3D biopsy guidance systems that 

use readily available 2D ultrasound probes for live image acquisition throughout the 
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procedure, permitting more widespread use of targeted biopsy systems and thus greater 

potential impact on the patient population. 

2D-3D registration methods have been applied to several other interventional 

applications in image-guided procedures and Markelj et al. [7] contains an excellent 

review. Birkfellner et al. [8] compared the performance of several image similarity 

measures and optimization techniques for 2D-3D registration of fluoroscopic images and 

found that cross-correlation is an optimal metric for intra-modality matching.  In addition, 

the parallelizability of the computation of the cross-correlation metric in an intra-modal 

registration could be used improve the speed of execution to become useful in a clinical 

setting.  Wein et al. [9] presented a method to compensate for respiratory motion during 

abdominal biopsies and ablations under ultrasound guidance, optimizing local normalized 

cross-correlation using the Powell-Brent direction search technique.  Although these 

previous successes speak to the potential feasibility of addressing the issue of prostate 

motion compensation in software using a 2D-3D intensity-based image registration 

technique, prostate appearance on TRUS and motion characteristics during biopsy may 

differ from those of other organs due to different tissue stiffness properties and flexibility 

of surrounding anatomical structures.  In this work, our objective is to develop and 

evaluate a 2D TRUS-3D TRUS intensity-based image registration technique to 

compensate for prostate motion with sufficient accuracy and speed to be translated to 

clinical use for 3D biopsy guidance. 

This work describes three primary contributions: (1) We present an intensity-

based registration algorithm to register 3D TRUS images acquired at the start of the 

biopsy procedure to 2D TRUS images acquired during the procedure before the physician 
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fires the biopsy gun.  We evaluated the performance of the registration algorithm both in 

terms of accuracy and speed, after using a GPU-accelerated implementation.  The 

accuracy of the algorithm was measured using manually identified intrinsic fiducials 

within the prostate.  (2) We performed the registration for 2D TRUS images acquired 

every second throughout the biopsy procedure in order to evaluate registration accuracy 

in a scenario when prostate motion is compensated continuously using software, without 

requiring any human input to trigger the algorithm.  This continuous process was 

executed in parallel with other software providing the user interface and thus the 

continuous execution of this registration procedure was transparent to the user.  At every 

one-second interval, we incrementally transformed the baseline 3D TRUS image 

according to the registration obtained during the interval.  (3) We further validated the 

algorithm using a set of 3D TRUS images that were obtained with different levels of 

controlled probe pressure.  3D TRUS images were sampled to obtain representative 2D 

TRUS images with different amounts of prostate motion and deformation.  This data set 

contained images with intentionally introduced motion and deformation of magnitudes 

intended to challenge the algorithm.  In addition, the availability of the 3D information 

yielded more intrinsic fiducials for validation.  In this work, we also studied the 

correlation between image similarity metric values and the amount of misalignment in the 

prostate. 
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3.2 Materials and methods 

3.2.1 Data acquisition 

We acquired images from human clinical biopsy procedures using a mechanically 

assisted 3D TRUS-guided biopsy system [1] in a study approved by the Human Research 

Ethics Board of Western University.  The system, using a commercially available end-

firing 5-9 MHz TRUS transducer probe (Philips Medical Systems, Seattle, WA), acquired 

a 3D TRUS image at the beginning of the biopsy procedure, and then acquired and 

displayed 2D TRUS images at a video frame rate (7-30 frames per second) during the 

biopsy session.  The mechanical encoders attached to the ultrasound probe tracked its 3D 

position and orientation throughout the procedure.  Using this system, we recorded 

images acquired during clinical biopsy procedures under two different protocols, in order 

to obtain data sets to test the robustness of the registration algorithm under different 

motion characteristics of the prostate.  For both protocols, all 3D TRUS images were 

recorded prior to taking any biopsy tissue samples.  For the first protocol (henceforth 

referred to as the biopsy protocol), we acquired images from eight patients.  Following 

the standard operating procedure for 3D TRUS-guided biopsy in our trial, a 3D TRUS 

image was acquired at the start of the biopsy procedure. From the sequence of images 

that followed at video frame rate (10-30 frames per second) during the procedure, we 

recorded live 2D TRUS images at one frame per second.  For the second protocol 

(henceforth referred to as the probe pressure protocol), images were acquired from ten 

patients.  3D TRUS images were acquired after applying three different probe pressures 

on the prostate gland centrally: 1) applying a medium probe pressure, similar to what the 

physician usually applies during a biopsy, 2) applying a low probe pressure that caused 
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minimal prostate displacement, and 3) applying a high probe pressure that caused 

substantial prostate deformation and anterior displacement.  This yielded a data set with 

prostate displacements and deformations under a wide range of ultrasound probe 

pressures. 

3.2.2 2D-3D registration – biopsy protocol 

For each of the eight subjects, we selected 1–3 2D TRUS images per patient 1–2 seconds 

prior to biopsy needle insertion from the 10-12 biopsy samples taken during the biopsy. 

This choice of 2D TRUS images was motivated by the fact that accurate alignment of the 

predefined targets with the intra-procedure anatomy is chiefly required immediately prior 

to biopsy, when a tissue sample is to be taken from an intended biopsy target. We 

analyzed 16 such images from eight patients.   

The transformation, 𝑇𝑇𝑟 ∶  𝛹 →  𝛺,  given by encoders on the joints of the linkage 

of the mechanical assisted 3D-TRUS biopsy system [1], maps each live 2D TRUS image, 

𝐼𝑙𝑖𝑣𝑒 ∶  𝛹 →  ℝ, to the world coordinate system of the previously acquired 3D TRUS 

image 𝐼𝑏𝑎𝑠𝑒 ∶  𝛺 →  ℝ, where 𝛹 ⊂  ℝ2 and  𝛺 ⊂  ℝ3.  Within the 3D world coordinate 

system, any differences in prostate position and orientation between the real-time 2D 

TRUS images and the initially-acquired 3D TRUS image are due to prostate motion 

within the patient, gross movements of the patient during the procedure, and the biopsy 

system’s tracking errors.  The accuracy of the initialization for the prostate motion 

registration algorithm is based in part on tracking errors of the biopsy system.  In the 

system developed by Bax et al. [1], the accuracy in delivering a needle to a biopsy core in 

a phantom were found to be 1.51 ± 0.92 mm.  Registration of live 2D TRUS images to 



 

 

86 

 

the pre-acquired 3D image compensates for both the tracking errors and errors due to 

prostate and patient motion. 

 

Figure 3.1:2D-3D registration workflow  

The overall workflow in our method is depicted in Figure 3.1.  Using the 

mechanical tracker transform (𝑇𝑇𝑟) we transform 𝐼𝑙𝑖𝑣𝑒 to the 3D world coordinate system. 

Registration is then performed to 𝐼𝑏𝑎𝑠𝑒 within this coordinate system. To reduce the 

effects of speckle, anisotropic diffusion filtering [10] (conductance parameter = 2, time 

step = 0.625) of images was used as a pre-processing step.  Although there can be non-

rigid deformation of the prostate due to ultrasound probe pressure [6], a rigid alignment 

can be found with lower computational cost, so we investigated the accuracy of rigid 

registration in this work to determine whether rigid registration is sufficient for the 

clinical purpose of biopsy targeting.  For each 2D TRUS image, finding the 

corresponding plane in the pre-acquired 3D TRUS volume is a 2D-to-3D intra-modality 
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rigid registration problem.  Due to limited ultrasound contrast within the prostate, reliable 

extraction of the boundary and other anatomic features is challenging.  Therefore, we 

tested an intensity-based registration algorithm.  

Using the mechanical tracker transform 𝑇𝑇𝑟, we can position and orient the 2D 

TRUS image 𝐼𝑙𝑖𝑣𝑒 within the 3D world coordinate system yielding a 3D image 𝐼𝑙𝑖𝑣𝑒 as 

 𝐼𝑙𝑖𝑣𝑒(𝑇𝑇𝑟(𝑝1)) = 𝐼𝑙𝑖𝑣𝑒(𝑝1) where 𝑝1 ⊂  𝛹. 

The registration of the baseline 3D image 𝐼𝑏𝑎𝑠𝑒 to 𝐼𝑙𝑖𝑣𝑒 is performed in this 3D 

world coordinate system considering 𝐼𝑏𝑎𝑠𝑒 as the source image and 𝐼𝑙𝑖𝑣𝑒 as the target 

image.  The objective of the registration is to find the transformation, 𝑇 : 𝛺 →  𝛺, 

consisting of a six-parameter-vector given by  , that aligns anatomically homologous 

points in 𝐼𝑏𝑎𝑠𝑒 and 𝐼𝑙𝑖𝑣𝑒.  We used normalized cross-correlation (NCC) [11] as the image 

similarity metric that was optimized during the registration.  For two images 𝐼1 and 𝐼2, we 

optimized the objective function defined as: 

𝐹 =  argmax
 

𝑁𝐶𝐶(𝐼1, 𝐼2;  ), where  

𝑁𝐶𝐶(𝐼1, 𝐼2;  ) =
∑ (𝐼1̃(𝑝) − 𝐼

̅
1)(𝐼2(𝑇 (𝑝)) − 𝐼2̅)𝑝∈𝛺1,2

𝑇 

{(∑ (𝐼1(𝑝) − 𝐼1)
2

𝑝∈𝛺1,2
𝑇 ) (∑ (𝐼2(𝑇 (𝑝)) − 𝐼2̅)

2

𝑝∈𝛺1,2
𝑇 )}

1
2

 
(3.1) 

and  𝛺1 and 𝛺2 represent the subspaces of ( 𝛺 ⊂  ℝ3) containing the image domains of 𝐼1 

and 𝐼2, i.e., Ω1,2
𝑇𝑢 = {𝑝 ∈  Ω1|𝑇 

−1(𝑝 ∈ Ω2)}. 

We optimized the image similarity measure given by 𝑁𝐶𝐶 (𝐼𝑙𝑖𝑣𝑒 , 𝐼𝑏𝑎𝑠𝑒) to obtain 

𝑇𝑢 for each of the 16 images we acquired.  We used Powell’s method [12, 13] to optimize 

the six-dimensional search space that includes three translations and three rotations. 
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Powell’s method improved the speed of execution, when compared with a gradient-

descent-based method during our initial experiments.  

3.2.3 Incremental 2D-3D registration for continuous intra-biopsy motion 

compensation 

The registration to compensate for prostate motion can be performed frequently (e.g., 

once per second) throughout the biopsy procedure, with the frequency of registration 

limited by the time required to register a single pair of images.  At a given time point 

denoted by 𝑡𝑛 (time elapsed in seconds from the start of the biopsy), we initialized the 

source image for the nth registration with the transformation matrix obtained from 

registrations at previous time points using  

𝑇 = ∏ 𝑇 𝒕
𝑡𝑛
𝑡=𝑡0

, (3.2) 

 During the nth registration, we found the parameter vector  𝒕𝒏 that gave the optimum 

𝑁𝐶𝐶 measure for the transformation matrix 𝑇 𝒕𝒏 . We performed the registration for the 

complete biopsy procedure for the eight patients described in the previous section using 

the sequence of live 2D TRUS images recorded every second from the start of the biopsy 

procedure. 

3.2.4 2D-3D registration – probe pressure protocol 

3D TRUS images acquired at different probe pressures can provide additional anatomical 

context to enhance the validation of our registration algorithm.  We denote images 

acquired at low, medium and high probe pressures, respectively, as 𝐼𝑙𝑜𝑤 , 𝐼𝑚𝑒𝑑 , 𝐼ℎ𝑖𝑔ℎ: 𝛺 →

 ℝ.  We acquired 30 such images from 10 patients. 
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We set the image acquired at medium pressure, 𝐼𝑚𝑒𝑑, as the source image.  As our 

target image, we selected 2D slices (𝐼{𝑙𝑜𝑤,ℎ𝑖𝑔ℎ}) from the 3D images 𝐼𝑙𝑜𝑤 and 𝐼ℎ𝑖𝑔ℎ.  For 

the 20 registrations performed (using the 30 3D TRUS images) mechanical tracker 

transformations (𝑇𝑇𝑟) were randomly selected from 16 frames (across 8 subjects in the 

biopsy protocol) occurring an average of 1-2 seconds prior to the firing of the biopsy gun 

in real biopsy procedures, according to 𝐼{𝑙𝑜𝑤,ℎ𝑖𝑔ℎ}(𝑝2) = 𝐼{𝑙𝑜𝑤,ℎ𝑖𝑔ℎ}(𝑇𝑇𝑟(𝑝1))  where 𝑝1 ⊂

 𝛹 and 𝑝2 ⊂  𝛺. 

Hence, the target images are representative of live 2D TRUS images depicting a 

situation with minimal prostate motion (slice from 𝐼𝑙𝑜𝑤) and substantial prostate motion 

(slice from 𝐼ℎ𝑖𝑔ℎ).  Since the physician intentionally applies different levels of pressure 

during the acquisition, the set of images contains a wide range of prostate displacements 

and deformations that are intended to represent the extremes of probe pressure during the 

biopsy procedure to challenge the registration algorithm.  For each subject, we perform 

registration between images 𝐼𝑚𝑒𝑑-𝐼𝑙𝑜𝑤 and 𝐼𝑚𝑒𝑑-𝐼ℎ𝑖𝑔ℎ by respectively optimizing the 

image similarity measures, 𝑁𝐶𝐶(𝐼𝑙𝑜𝑤, 𝐼𝑚𝑒𝑑) and 𝑁𝐶𝐶(𝐼ℎ𝑖𝑔ℎ, 𝐼𝑚𝑒𝑑) as defined above in 

Equation 3.1. 

3.2.5 Validation  

3.2.5.1 Biopsy protocol registration 

The registration was validated using manually-identified corresponding intrinsic fiducial 

pairs (micro-calcifications) [6].  For the images acquired under the biopsy protocol, 

fiducials appearing in 𝐼𝑏𝑎𝑠𝑒, denoted by 𝑓𝑏𝑎𝑠𝑒, and the corresponding fiducials from 𝐼𝑙𝑖𝑣𝑒, 

denoted by 𝑓𝑙𝑖𝑣𝑒, were identified (𝑓𝑙𝑖𝑣𝑒  ⊂  𝛹 and  𝑓𝑏𝑎𝑠𝑒  ⊂  𝛺).  We identified 52 fiducial 
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pairs for 16 biopsies in eight patients.  These fiducial pairs were used for validation only 

and were not provided as input to the registration algorithm.  Fiducial localization error 

(FLE) has been reported in previous studies in the context of 3D TRUS and 2D TRUS 

images.  The FLE in 3D TRUS images was reported to be 0.21 mm [6] and in 2D TRUS 

images was 0.11 [14] mm.  The target registration error was calculated as the root mean 

square (RMS) error 

𝑇𝑅𝐸𝑏 =
√
∑ (𝑇𝑇𝑟

−1(𝑓𝑙𝑖𝑣𝑒
𝑘)− 𝑇 

𝑏(𝑓𝑏𝑎𝑠𝑒
𝑘))

2𝑁𝑘
𝑘=1

𝑁𝑘
, 

(3.3) 

 𝑇𝑅𝐸𝑏𝑖𝑜𝑝𝑠𝑦 = √
∑ 𝑇𝑅𝐸𝑏

2𝑁𝑏
𝑏=1

𝑁𝑏
  , 

(3.4) 

where 𝑁𝑏 is the number of biopsies and 𝑁𝑘 is the number of fiducials identified for a 

particular pair of images. The TRE was estimated by first calculating RMS values 𝑇𝑅𝐸𝑏 

using the fiducials identified in each pair of images for each biopsy and then calculating 

the RMS value 𝑇𝑅𝐸𝑏𝑖𝑜𝑝𝑠𝑦 for the number of biopsies performed.  This approach averaged 

the contributions to the TRE from the variable number of fiducials manually identified in 

each pair of images during a biopsy.  The pre-registration error was calculated without 

applying the registration transform 𝑇  in Equation 3.3 to compare against TRE post 

registration to assess the improvement. 

We selected images that contained visible micro-calcifications within the prostate 

in calculating 𝑇𝑅𝐸𝑏𝑖𝑜𝑝𝑠𝑦; an ideal registration algorithm would bring these homologous 

landmarks into alignment after registration.  Although the fiducials are small (less than 

~1 mm radius) by comparison to the size of the prostate and field of view (Figure 3.2 

depicts some sample fiducials that we identified), in principle it is possible that the 
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presence of the calcifications could guide an intensity-based registration algorithm to a 

result giving a lower 𝑇𝑅𝐸𝑏𝑖𝑜𝑝𝑠𝑦 than would be obtained if the fiducials were not present 

in the images.  In order to test if the presence of micro-calcifications drive the registration 

algorithm to a more accurate solution, we defined masks over the identified fiducials in 

both the target and source images and performed the registrations described in the biopsy 

protocol registration, restricting the calculation of the image similarity metric to regions 

outside of the masks; i.e., to regions not containing the fiducials.  Thus, in this 

experiment, the registration algorithm was blinded to the presence and locations of the 

fiducials.  The masks were defined as spherical regions with 1 mm radius in order to fully 

cover the largest fiducial markers we observed in our data set. 

 

Figure 3.2: Sample fiducials identified. 

3.2.5.2 Probe pressure protocol registration 

In the data set acquired under the probe pressure protocol, full 3D anatomical information 

for the whole prostate was available for both the source and target images.  We manually 

identified 188 fiducials throughout the 3D volumes obtained from 10 subjects, without 
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limiting the fiducials to lie within the particular extracted plane used in the registration.  

The TRE was computed as 

𝑇𝑅𝐸𝑝 =
√
∑ (𝑇3𝐷−𝑤𝑜𝑟𝑙𝑑(𝑓𝑚𝑒𝑑

𝑘)− 𝑇𝑢
𝑏(𝑓{𝑙𝑜𝑤,ℎ𝑖𝑔ℎ}

𝑘))
2𝑁𝑘

𝑘=1

𝑁𝑘
, 

(3.5) 

 𝑇𝑅𝐸𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = √
∑ 𝑇𝑅𝐸𝑝

2𝑁𝑝
𝑏=1

𝑁𝑝
  , (3.6) 

where 𝑓{𝑚𝑒𝑑,𝑙𝑜𝑤,ℎ𝑖𝑔ℎ}  ⊂  𝛺  are the fiducials identified in  𝐼𝑚𝑒𝑑, 𝐼𝑙𝑜𝑤, 𝐼ℎ𝑖𝑔ℎ. 

We also computed the optimal rigid alignment using the identified fiducials to 

define the rigid transformation that yielded the minimum TRE for the given fiducials per 

patient.  To do this, we found the fiducial registration error (FRE) [15] for each set of 

fiducial pairs in each patient, after transforming the fiducials with the parameters 

corresponding to the best rigid alignment.  With the presence of non-rigid deformations 

in the probe pressure protocol data set, the FRE gives a lower bound on the 𝑇𝑅𝐸𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 

that can be obtained using a rigid registration.  In a sense, the FRE gives an indication of 

the amount of non-rigid deformation present in the data set; e.g., an FRE of 0 mm would 

indicate that a rigid transformation could fully compensate for the observed changes in 

the prostate, and an FRE > 0 mm would indicate that some amount of non-rigid 

deformation may have occurred in the prostate.  Thus the FRE gives some indication of a 

“best-case” TRE that could be obtained from a registration algorithm using a rigid 

transformation and it is therefore of interest to compare the FRE to the 𝑇𝑅𝐸𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 

obtained from our registration algorithm. 
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We used the fiducials throughout the prostate to calculate the TRE.  To test 

whether the TRE varies with distance to the registration plane, we plotted TRE against 

the distance to the registration plane for each fiducial. 

3.2.6 GPU implementation 

The step consuming the most computation time during execution of the registration was 

the calculation of the image similarity metric during optimization.  Therefore, we 

implemented the 𝑁𝐶𝐶 calculation on an nVidia GTX 690 (Nvidia Corporation, Santa 

Clara, CA) graphics processing unit (GPU) using compute unified device architecture 

(CUDA) C++.  The normalized cross-correlation calculation is inherently parallelizable.  

Instead of using a sequential approach to transform each voxel independently, we 

transformed all voxels in the moving image in parallel during each iteration of 

optimization.  These transformations were followed by 3D linear interpolation of image 

intensities to resample the moving image that was also performed within the GPU.  The 

subsequent calculation of the summations in Equation 3.1 was also done in parallel to 

further accelerate the execution. 

3.2.7 Correlation between image similarity metric and misalignment 

During registration, we optimize an image similarity metric over a 3D transformation 

space.  The relationship between the image similarity metric and the amount of 

misalignment not only conveys the suitability of the metric to be used in registration, but 

also it shows whether the image-similarity metric could be used as an indicator of the 

misalignment.  This could be a useful feature to trigger the registration algorithm in a 

system that does not continuously compensate for motion as during biopsy.  To analyze 
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this relationship using the biopsy protocol data, we plotted the calculated normalized 

cross-correlation measures for each instance before registration, during registration (for 

each iteration during the optimization) and after registration (after the optimizer 

converged) and their corresponding 𝑇𝑅𝐸𝑏𝑖𝑜𝑝𝑠𝑦 values. 

With manually identified fiducials, we should be able to find a plane within the 

3D TRUS image that yields zero (or near zero) TRE.  We analyzed the behaviour of 

normalized cross-correlation near this “optimum” plane by extracting 2D images lying 

nearby (in terms of the six parameters,  , defining 3D translation and rotation) planes in 

the 3D TRUS image, and computed the image similarity metric for the 2D TRUS image 

and these nearby 2D images from the 3D TRUS image.  Although this approach does not 

fully explore the six-dimensional objective function, to simplify the visualization of the 

results, we analyzed the metrics by varying one degree-of-freedom at a time. 

3.2.8 TRE as a function of distance to the probe tip 

We analyzed the TRE as a function of distance of each fiducial to the ultrasound probe 

tip, to test if the registration error is larger within the regions of the prostate close to the 

ultrasound probe.  Since we used a rigid transformation during registration, non-rigid 

deformation of the prostate would be reflected as part of the TRE.  Ultrasound probe 

pressure might cause inconsistent deformation in different regions of the prostate, which 

could lead to regionally-varying accuracy of motion compensation by a rigid 

transformation.  
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3.3 Results 

3.3.1 Validation: biopsy protocol data 

The 𝑇𝑅𝐸𝑏𝑖𝑜𝑝𝑠𝑦 was calculated according to Equation 3.4 and its RMS±std. was found to 

be 1.87 ± 0.81 mm, after manually localising 52 fiducial pairs over 8 patients.  This was 

an improvement over 4.75 ± 2.62 mm before registration.  Since these TRE distributions 

were found to be not normally distributed using one-sample Kolmogorov-Smirnov test 

with a significance level p < 0.0001, we tested the null hypothesis that their medians were 

equal with a non-parametric test using Prism 5.04 (Graphpad Software Inc., San Diego, 

USA).  The Wilcoxon signed rank matched pairs test rejected the null hypothesis (p < 

0.0001) suggesting that there is a statistically significant difference in TREs before and 

after registration.  When the registrations were performed with the fiducials masked out, 

the TRE was found to be 1.93 ± 0.66 mm.  When compared with the distribution of 

𝑇𝑅𝐸𝑏𝑖𝑜𝑝𝑠𝑦, the Wilcoxon signed rank matched pairs test failed to reject the null 

hypothesis (p = 0.74).  Thus, we were unable to detect a statistically significant difference 

between the TREs resulting from registrations where the fiducials were present and 

registrations where the fiducials were absent. 

When 2D-3D registration was performed incrementally every second during the 

biopsy, the RMS ± std TRE was reduced to 1.63 ± 0.51 mm.  The mean number of 

iterations required for convergence decreased from 5.6 to 2.75.  Figure 3.3 shows 

changes in TRE values before registration, after registration and after registering the 

frame obtained every second for each biopsy taken.  Figure 3.4 contains two 

representative example images, depicting the visual alignment qualitatively for 

registration just prior to biopsy.  The post-registration TRE of these two example images 
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were found to be 1.5 mm (top row) and 1.2 mm (bottom row), which had improvements 

from 3.7 mm (top row) and 5.3 mm (bottom row) before registration.  Grid lines overlaid 

at corresponding locations in image space facilitate visual evaluation of the alignment of 

the anatomy pre- and post-registration. 

 

Figure 3.3: TRE before registration, after registration and after continuous registration every second for 

each biopsy in prostate biopsy protocol.  
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Figure 3.4: Images before and after registration immediately prior to taking a biopsy sample. Left column: 

Real-time 2D TRUS images. Middle column: Corresponding images before registration assuming no 

prostate motion (from the transformation given by the mechanical tracking system). Right column:  

Corresponding images after registration.   

  

Figure 3.5: TRE as a function of time elapsed from the start of the biopsy. (a) TRE before registration.  (b) 

TRE after registration. (c) TRE after registering the images acquired every second.  
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was found to be 2 µm/s (r2 = 0.37).  We also calculated the slopes of the best-fit lines to 

plots of TRE versus time elapsed during biopsy for each individual patient, and then 

calculated the mean and standard deviation of these observed slopes in scenarios with and 

without the use of motion-compensating registration.  Without registration, we observed 

a mean±std slope of 14±15 µm/s.  With registration, we observed a mean ± std slope of 

7±10 µm/s, and 5±14 µm/s with continuous registration.  

3.3.2 Validation: probe pressure protocol data 

The RMS TRE for the data acquired under the probe pressure protocol was 3.18 ± 1.6 

mm.  This was an improvement from a 6.89 ± 4.1 mm TRE before registration.  Note that 

we used the fiducials in the whole prostate (not just the slice containing the fiducials) in 

TRE calculation as given in Equation 3.6.  The mean value for the FRE, corresponding to 

the best rigid transform that aligns the identified fiducials, was found to be 1.85 ± 1.2 

mm.  The distribution of TRE values before registration, after registration, and after 

transforming with the best rigid alignment is shown in Figure 3.6.  Table 3.1 contains 

TRE calculated separately for 𝐼𝑚𝑒𝑑-to-𝐼ℎ𝑖𝑔ℎ and 𝐼𝑚𝑒𝑑-to-𝐼𝑙𝑜𝑤.  Registration between  𝐼𝑚𝑒𝑑 

and 𝐼ℎ𝑖𝑔ℎ has resulted in a larger TRE.  We also observed higher FRE in 𝐼𝑚𝑒𝑑-to-𝐼ℎ𝑖𝑔ℎ, 

suggesting a greater amount of non-rigid deformation of the prostate at this extremum of 

probe pressure.  The error in registration includes the errors due to non-rigid deformation 

occurring within prostate regions outside of the 2D target image (as opposed to the errors 

arising only due to deformation within the 2D target image as in the biopsy protocol) and 

the variability in manually locating the fiducials in 3D.  However, according to the 

relationship between distance from registration plane to each fiducial and the TRE shown 
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in Figure 3.7, we did not observe a strong relationship between the TRE and the distance 

from registration plane to the fiducial. 

 

Figure 3.6: Histograms for TRE before and after registration for probe pressure protocol data.  Left: TRE 

distribution before registration Middle: TRE distribution after registration. Right: TRE distribution with the 

best rigid alignment for the identified fiducials. 

Table 3.1: Errors before and after probe protocol registration. 

 Error before registration 

(mm) 

TRE after registration 

(mm) 

FRE (mm) 

𝐼𝑚𝑒𝑑-to-𝐼ℎ𝑖𝑔ℎ 7.57 ± 4.58 3.65 ± 2.12 2.12 ± 1.45 

𝐼𝑚𝑒𝑑-to-𝐼𝑙𝑜𝑤  6.12 ± 3.68 2.65 ± 0.34 1.54 ± 0.68 

Average 6.89 ± 4.12 3.17 ± 1.60 1.85 ± 1.67 

 

Figure 3.7: TRE of each fiducial as a function of distance to the registration plane.  The black line 

represents the least-square fit to the scattered points. 
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3.3.3 Speed of execution 

After the GPU-accelerated implementation (nVidia GTX 690 GPU card and Intel Core 

i7-3820 3.6 GHz processor) the registration was performed with mean ± std times of 1.1 

± 0.1 seconds for the biopsy protocol experiments described in this paper. 

 

Figure 3.8: TRE as a function of metric value during the optimization. Initial points (circles), converged 

(squares) and converging points (crosses).   

 

Figure 3.9: TRE distributions before registration, during convergence and after registration.   
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Figure 3.8 shows the relationship between the image-similarity measure and values of 

TRE for each transformation obtained during the optimization iterations.  The circle 

-1 -0.95 -0.9 -0.85 -0.8 -0.75 -0.7 -0.65 -0.6
0

1

2

3

4

5

6

7

8

9

10

Normalized Cross-Correlation

T
R

E
 (

m
m

)

 

 

Initial

Converging

Converged



 

 

101 

 

points show the values before registration, and the square points show the values after 

registration converged.  The cross points depict the values during convergence.  The 

correlation coefficient (r2), calculated using all points (before, during, and after 

convergence) in Figure 3.8, was found to be 0.23.  Figure 3.9 shows a box plot of the 

TRE distributions of the points before registration, during convergence and after 

registration.  While the TRE decreases in general during convergence, a weak correlation 

can be seen between image similarity measures and TRE from these results. 
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Figure 3.10: Mean and standard deviations of normalized cross-correlation values for 16 image pairs of 

eight patients in the six-degrees-of-freedom transformation space, one degree-of-freedom varying at a time.  

The zero location in the x-axis corresponds to real-time 2D-TRUS frame. 
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Figure 3.11: Normalized cross-correlation values for a single image pair of a biopsy for 3 patients (each 

biopsy represented by a separate line pattern) in the six-degrees-of-freedom transformation space, one 

degree-of-freedom varying at a time.  The zero location in the x-axis corresponds to real-time 2D-TRUS 

frame. 

Figure 3.10 shows plots of the normalized cross-correlation metric versus out-of-

plane, in-plane rotations and translations. The solid curves represent the mean values of 

the metrics for different out-of-plane rotations and translations for 16 2D TRUS images 
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across eight subjects, and the dashed curves show the values one standard deviation 

above and below the mean.   The convexity of the mean curves gives an indication of the 

general capture range of the objective functions for many registrations.  Figure 3.11 

shows the three plots of normalized-cross-correlation metrics similarly obtained for a 

single biopsy in three patients.  The generally convex shape of the functions observed in 

Figure 3.10 and Figure 3.11 encourages the use of normalized cross-correlation during 

registration in compensating for prostate motion. 

3.3.5 TRE as a function of distance to the probe tip 

Figure 3.12 shows TRE as a function of the distance to the probe tip for each individual.  

The TRE tends to increase closer to the probe tip (r2 value = 0.1); however, the 

correlation between distance to the probe tip and the TRE before registration is weak.   

 

Figure 3.12: TRE as a function of distance to the probe tip. 
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TRE after registration in both biopsy and probe pressure protocols.  The required 

accuracy of the biopsy system to guide needles to target locations stems from the size of 

the smallest clinically-relevant tumours (0.5 cm3, corresponding to a spherical target with 

5 mm radius) [16, 17].  A biopsy system with a measured RMS error of 2.5 mm in taking 

a sample from the intended target will have a probability of at least 95.4% of taking a 

sample within this 5 mm radius since 5 mm is 2 standard deviations away from the mean 

of the distribution of targets given by an system with RMS error of 2.5 mm [6].  An 

image-based registration during the procedure, while compensating for prostate motion, 

also corrects for tracking errors in the biopsy system, if any.  Therefore, if the registration 

was performed immediately before the physician fires the biopsy gun to capture a tissue 

sample from the prostate, the targets identified in the pre-acquired 3D image would be 

aligned with the live 2D TRUS image, with accuracy limited by the TRE of the 

registration algorithm.  However, the motion and deformation induced due to the rapid 

firing of the biopsy gun, which happens during a sub-second interval remains an error in 

the biopsy system that is challenging to correct.  When targeting a predefined location, 

the TRE of the motion compensation algorithm and the error during the rapid biopsy-gun 

firing process, which was quantified in [14] to be an error with 95% confidence interval 

less than 2.1 mm, may accumulate and become an important consideration. 

Alignment of the targets identified in the 3D TRUS image to the live 2D TRUS 

image is primarily required immediately before the physician fires the biopsy gun.  

Consequently, this registration could be integrated into the clinical workflow by 

executing it just prior to the physician aiming at target locations.  However, according to 

the results, both the accuracy and speed of the registration were improved when the 
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registration was performed on the 2D TRUS images acquired every second.  

Initializations obtained by placing 2D TRUS images within the 3D coordinate system 

using the mechanical tracker transform (𝑇𝑇𝑟) might further improve when the baseline 3D 

TRUS image is updated more frequently with the transforms from registrations 

performed every second.  This may help the algorithm in faster convergence to a suitably 

accurate optimum.  Therefore, in a clinical procedure, this algorithm can be performed in 

the background continuously compensating for motion. 

3.4.2 Change of TRE with time during biopsy 

The weak positive relationship between TRE and time elapsed shown in Figure 3.5(a), 

suggest that the misalignment between pre-acquired and live images increases with time 

(slope of the best-fit line = 10 µm/s, mean±std = 14±15 µm/s for individual patients).  

After performing the registration just before a biopsy sample is taken, there is still a 

positive relationship (slope = 4 µm/s, mean±std = 7±10 µm/s) between TRE and time.  

This indicates that image pairs, with higher initial misalignments towards the end of the 

biopsy procedure, were more challenging for the algorithm.  In Figure 3.5(c), the slope of 

the best-fit line was lower (slope = 2 µm/s, mean±std = 5±14 µm/s) when the 

registrations were performed every second.  Thus, although the TRE does appear to 

increase with time even when registration is applied, this effect is less pronounced 

compared to the no-registration scenario.  The increasing trend in TRE with time that we 

observe for eight patients in Figure 3.5(c) even when the motion was being compensated 

every second could be due to accumulation of registration errors during continuous 

registration. In addition, the swelling and deformation of the prostate caused by the 



 

 

107 

 

increasing number of needles being inserted might increase the challenge to the algorithm 

as a function of time elapsed since the start of the biopsy. 

3.4.3 Probe pressure protocol 

The TREs from the probe pressure protocol are surrogate measures of the absolute total 

registration error that could be observed under extreme prostate deformations during 

prostate biopsy.  In probe pressure protocol, the TRE was 1.2 mm higher than that of the 

biopsy protocol.  This increase could be attributed to the use of fiducials from the whole 

prostate during validation.  The best rigid transform for the selected plane may not 

necessarily be the best rigid fit for the whole prostate due to non-rigid deformations 

occurring at different (out of plane) regions of the prostate.  Moreover, the high probe 

pressures intentionally exerted by the physician when acquiring these images might have 

caused more than the usual deformation that occurs during biopsy.  The extreme range of 

probe pressures and prostate displacement and deformation could make accurate 

registration more challenging as the algorithm is more susceptible to local optima the 

further the initialization is from target alignment.  In addition, substantial non-rigid 

deformation may result in higher TREs from rigid registration algorithms when high 

probe pressure is applied to the prostate.  Whereas the prostate deformations occurring 

during the biopsy protocol arise from real clinical biopsy sessions, the probe pressure 

protocol was explicitly designed to test the performance of the algorithm at the extrema 

of non-rigid deformations that can be reasonably applied to the patient's prostate in vivo, 

without consideration of the plausibility of such deformations occurring in a clinical 

biopsy context.  The outliers observed in Figure 3.6(c) suggest that a non-rigid 

transformation may be useful in correcting for the more extreme deformations applied 
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during the probe pressure protocol. This is illustrated quantitatively in the FRE column of 

the first row of Table 3.1, where registration errors involving high probe pressure were 

separately analyzed.  However, the fiducial identification process was relatively more 

straightforward due to the availability of 3D contextual information in both the fixed and 

moving images. 

3.4.4 Correlation between similarity metric and TRE 

Figure 3.8 shows a weak correlation between similarity metric values before, during and 

after convergence and the TRE.  We can observe for the cases where the metric values 

were greater than -0.9, the TREs were greater than 3.5 mm. Furthermore, the generally 

convex shapes observed in Figure 3.10 and Figure 3.11 in metric values as a function of 

different amounts of introduced translations and rotations, suggest that the metric value 

could be used as a weak indicator to the quality of the registration. 

In Figure 3.12, a weak negative correlation can be seen between the TRE and 

distance to the probe tip.  This suggests that near the probe tip there could be higher non-

rigid deformation of the prostate that may not be accurately compensated with a rigid 

registration algorithm. However, given the limited sample size and the weak relationship 

observed, further verification is required to attribute the negative correlation to the 

presence of non-rigid deformation. 

3.5 Conclusions 

Accurate and quick registration to compensate for motion during biopsy is an important 

step to improve the accuracy in delivering needle to target locations within the prostate.  

We presented a 2D-to-3D rigid intensity-based registration algorithm validated on human 
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clinical images using intrinsic fiducial markers, to align a 3D TRUS image (with 

associated prostate biopsy targets) acquired at the start of the procedure to 2D TRUS 

images taken immediately prior to each biopsy during the procedure.  We also presented 

evidence that image similarity metrics can be used as a weak indicator of the amount of 

prostate misalignment (with respect to the initially acquired 3D TRUS image), and could 

be used to trigger the execution of a registration algorithm when necessary.  Using our 

high-speed GPU implementation (1.1 seconds total time per registration), this algorithm 

has the potential to be useful during the clinical workflow of a biopsy procedure.   

Although 2D-3D registration methods described in this paper yielded statistically 

significant improvements in accuracy, the RMS TRE was found to be 3.18 ± 1.6 mm with 

the 3D TRUS data set acquired under a more controlled range of probe pressures 

intending to thoroughly test the algorithm,  Therefore, achieving a more accurate and 

robust registration for motion compensation could be helpful to meet the clinical 

requirements of accurately targeting smallest clinically significant tumors using 3D 

TRUS-guided biopsy systems.     
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Chapter 4. 

Evaluating the utility of intra-procedural 3D TRUS image 

information in guiding registration for motion compensation 

during prostate biopsy 

 

4.1 Introduction 

 With the objective of improving the cancer detection rate during biopsy, systems have been 

developed to perform a targeted biopsy by fusing pre-biopsy MRI with 3D TRUS [1-6].  In many 

such systems, prior to performing biopsy, suspicious lesions delineated as targets in a pre-biopsy 

MR image are mapped to the static baseline 3D TRUS image acquired at the beginning of the 

biopsy session [7-10].  Biopsy is subsequently performed, targeting each suspicious lesion using 

the live 2D TRUS images acquired while tracking the ultrasound probe position and orientation 

relative to the baseline 3D TRUS image.  However, patient or prostate motion during the 

procedure causes misalignments in the targets mapped to the live 2D TRUS images from the 

baseline 3D TRUS image. 

While 2D TRUS images are widely used for intra-procedural guidance, some solutions 

utilize richer intra-procedural images such as bi- or multi-planar TRUS or 3D TRUS, acquired 

by specialized probes.  Multiple algorithms have been proposed to perform software-based 

motion compensation by registering intra-procedural TRUS images to an initially acquired 3D 

TRUS image [1, 2, 5, 11].  However, intra-procedural image acquisition and initialization within 

the 3D coordinate system prior to registration are quite different in each method.  The system 
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proposed in Baumann et al. [1] used a GE Voluson endorectal RIC5-9 probe (GE Healthcare, 

United States) to acquire 3D intra-procedural images to perform image-based tracking to 

compensate for motion.  The 3D intra-procedural image acquisition time in that system was 

reported to be 0.5-5 s depending on the image quality while the subsequent non-rigid registration 

consumed an additional 7-8 s.  In Baumann et al. [2], the authors described a similar registration 

approach using simultaneously acquired dual-orthogonal frames from a 3D TRUS probe as the 

intra-procedural images.  Xu et al. [5] performed the registration after initializing several 

previous 2D TRUS frames in a 3D coordinate system using the transformations provided by a 

magnetically tracked probe.  In that system, 2D TRUS frames were acquired using a Philips C9-

5 2D TRUS probe (Philips Medical Systems, Seattle, WA) in real-time while the motion 

compensation algorithm, with an approximate execution time of 4 seconds, was triggered by the 

operator after visual detection of misalignment.  De Silva et al. [11] previously performed a 2D-

3D registration using the initialization provided by a mechanically tracked probe.  The 

registration was performed in 1.1 seconds following the real-time acquisition of the intra-

procedural image using the same conventional 2D TRUS probe (Philips Medical Systems, 

Seattle, WA) as in Xu et al. [5].  Both of the systems [5, 11] constructed the baseline 3D TRUS 

image at the beginning of the procedure using the 2D images acquired from a ~10 second 

rotational sweep of a tracked 2D TRUS probe.  In addition, intra-procedure prostate motion has 

been identified as a potential problem [12] hindering accurate needle targeting in MR-guided 

prostate biopsy systems [13-15].  Solutions [16, 17] have been proposed for motion 

compensation by co-registering multi-slice intra-procedural MR images with a pre-acquired MR 

image.     
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Live intra-procedural images acquired during the biopsy procedure need to be registered 

both quickly and accurately to compensate for motion.  During registration, we optimize an 

image-based similarity metric between pre- and intra-procedural images in a rigid 3D 

transformation space.  Although prostate deformation due to TRUS probe pressure could be 

compensated by a non-rigid registration approach, it is less desirable considering the slower 

speed of non-rigid registration in the context of the short duration of the biopsy procedure and 

the limited time of effect of the local anesthesia provided to the patient. In addition, achieving a 

robust rigid registration is an essential initial step before proceeding to a non-rigid refinement.  

Limited anatomical context available in single plane 2D TRUS images could limit the robustness 

of the registration, especially considering the rotational symmetry of the prostate, as there can be 

multiple ways (i.e., local optima) to orient a single 2D TRUS image within the 3D context that 

yield high image similarity values. On the other hand, intra-procedural 3D information in multi-

planar or 3D TRUS images provides richer anatomical context than in single plane 2D TRUS; 

this could help to improve the accuracy of the registration algorithm.  Therefore, by including 

additional 3D image planes in the image-similarity metric calculation, the objective function 

shape could change due to the additional (or “richer”) anatomical information, in order to 

improve the robustness of the optimizer in finding the desired registration solution.  However, 

both image acquisition and image registration require additional time when using intra-procedure 

3D information.  Multi-planar or 3D TRUS image acquisition either using probes with enhanced 

functionality or via multiple acquisitions by a rotational sweep of a tracked conventional 2D 

TRUS probe is slower than that using a near real time conventional 2D TRUS probe.  Moreover, 

image registration requires more time when using intra-procedural 3D TRUS images to calculate 

the image similarity metric values using more intensity samples. 
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In order to design a suitable approach to compensate for prostate motion, taking into 

account these tradeoffs between accuracy and speed, it is useful to quantify the improvements in 

registration accuracy obtained by acquiring different amounts of 3D information in the intra-

procedural TRUS images.  In this work, (1) we compared the motion compensation accuracies 

resulting from the use of several potential intra-procedural imaging approaches, ranging from 

single 2D TRUS frames to full 3D TRUS imaging, to evaluate how different amounts of 3D 

image information affect the registration accuracy; (2) we analysed how frequently and in which 

anatomic regions of the prostate the motion compensation accuracy benefits most from 

additional 3D image information acquired during the procedure; and (3) we investigated whether 

rigid alignments obtained via image-based registration could achieve accuracies suitable for use 

in a clinical setting. Our results could inform the designers of next-generation guided prostate 

biopsy systems as to (1) optimal design/selection of ultrasound imaging techniques to be used 

intra-procedurally; (2) whether and how to adaptively acquire additional 3D information when 

the physician is targeting specific regions of the prostate; and (3) whether to invest effort in the 

development of real-time non-rigid registration for prostate motion compensation during the 

procedure. 

4.2 Materials and methods 

4.2.1 Materials 

29 patients (mean ± std age: 59 ± 7, PSA: 5.4 ± 2.8 ng/ml, prostate volume: 38.8 ± 20.0 cm3) 

were included in this study that was part of a larger human subjects research ethics board 

approved MRI-3D TRUS fusion biopsy study. The 3D TRUS images were collected in advance 

of the scheduled biopsy as part of our institution’s standard protocol to fuse MRI to pre-biopsy 
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3D TRUS images.  3D TRUS images were acquired with a mechanically tracked 3D TRUS-

guided biopsy system described in Bax et al. [3], using a commercially available end-firing 5-9 

MHz HDI 5000 TRUS transducer probe (Philips Medical Systems, Seattle, WA).  During 3D 

TRUS image reconstruction, a set of 2D TRUS images was acquired by a 180 degree probe-axial 

rotation of the otherwise stationary TRUS probe (i.e., the entire probe is rotated, including its 

outer surface) and then resampled the resulting 2D planes in a 3D grid to obtain the 3D TRUS 

image.  Each 3D TRUS volume had a grid size of 224 × 224 × 175 voxels, with an isotropic 

voxel size of 0.37 mm, and was preprocessed via anisotropic diffusion filtering [18] 

(conductance parameter = 2, time step = 0.625) for speckle reduction.  Each 3D TRUS image 

acquisition required approximately 10 seconds. 

 

Figure 4.1: (a) Coronal view (from the posterior perspective of the TRUS probe) of relative positions of the probe 

tip during image acquisition (B: baseline, 1-6: sextant locations) (b) Transverse view showing the necessary 

reorientation of the probe to acquire images at baseline and targets 2 and 5. 

 

A total of 7 3D TRUS volumes were acquired per patient, with the first image acquired 

centrally within the gland—corresponding to the typical baseline 3D TRUS image acquired at 

the start of most MRI-TRUS fusion biopsy procedures [5, 11]. The six additional 3D TRUS 

images were acquired after maneuvering the TRUS probe toward each of the sextant biopsy 
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locations.  Figure 4.1 shows the relative bilateral sextant biopsy locations in the base, mid-gland 

and apex regions of the prostate when acquiring 3D TRUS images by a rotational sweep of the 

TRUS probe at each position.  The order of sextant 3D TRUS acquisitions was reversed for half 

of the patients (the order from 1 to 6 were reversed to 6 to 1 according to the positions shown in 

Figure 4.1) in an effort to mitigate possible dependence of prostate motion at each sextant 

location to the previous probe position. 

Each sextant 3D TRUS image comprises a set of 2D TRUS images that could be acquired 

using a conventional 2D TRUS probe when targeting a region in that sextant.  The mechanical 

encoders attached to the ultrasound probe tracked the 3D position and orientation of the 

individual 2D TRUS images acquired during the rotational sweep, yielding a transformation of 

every 2D TRUS image to a common 3D world coordinate system.  The 7 3D images indicated by 

probe positions in Figure 4.1 were acquired from 29 patients, for a total of 203 3D TRUS 

images.  During registration, surrogate intra-procedural images were extracted from the 3D 

TRUS images acquired at the bilateral sextant probe positions that simulated different 3D TRUS-

guided biopsy scenarios while the 3D TRUS image acquired at the baseline probe position 

served as the pre-procedural image.   

4.2.2 Image registration 

For all registrations, the 3D TRUS image at the baseline position (𝐼𝐵) was used as the moving 

image to update the target locations in the baseline image to compensate for motion. We used 

several different fixed image configurations, ranging from a single 2D TRUS plane to a full 3D 

TRUS image; Figure 4.2 lists the notations for the fixed image configurations used in the 

registration experiments in this paper, along with a schematic description of each.  The fixed 
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images extracted from 3D TRUS images at sextant probe positions are denoted as 𝐼𝛼1,𝛼2,…,𝛼𝑛, 

where 𝑛 is the number of planes extracted from angles 𝛼, or 𝐼𝛼1−𝛼2 for all planes between angles 

𝛼1 and 𝛼2; 𝛼 = 0 denotes the transverse or axial plane.  Thus, at one end of a continuum, 𝐼0 

indicates the use of a single transverse 2D TRUS image as the fixed image, and at the other end, 

𝐼0−179 indicates the full 3D TRUS image.  Extracting different planes from the 3D TRUS image 

to construct the fixed image (illustrated in Figure 4.2) simulates intra-procedural images for 

different intra-procedural scenarios, ranging from monoplanar 2D TRUS imaging [5, 11], 

through multi-planar and partial volume imaging [2], to full 3D TRUS imaging [1] conducted 

throughout the procedure. 

 

 

 

Figure 4.2: Fixed image configurations used in this paper: notation and schematics of planes from a probe-axis 

view. 
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Figure 4.3: Overall workflow in methods and validation. 

For each fixed image configuration given in Figure 4.2, registration and validation were 

performed according to the overall workflow given in Figure 4.3.  During image-based 

registration, the transformation from the mechanical tracker initialized the subsequent rigid 

registration performed by optimizing the normalized cross-correlation [19] (NCC) using 

Powell’s method [20] as the optimizer, as described in De Silva et al. [11]. A total of 174 

registrations were performed on images of 29 patients (6 registrations per patient) for each 

construction of fixed images according to Figure 4.2. For each patient 𝑖 = 1...29 and fixed image 

constructions with different probe positions 𝑗 = 1...6 we optimized the objective function given 

by normalized cross-correlation as 

𝑇𝑖𝑗  =   𝑟𝑔max
𝑖,𝑗

𝑁𝐶𝐶(𝐼𝛼1,..,𝛼2
𝑖𝑗

, 𝐼𝐵
𝑖 ; 𝑇̌𝑖𝑗) 

to determine the rigid transformation 𝑇𝑖𝑗 corresponding to the motion. 
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4.2.3 Registration error measurement 

Although the patient was in the lateral decubitus position during 3D TRUS image acquisitions, 

patient discomfort and TRUS probe pressure can cause prostate motion. Therefore, the 

ultrasound probe tracking information cannot be used to determine the motion of the prostate, 

since the prostate may have moved relative to the probe.  This motion was quantified relative to 

manually identified intrinsic fiducials (micro-calcifications) of the prostate.  Registration error 

was measured as the root mean square (RMS) target registration error (TRE) [21, 22] of 

manually identified corresponding pairs of fiducials for every registered 3D TRUS image pair.  It 

is important to note that the fiducial pairs were identified only to measure the accuracy of 

registration and were not provided as input to the registration algorithm.  Fiducials were 

identified throughout the 3D TRUS images regardless of the planes used for registration and the 

𝑘th fiducial in the fixed image of the 𝑖th patient in the 𝑗th sextant position is denoted by 𝑓𝐹
𝑖𝑗𝑘

 and 

the fiducials in the moving image by 𝑓𝑀
𝑖𝑘. Using the transformation (𝑇𝛼1,..,𝛼𝑛

𝑖𝑗
) obtained from the 

registrations at each fixed image configuration, the RMS TRE was calculated as 

𝑇𝑅𝐸𝛼1,..,𝛼𝑛 =
√∑ (𝑓𝐹

𝑖𝑗𝑘
−𝑇𝛼1,..,𝛼𝑛

𝑖𝑗
(𝑓𝑀
𝑖𝑘))2𝑖,𝑗,𝑘

𝑁
. 

4.2.4 Experimental methods 

A total of 1003 fiducial pairs were identified across image pairs of all patients with a mean ± 

standard deviation (std) of 5.8 ± 1.2 fiducial pairs per registration.  Figure 4.4 shows the 

distribution of the identified fiducials projected to Anterior/Posterior (A-P), Left/Right (L-R) and 

Inferior/Superior (I-S) planes from the 3D space, with the prostate size normalized from 0 to 1 
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along each direction.  Figure 4.5 depicts the sample calcification pairs that were identified as the 

anatomical landmarks. 

 

Figure 4.4: Distribution of manually identified fiducials used for registration validation. Each fiducial is shown with 

its Anterior/Posterior (A/P), Left/Right (L/R) and Inferior/Superior (I/S) position within the normalized prostate in 

which the boundaries extend from 0 to 1 along each direction.   

4.2.5 TRE for different fixed image configurations 

The RMS ± std TRE was calculated for each registration using the fixed image configurations 

defined in Figure 4.2.  To provide context for interpretation of these results, the pre-registration 

error and the fiducial registration error (FRE) [21] were also calculated.  To compare the two 

extremes of fixed image information (2D versus full 3D), the distribution of TRE improvements 

(𝑇𝑅𝐸0
𝑖𝑗
− 𝑇𝑅𝐸0−179

𝑖𝑗
) were calculated when using a full 3D TRUS image as opposed to using a 

single 2D TRUS image for motion compensation. 
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Figure 4.5: Example of the identified fiducials for three pairs of images.  Arrows point to homologous fiducial pairs 

in each row.  Baseline images with the fiducials are shown in the left and the sextant images of the same patient with 

corresponding fiducials are shown in the right. 

4.2.6 TRE for base, mid-gland and apex regions 

The TRE distributions were analysed separately for mid, base and apex regions of the prostate to 

understand the benefit of using additional 3D image planes in each region.  The TRE for each 

probe position was calculated separately as 

𝑇𝑅𝐸𝑗𝛼1,..,𝛼𝑛 =
√∑ (𝑓𝐹

𝑖𝑗𝑘
−𝑇𝛼1,..,𝛼𝑛

𝑖𝑗
(𝑓𝑀
𝑖𝑘))2𝑖,𝑘

𝑁𝑗
. 
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To determine an optimal registration error against which to compare the TREs, we 

calculated the FRE resulting from the rigid transformation that optimally aligned the intrinsic 

fiducials.  The FRE was calculated by finding the optimal rigid transformation that yielded the 

least squared error for the fiducials in a given image pair as 

𝐹𝑅𝐸𝑖𝑗 = argmin
𝑇𝑖𝑗

√∑ (𝑓𝐹
𝑖𝑗𝑘
−𝑇𝑖𝑗(𝑓𝑀

𝑖𝑘))2𝑘

𝑁𝑘
. 

4.3 Results 

4.3.1 TRE for different fixed image configurations 

 

Figure 4.6: TRE histograms for registrations using different fixed images, with the RMS ± std TRE shown in the 

top left of each histogram.  To provide context for the TRE distributions, row 1, column 1 shows the error 

distribution prior to registration and row 2, column 1 shows the error distribution after optimal rigid registration 

using the fiducials (FRE).  

Figure 4.6 shows the RMS ± std TRE for registration using each fixed image configuration 

defined in Figure 4.2, along with the pre-registration error and the FRE and the histograms of 
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each distribution.  Since these TRE distributions were found to be not normally distributed by a 

one-sample Komogorov-Smirnov test (p > 0.05), for each pairing of fixed image configurations 

we tested the null hypothesis that the paired distributions have the same medians with the non-

parametric Wilcoxon signed rank test.  The null hypothesis was rejected for each pair of 

distributions (p < 0.006) except for the pair of distributions with fixed images as 𝐼0,45 and 𝐼0,135 

(p = 0.2).  The RMS TRE decreased monotonically with an increasing number of planes included 

in the fixed image configuration.  The lowest and least variable error was obtained when the 

fixed image was selected to be the full 3D image (𝐼0−179).  Figure 4.7 compares the parameters 

of the TRE distributions at different fixed image configurations as a box and whisker plot.  To 

directly compare the extremes of fixed image configurations, Figure 4.8 shows the histogram of 

distribution of TRE error reductions resulting from the use of a 3D fixed image configuration, 

compared to a 2D fixed image configuration, calculated as 𝑇𝑅𝐸0
𝑖𝑗
− 𝑇𝑅𝐸0−179

𝑖𝑗
.  Figure 4.9 

shows qualitative examples of the alignments provided by registration with different fixed image 

configurations, for three patients.  Mean execution times for registrations with single-plane, bi-

plane, partial-volume, and full 3D volume fixed image configurations are shown in Table 4.1.  

The time required increases with more intensity samples used for registration.  The times were 

measured using a graphics processing unit (GPU) accelerated implementation of the NCC 

calculation with NVIDIA GTX 580 (NVIDIA Corporation, Santa Clara, CA) GPU and an Intel 

Xeon 2.5 GHz processor (Intel Corporation, Santa Clara, CA). 
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Figure 4.7: Comparison of TRE distribution parameters for different fixed image configurations. 

 

Figure 4.8: Histogram of TRE differences between I0 and I0-179. 
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Figure 4.9: Corresponding transverse 2D planes from; (a) fixed image, (b)-(d) transformed moving image after 

registration using the fixed image configurations as indicated, (e) moving image before registration. 

Table 4.1: Mean execution times for registration with different fixed image configurations 

Fixed image configuration Mean execution time (s)* 

𝑻𝑹𝑬𝟎 1.8 

𝑻𝑹𝑬𝟎,𝟗𝟎 2.1 

𝑻𝑹𝑬𝟎−𝟗𝟎 8.0 

𝑻𝑹𝑬𝟎−𝟏𝟕𝟗 14.6 

*Using a GPU accelerated implementation for NCC calculation (NVIDIA GTX 580 GPU card and Intel Xeon 2.5 GHz processor)  

 

4.3.2 TRE for base, mid-gland and apex regions 

In Table 4.2, we present the average TRE values in base, mid and apex regions of the prostate as 

well as TRE separately for each sextant region for two fixed image configurations: single plane 

Reg. using I0 Reg. using I0,90 Reg. using I0-90 Before reg.Fixed Image

TRE = 0.9 mm TRE = 1.3 mm TRE = 3.4 mm TRE = 8.0 mm

TRE = 1.4 mm TRE = 3.9 mm TRE = 5.1 mm TRE = 5.8 mm

TRE = 2.8 mm TRE = 3.6 mm TRE = 3.8 mm TRE = 11.4 mm

(a) (b) (c) (d) (e)
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and full 3D TRUS image.  The error before registration as well as 𝑇𝑅𝐸0 using a single plane was 

higher in the base and apex regions of the prostate when compared with the mid-gland; for both 

distribution pairs, the non-parametric Wilcoxon signed rank test rejected the null hypothesis (p < 

0.001) that the paired distributions had the same median.  The observed motion during biopsy 

movements within the left gland of the prostate was significantly larger (Wilcoxon signed rank 

test, p < 0.001) than that of the right gland even though the order of left to right and right to left 

acquisitions were reversed for half of the patients during image acquisitions.  The additional 

improvement in TRE (𝑇𝑅𝐸0
𝑗
− 𝑇𝑅𝐸0−179

𝑗 ) when using full 3D information as opposed to using a 

single plane for registrations, was larger (Wilcoxon signed rank test, p < 0.07) in the base and 

apex regions when compared with the improvements obtained in the mid-gland.  However, at the 

95% confidence level (p = 0.05) there was no significant difference between base, apex regions 

and the mid-gland detected. 

Table 4.2: RMS ± std TREs for registrations at different sextant probe positions. 

Sextant position 

(𝒋) 
Before reg. 

(mm) 

FRE (mm) 𝑻𝑹𝑬𝟎
𝒋
 (mm) 𝑻𝑹𝑬𝟎−𝟏𝟕𝟗

𝒋
 (mm) 𝑻𝑹𝑬𝟎

𝒋
− 𝑻𝑹𝑬𝟎−𝟏𝟕𝟗

𝒋
 

(mm) 

Base 5.3 ±2.6  1.2 ± 0.6 3.4 ±1.8 1.7 ± 0.7 1.7 

 – Left base 4.6 ± 2.6 1.1 ± 0.5 2.8 ± 1.6 1.5 ± 0.6 1.3 

 – Right base 5.9 ± 2.4 1.4 ± 0.7 3.9 ± 1.8  1.9 ± 0.9 2.0 

Mid 4.1 ± 2.1 0.9 ± 0.4 2.2 ± 1.0 1.3 ± 0.5 0.9 

 – Left mid  3.0 ± 1.5 1.0 ± 0.4 1.6 ± 0.6 1.3 ± 0.5 0.3 

 – Right mid 5.0 ± 2.2 0.9 ± 0.3 2.7 ± 1.2 1.3 ± 0.5  1.4 

Apex 5.3 ± 2.2 1.2 ± 0.7 3.5 ± 1.9 1.9 ± 1.0 1.6 

 – Left apex 4.1 ± 1.5 1.4 ± 0.8 3.0 ± 1.4 2.1 ± 1.2 0.9 

 – Right apex 6.3 ± 2.4 1.2 ± 0.5 4.0 ± 2.3 1.7 ± 0.7 2.3 
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4.4 Discussion 

In this work, we compared the accuracy and robustness of prostate motion compensation during 

TRUS-guided biopsy when varying amounts of 3D image content are available in the live images 

used for guidance, ranging from 2D images such as would be acquired from a conventional 

monoplanar probe, through bi- and multi-planar images, to full 3D TRUS imaging.  The results 

could inform the selection of a suitable approach in a clinical setting considering the trade-offs in 

accuracy, time and hardware costs.  Although 3D information has aided the registration 

algorithm in converging robustly to more accurate solutions, image acquisition and registration 

requires more time when using such information, and probe costs may increase.  In previously 

published approaches for 3D TRUS-guided biopsy [1, 5, 11], additional intra-procedural images 

have been obtained using the probes with enhanced functionality (the system described in 

Baumann et al. [1] requires 0.5–5s per temporal frame of acquisition) or could potentially be 

obtained via the rotation of a tracked TRUS probe prior to each biopsy (the systems described in 

Xu et al. [5] and De Silva et al. [11] require ~10s for a full 3D TRUS acquisition).  Whereas the 

former approach allows for more convenient acquisition of multiplanar images, the latter 

approach permits the use of widely available conventional 2D TRUS probes in systems that 

provide 3D TRUS guidance (e.g., by retrofitting, as in [3]), lowering the cost barrier to entry into 

3D TRUS-guided biopsy and leveraging the physician’s investment in existing 2D ultrasound 

machines.  For example, Xu et al. [5] proposed a method of incorporating additional 3D 

information by selecting frames with the largest separation in translations and rotations in the 

out-of-plane directions using the probe’s tracking information from the set of live 2D TRUS 

frames prior to targeting.  This approach uses the natural motion of the handheld probe over a 

short time period prior to biopsy to acquire additional planes.  As another example, the 
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mechanical system in Bax et al. [3] permits acquisition of additional imaging planes via the 

rotation of the tracked TRUS probe.  This system provides mechanical stabilization of the probe 

(including optional mechanical locking of all joints, permitting only axial probe rotation), which 

in principle could result in reduced prostate motion during acquisition. 

The co-registration to compensate for prostate motion could be improved further by 

applying a subsequent non-rigid refinement after the rigid registration, thereby compensating for 

the prostate deformation caused by the variability in TRUS probe pressure.  However, this 

clinical application requires high-speed registration; the higher degrees-of-freedom of a non-rigid 

transformation render high-speed registration very challenging.  The FRE calculated using 

manually identified intrinsic fiducials yields the error after an optimal rigid registration.  The 

FRE provides information about the room for improvement that may be obtained from a non-

rigid registration, to shed light on the potential return on investment of effort in development of 

high-speed non-rigid image registration algorithms for this clinical procedure.  We calculated an 

overall RMS ± std FRE of 1.2 ± 0.6 mm, which indicates that an optimal rigid alignment could 

achieve a clinically desirable level of accuracy (i.e., < 2.5 mm RMS error [23]), possibly 

eliminating the need to implement a more time-consuming non-rigid registration algorithm.  Our 

results show that the TRE values approached the FRE when including 3D intra-procedural 

imaging during registration. Moreover, previous work [1, 22] suggests that non-rigid registration 

yielded RMS TRE improvements < 0.6 mm when using intra-procedural 3D TRUS images.  

Therefore, the use of intra-procedural 3D TRUS imaging with rigid registration seems to provide 

a larger incremental benefit than the use of non-rigid registration. 

The development of image registration methods to compensate for motion could have 

applications in other 3D guided diagnostic and therapeutic interventional procedures [24, 25].  
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Hungr et al. [25] describe a 3D ultrasound robotic prostate brachytherapy system that utilizes 

motion compensation algorithms previously validated for biopsy guidance. The limited 

anatomical context available in single-plane 2D intra-procedural images could challenge the 

accuracy of co-registration with 3D pre-procedural images in many other interventional 

applications.  Uneri et al. evaluated the effect of dual projection view angles on 3D-2D 

registration accuracy of CT and x-ray projection images for surgical guidance.  Zvonarev et al. 

[26] and Fallavollita et al. [27] described multiple 2D plane-3D registrations related to lung and 

prostate brachytherapy. The methods described in this paper could have relevance in developing 

and evaluating techniques to improve registration accuracy and robustness in such interventional 

applications requiring rapid, robust registration by acquiring intra-procedural 3D imaging 

efficiently, only when necessary. 

4.4.1 TRE for different fixed image configurations 

The TREs for bi-planar registrations shown in Figure 4.6 do not indicate substantial variability in 

accuracy for the different angles between the two planes tested for those three fixed image 

configurations (i.e., 𝐼0,45, 𝐼0,135, 𝐼0,90).  The acquisition of a partial volume up to the angle of 

rotation with a conventional tracked monoplanar probe may support more accurate motion 

compensation than acquiring a single additional plane.  Consequently, that approach could result 

in more robust registrations than with a probe that simultaneously acquires dual orthogonal 

planes, at the cost of extra time for rotational acquisitions. 

According to the 𝑇𝑅𝐸0 distribution in Figure 4.6, 63% of the registrations have a TRE < 

2.5 mm when using a single 2D TRUS image as the fixed image configuration.  Figure 4.8 shows 

the histogram of distribution of TRE improvements calculated as 𝑇𝑅𝐸0
𝑖𝑗
− 𝑇𝑅𝐸0−179

𝑖𝑗
.  
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According to this distribution, the improvements were less than 1 mm in 56% of all registrations 

and were less than 2.5 mm in 87% of the registrations.  This suggests that although 3D 

information improved the accuracy and robustness of the registration, in the majority of the cases 

the error when using a single 2D TRUS plane was within a clinically acceptable range [23] or the 

improvements were not substantial when additional planes were included in the registration.  

Intra-procedural detection of misregistration by the operator could direct the efficient use of 3D 

image acquisition only for the subset of cases where this is beneficial. 

4.4.2 TRE for base, mid-gland and apex regions 

The analysis of TRE separately in the different sextant regions indicated that the base and apex 

regions were more challenging for the registration algorithm to compensate when only using a 

single 2D TRUS image, as compared with mid-gland regions.  The additional 3D TRUS 

information provided during registration was generally more beneficial in the base and apex 

regions, yielding higher comparative accuracy improvements as shown in Table 1.2.  When the 

TRUS probe is positioned near the edge of the gland at the base or apex, the resulting transverse 

2D views contain minimal prostate anatomy, which may not be sufficient to unambiguously co-

register with the pre-acquired baseline 3D TRUS image.  In order for the image-based 

registration to be successful in such challenging cases, it is reasonable to expect that the image 

content needs to capture richer contextual information, which can be achieved through oblique 

2D views or 3D partial volumes. 

4.4.3 Limitations 

The registration error (TRE) measurements in this paper were made using manually identified 

intrinsic fiducial landmarks within the prostate.  Therefore, the TRE measurements are limited 
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by the fiducial localization error (FLE) in 3D TRUS images, which were measured to be 0.21 

mm in a previous study [22] involving 3D TRUS images.  Fiducials were identified in baseline 

and sextant 3D TRUS images, irrespective of the planes used for registration in different fixed 

image configurations.  Therefore, when using fewer planes than the complete 3D TRUS image, 

the registration algorithm lacks complete information to calculate the optimal rigid transform for 

the identified fiducials.  While rigid motion of the prostate was assumed, any presence of non-

rigid motion would challenge the ability of the registration algorithm to reach the ground truth 

measured by the identified fiducials using fewer image planes.  FRE, calculated as the lowest 

possible error after applying a rigid transformation, is reflective of the magnitude of non-rigid 

deformation of the prostate.  Our results show that TRE approaches FRE when increasing the 

amount of intra-procedural 3D-TRUS image information during registration.  The remaining 

difference between the FRE and 𝑇𝑅𝐸0−179 could possibly be attributed to the FLE and the 

vulnerability of the registration optimizer in converging to local optima even when using full 3D 

TRUS images. 

The results presented in this paper are applicable to biopsy systems that utilize 3D 

guidance (e.g., Artemis [Eigen, Grass Valley, CA, USA], UroNav [In Vivo, USA], Urostation 

[Koelis, Grenoble, France], BiopSee [Pi Medical, Athens, Greece], Virtual Navigator [Esaote, 

Italy], Real-time Virtual Sonography [HI RVS] [Hitachi, Japan]).  Furthermore, in our study, the 

3D TRUS images were acquired using a manually rotated, tracked, and mechanically stabilized 

2D TRUS probe. 
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4.5 Conclusion 

In 3D TRUS-guided biopsy, accurate and rapid registration of live intra-procedural images to a 

pre-acquired 3D TRUS image is necessary to minimize targeting errors.  Intra-procedural 3D 

TRUS information supports robust convergence of the registration algorithm to more accurate 

solutions while compensating for motion.  Intra-procedural 3D TRUS information could be 

acquired either using probes with enhanced functionality (multi-planar or 3D probes) or by axial 

rotation of a tracked conventional 2D TRUS probe.  The acquisition of a partial volume up to the 

angle of rotation supported more accurate motion compensation than acquiring bi-plane 

configurations.  The results are helpful for devising mechanisms for motion compensation by 

taking advantage of intra-procedural 3D image acquisitions, considering the tradeoff of time, 

probe cost, and accuracy of motion compensation.  In 3D TRUS-guided biopsy systems, 3D 

intra-procedural image acquisitions help to achieve a robust registration that could improve the 

needle targeting accuracies to meet the clinical demands of such systems.  
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Chapter 5. 

Robust 2D-3D registration optimization to motion 

compensation using learned prostate motion data 

5.1 Introduction 

In this chapter, we describe and evaluate a 2D-3D TRUS registration that incorporates 

knowledge of prostate motion characteristics into the optimization process in order to improve 

registration accuracy and robustness. Although 3D intra-procedure image acquisitions could help 

to improve the robustness of the registration algorithm as described in the previous chapter, it is 

faster, more economical and less cumbersome to acquire live 2D TRUS images and to use them 

in registration for motion compensation during the procedure.  A robust 2D-3D registration 

algorithm would combine the advantages of more convenient live 2D TRUS acquisitions during 

the procedure with the improvements in motion compensation accuracy and robustness.  

Multiple algorithms have been proposed [1-4] to perform software-based motion compensation 

by registering intra-procedural TRUS images to an initially acquired 3D TRUS image. The 

system proposed in [3] used TRUS images acquired from a 3D TRUS probe to perform image-

based tracking to compensate for motion. Xu et al.[1] performed the registration after initializing 

several previous 2D TRUS frames in a 3D coordinate system using the transformations provided 

by a magnetically tracked probe. We previously [2] proposed a 2D-3D registration method using 

an initialization provided by a mechanically-tracked probe. The registration needs to be 

performed in a transformation space of, at minimum, 6 dimensions (for rigid registration), and 

the non-convexity of the objective function in the search space can drive the optimizer to local 

optima.  The methods in [1, 2] rely on some initialization mechanism and then optimize an 
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image-based, non-linear cost function using a local optimization technique whereas in [3] an 

initial global search mitigated local optima in the subsequent Powell-Brent search. While 2D-3D 

registration using a conventional real-time TRUS probe could be more challenging than 3D-3D 

registration [3] using a 3D TRUS probe, motion compensation with low inter-patient registration 

error variability and increased robustness is vital for successful clinical integration.  In this work, 

we investigated whether, in a 2D-3D registration problem, the learned characteristics of motion 

induced at different probe positions for prostates can be used to overcome local optima and drive 

the optimization to converge to the desired solution.   

Statistical representations of high-dimensional transformations have been used to learn 

prostate deformations to improve MR-TRUS registration [5, 6].  However,  statistical analyses 

have been previously performed using finite element analysis (FEA)-simulated motion in 3D 

TRUS images [5] and phantoms [6] whereas this work utilized statistics of observed motion in 

actual prostate interventions.  Outside of the prostate TRUS context, statistical representations of 

high-dimensional transformations have been previously used to learn or constrain both rigid and 

non-rigid registrations [7-9]. Strategies have also been proposed to improve the robustness of 

optimization techniques during registration [10].   

The objective of this work is to utilize the statistics of observed prostate motion data to 

improve the robustness of registration optimization.  In this work, we analysed the prostate 

motions observed from 29 patients to learn a model representing the characteristics of prostate 

motion. We then incorporated the parameters from this model to improve the robustness of the 

registration optimization.  The rest of the paper describes our approach to learning of prostate 

motion characteristics and our adaptation of that learned statistical information to improve the 

search for the optimum of the cost function. 
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5.2 Materials and Methods 

5.2.1 Data acquisition 

The images were acquired from 29 patients as part of a larger human subjects research ethics 

board approved MRI-3D TRUS fusion biopsy study of our institution. Using a mechanically-

assisted biopsy system described in Bax et al. [11], we acquired 3D TRUS images with an end-

firing 5-9 MHz TRUS transducer probe (Philips Medical Systems, Seattle, WA) during human 

clinical biopsy procedures.  In addition to the baseline 3D TRUS image (𝐼𝐵: ℝ
3 → ℝ) that would 

usually be acquired following the standard operating procedure for the system in [11], we 

acquired six other 3D TRUS images (𝐼𝑃𝑖: ℝ
3 →  ℝ where 𝑖 ∈  {1,2, . .6}) after positioning the 

TRUS probe at the corresponding standard sextant systematic biopsy locations. Figure 5.1 shows 

the relative bilateral sextant probe positions in base, mid and apex regions of the prostate. The 

mechanical encoders attached to the TRUS probe tracked the 3D position and orientation of the 

probe in real-time, which enabled the transformation of 3D volume to a common world 

coordinate system. Images were acquired from 29 patients following the protocol described 

above with 7 3D TRUS images per patient, for 203 images in total. During 2D-3D registration a 

transverse 2D slice (𝐼𝑝𝑖: ℝ
3 → ℝ) was obtained from 3D TRUS images at each sextant probe 

position and registered to the baseline 3D image. 
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Figure 5.1: Probe positions during image acquisition shown relative to (a) coronal view (b) axial view. 

5.2.2 Modeling rigid prostate motion 

Corresponding fiducial pairs of anatomically homologous points (corresponding, naturally-

occurring micro-calcifications) were manually identified in 3D TRUS image pairs consisting of 

(𝐼𝐵, 𝐼𝑃𝑖) for each patient. We denote the fiducials identified in the baseline image as 𝑓𝐵  ∈ ℝ
3 and 

those identified in the image with probe position 𝑖 for that patient as 𝑓𝑃𝑖  ∈ ℝ
3. For each patient 

𝑗, we computed the optimal rigid alignment using the identified fiducials that defines the best six 

parameter rigid transformation vector 𝑥𝑖𝑗
∗  (henceforth referred to as a motion vector) out of all the 

possible rigid transformation vectors 𝑥𝑖𝑗 ∈ ℝ
6 according to, 

𝑥𝑖𝑗
∗ = arg min

𝑥𝑖𝑗

∑(𝑓𝑃𝑖
𝑚⨂ 𝑥𝑖𝑗 − 𝑓𝐵

𝑚⨂ yij)
2 

𝑀

𝑚=1

 

(

(5.1) 

where 𝑦𝑖𝑗: ℝ
3 → ℝ3 is the transformation obtained from tracking the probe (which maps the 3D 

image to the world coordinate system) and operator ⨂ denotes the application of a rigid 3D 

transform to the fiducial location.  𝑀 is the number of fiducial pairs identified per registration.  

Six such fiducial-based registrations per patient were performed, one for each sextant location. A 

total of 1003 fiducial pairs were identified with an average of 6 fiducial pairs per registration. It 
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is important to note that these fiducial pairs were identified only to measure and characterize 

prostate motion; the registration algorithm described in the following sections is fully image-

based and does not rely on the identification of fiducial landmarks. 

We analysed the estimated motion vectors to determine a suitable model to represent the 

observed data.  Each vector 𝑥𝑖𝑗
∗ , measured using manually identified fiducials, can be represented 

as a point in the six-dimensional (6D) rigid transformation space.  Different patient and probe 

positions generate a cloud of points in the 6D space representing the motions observed in the 

data set.  We assumed that prostate motion has some characteristic patterns, since the patient 

positioning constrains the motion in certain directions within the biopsy set-up and the 

transrectal access to the prostate constrains the motion of the TRUS probe during navigation.  

We analysed the distribution of the resulting point cloud in the 6D space to understand the 

patterns related to prostate movement during the biopsy procedure.  During our initial analysis, 

the point distribution failed an uni-modal Gaussianity test (Kolmogorov-Smirnov test, p < 

0.001).  Assuming the point distribution is multi-modal, we performed an unsupervised 

clustering of the data by fitting a mixture-of-Gaussians (MoG) model using expectation 

maximization (EM) algorithm [12].  The number of clusters is an important parameter that needs 

to be provided as input to the EM algorithm. We used the gap statistic [13] to calculate a 

reasonable estimate to this parameter.  We represented the estimated distribution of motion 

vectors as 

ℱ(𝑥) =  ∑𝒩(𝑥𝑡̅, 𝐶𝑡)

𝑇

𝑡=1

 

(

(5.2) 

where 𝑥𝑡̅ is the mean of the cluster 𝑡 and 𝐶𝑡 is the covariance matrix of the Gaussian distribution 

𝑡.   
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5.2.3 Robust search strategy during registration optimization 

Equipped with a MoG model that represents prostate motion characteristics, we explored more 

effective ways to traverse the transformation space during registration optimization.  The class of 

optimization algorithms having the quadratic convergence property assume a quadratic model of 

the form 𝒢(𝑥) = 𝑥𝑇𝐴𝑥 + 2 𝑇𝑥 + 𝑐 in the local neighborhood of the optimum [14].  If this 

assumption is met within reasonable bounds, these algorithms can find the function optimum 

within a finite number of function and/or derivative evaluations.  This is a desirable property for 

registration problems requiring rapid convergence.  

To achieve quadratic convergence, some algorithms attempt to evaluate or approximate 

the Hessian matrix, 𝐴, in the quadratic model, 𝒢(𝑥), that captures the second order properties of 

the function [14].  Direction set methods like the conjugate gradient method [15] and Powell’s 

method [16] approximate a set of directions conjugate to 𝐴 without explicit knowledge of the 

function 𝒢(𝑥).   Improving (i.e., decreasing) the condition number of 𝐴 (the ratio between the 

largest and smallest eigenvalues of 𝐴) has been demonstrated to improve the convergence 

properties of such algorithms [17].  This approach scales the search space to increase the isotropy 

of a multi-dimensional objective function, which is helpful for the optimizer to take 

approximately equidistant steps during the line searches performed in a set of conjugate 

directions.  Figure 5.2 illustrates the effect of improving the condition number in a two-

dimensional hypothetical function with example line search direction shown in a red arrow from 

the starting location depicted by the red circle. 



 

 

143 

 

 

Figure 5.2: Diagram depicting the improvement (i.e., decrease) of the condition number (𝜆2/𝜆1) of a 2D objective 

function by scaling the search space according to the eigenvalues (𝜆2, 𝜆1) of the matrix 𝐴 of the objective function. 

(a) Initial search space of the objective function. (b) Situation after the search space is scaled according to 𝜆2, 𝜆1.  

Black ellipsoids/circles show the function iso-contours, with larger circles/ellipses indicating less optimal values of 

the objective function. The red circle shows an example initial search location and the red arrow shows a typical 

Powell’s method initial search direction. 

Powell’s method is a derivative-free optimization method that has quadratic convergence 

properties.  For a 𝐷-dimensional quadratic function, line minimizations along 𝐷 linearly 

independent, mutually conjugate directions will exactly find the function minimum. Powell's 

algorithm determines a set of such directions after initialization with the columns of any 𝐷 × 𝐷  

orthogonal matrix. For non-quadratic functions, which are usually encountered in image 

registration problems, repeated cycles of 𝐷 line searches are done iteratively until convergence. 

Usually this initialization is performed using the column vectors of an identity matrix [18]. 

𝐶𝑡 =  𝑈Λ2𝑈  
(

(5.3) 

𝒩(𝑥𝑡̅, 𝐶𝑡)    = 𝑥𝑡̅ +  𝒩(0, 𝐶𝑡) = 𝑥𝑡̅ + 𝐶𝑡
1
2𝒩(0,1)  

= 𝑥𝑡̅ + (𝑈Λ
2𝑈)

1
2𝒩(0,1) 

(

(5.4) 
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𝑈 denotes the matrix containing the principal directions and Λ is the diagonal matrix containing 

the eigen values.  

Each cluster in the MoG model can be represented by its mean 𝑥𝑡 and covariance matrix 

𝐶𝑡.  The covariance matrix captures information related to the second order properties of the 

motion vector distribution in the 6D space within the cluster. The eigen decomposition of 𝐶𝑡 

yields an orthogonal matrix 𝑈 as shown in Equation 5.3 that contain the principal directions of 

maximal inter-patient variability of the observed motion vectors in the cluster 𝑡.  The eigenvalues 

of the matrix 𝑈 (contained in the diagonal elements in the matrix Λ) can be used to scale the 

search along corresponding principal directions contained in 𝑈.  Such an approach would scale 

the search space to improve the isotropic properties of the distribution of previously observed 

motion vectors in that cluster. Figure 5.3 illustrates how this scaling helps to guide the initial line 

searches towards the directions where we have already observed function optima. Thus, the 

principal directions given by the matrix 𝑈 after being appropriately scaled by its eigenvalues 

could provide a good initialization for the Powell’s direction set method. This is in principle 

different from the approach of scaling the search space to improve the condition number of the 

Hessian matrix, 𝐴 in that we do not explicitly learn properties related to 𝐴 for the functions in the 

observed data set.  We instead use the locations within the search space where the previous 

functions similar to 𝒢(𝑥) have converged.  We adopted this approach since we observed that 

characteristics of the Hessian matrices for different objective functions across the patients in the 

data set seem to be arbitrary, yet we were able to generate a model that represent the 

characteristics of the locations of the function optima. 
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Figure 5.3: Scaling the search space according to the eigen values (𝜆2, 𝜆1) of the covariance matrix 𝐶𝑡 of the 

observed motion vectors. (a) Initial distribution of the motion vectors in the search space. (b) After the search space 

is scaled according to 𝜆2, 𝜆1 in the principal directions.  The points representing the observed motion vectors (i.e., 

objective function optima). The red circle shows an example initial search location and the red arrow show a typical 

Powell’s method initial line search direction. 

We developed a two-stage search strategy with the objective of improving the robustness 

of registration optimization.  In order to mitigate the optimizer finding local optima, a multi-start 

search was devised as the first step.  The cluster means 𝑥𝑡 in the MoG model were used to 

initialize the multiple start positions in the search space.   Within each cluster, we optimized the 

normalized cross-correlation (NCC) image similarity metric using Powell’s direction set method.  

Powell’s method was initialized with the principal directions in the matrix 𝑈 obtained from eigen 

decomposition of 𝐶𝑡 as in Equation 5.3.  The search along these directions was scaled using the 

eigenvalues in Λ, by setting the step size proportional to those eigenvalues during the line 

direction searches.  This effectively scales the initial search directions such that the previously 

observed motion vectors are approximately isotropically distributed within the search space.  

During the second step of our search strategy, we selected the cluster that yielded best metric 

value after one iteration and continued the search until convergence.  While the rapid 

convergence property of Powell’s method is helpful in selecting the optimal cluster after a small 
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number of iterations, one iteration was empirically found to provide an accurate selection of the 

optimal cluster.   Thus, the search strategy adds only a finite number of extra line minimizations 

to the standard Powell’s method. 

5.2.4 Experiments 

For the 29 patients, we performed 174 registrations in total with 6 registrations per patient when 

the probe was positioned at each sextant biopsy location. We validated the registrations using the 

manually identified fiducials for each image pair and calculated the root mean square (RMS) 

target registration error (TRE).  We used leave-one-out cross-validation approach; fiducials in 

test image of a given patient were excluded in calculating the model and search directions for 

that patient. To compare the results, we performed registrations using Powell's method as in [2, 

18] henceforth  referred to as the initial method, and using the new version described in this 

paper and calculated the TREs separately for each method. 

5.3 Results 

Multiple trials evaluating the gap statistic yielded a mode of 4 as the number of clusters (𝑇) in 

our motion vector data.  Table 5.1 shows the RMS TREs and standard deviations (std) of errors 

before registration, after registration with the initial method, after registration with the new 

optimization method using the MoG model, and fiducial registration errors (FRE). The FRE 

calculated using the fiducials used during validation provides a lower bound on the TRE that can 

be obtained after performing a rigid registration.  Figure 5.4 shows distributions of TREs before 

and after registration with the two methods.  With the new optimization method, we observed a 

statistically significant difference in TRE (paired t-test rejected the null-hypothesis with p < 
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0.001) compared to the initial method indicating an improvement in accuracy and robustness of 

the registration. After using learned optimization method, the average number of iterations 

required for convergence decreased from 4.9 to 3.3. Using a GPU accelerated implementation for 

NCC calculation (NVIDIA GTX 580 GPU card and Intel Xeon 2.5 GHz processor), the updated 

method takes approximately an additional 1.1 s. However, multi-start strategy at different motion 

clusters can be executed in parallel to further reduce execution time during registration. Figure 

5.5 contains five representative example images, depicting the visual alignment qualitatively 

before and after registration with the methods described in the paper. 

Table 5.1: Comparisons of performance before and after registration with new and initial methods, and FRE. 

 Before Initial method New method FRE 

RMS TRE (mm) 4.95 3.12 2.33 1.15 

std (mm) 2.37 1.70 1.12 0.57 

Avg no of iterations n/a 4.9 3.3 n/a 

Execution time (s) n/a 1.7 2.8 n/a 

 

 

Figure 5.4: TRE histograms (a) TRE before registration. (b) TRE after registration without using learned prostate 

motion characteristics. (c) TRE after registration using the proposed method. 
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Figure 5.5: Images before and after registration for 5 patients. Top row: extracted 2D images (𝐼𝑝𝑖 ). Middle row: 

corresponding frames from the registered 𝐼𝐵. Bottom row: corresponding frames before registration obtained from 𝐼𝐵 

after tracking the probe.  

We analysed the robustness of the new method in comparison to the initial approach by 

evaluating the performance of the registration algorithms relative to the smallest clinically 

significant tumours, having a volume greater than 0.5 cm3 according to Epstein et al. [19].  To 

ensure the successful sampling of tumours with 5 mm radius, we examined cases that resulted 

with TRE >5 mm after the initial method to see how the accuracy has improved with the new 

method.  Table 5.2 compares the performance of that subset of registrations (TRE > 5mm with 

the initial method) with the two different methods. 

Table 5.2: Comparison of performance for registrations with TRE >5 mm with the initial approach. 

 Registrations with TRE > 5mm with the initial method  

 Mean  std Median Min Max  

TRE (initial) (mm) 6.70 1.71 5.96 5.00 10.84  

TRE (new) (mm) 3.25 1.39 2.77 1.54 6.30  

TRE(initial)-TRE (new) (mm) 3.45 2.49 2.69 -0.13 8.30  
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Figure 5.6: Comparisons of TREs in the two methods.  The gray circles indicate biopsies for which the TRE from 

the initial method was <= 5 mm. The coloured symbols indicate biopsies for which the TRE from the initial method 

was > 5 mm. The coloured squares indicate TREs from the initial method, and the coloured triangles indicate TREs 

from the new method.  Upward-pointing triangles show cases where the TRE from the new method was larger than 

the TRE from the initial method.  Downward-pointing triangles indicate cases where the TRE from the new method 

was smaller than the TRE from the initial method. A symbol of a given colour corresponds to a specific registration. 

With the initial method, the mean of all TREs > 5 mm was 6.7 mm.  With the new 

method, the mean TRE for these same patient cases was reduced to 3.25 mm; a reduction of 3.45 

mm. Figure 5.6 graphically illustrates the improvement in TRE given by the new method.  

According to this figure, we can see that in all but two cases the new method improved over the 

initial method, for cases where the initial method produced a TRE of > 5 mm.  We can also 

observe a shift of the gray circles in the downward direction with only a couple of circles lying 

above the 5 mm threshold line. 
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Figure 5.7: Comparison of NCC at convergence in the two methods. The gray circles indicate biopsies for which 

the TRE from the initial method was <= 5 mm. The coloured symbols indicate biopsies for which the TRE from the 

initial method was > 5 mm. The coloured squares indicate NCCs from the initial method, and the coloured triangles 

indicate NCCs from the new method.  Downward-pointing triangles show cases where the NCC from the new 

method was smaller than the NCC from the initial method.  Upward-pointing triangles indicate cases where the 

NCC from the new method was larger than the NCC from the initial method.  A symbol of a given colour 

corresponds to a specific registration. 

Figure 5.7 graphically illustrates the differences in NCC at convergence between the 

initial method and the new method. We observed that in all but one case the new approach to 

optimization based on learned motion data converged to a higher NCC than the initial method.  

We can also observe that the grey circles have an upward shift with the new method.  The 

improved NCCs at the time of convergence indicate that the optimizer has been successful in 

finding desired solutions in the objective function space. 

5.4 Discussion 

We observed an improvement in the 2D-3D registration performance after incorporating learned 

prostate motion characteristics into the algorithm.  Using the initial method, the 2D-3D 

registration had a TRE > 5 mm for nearly 10% (9.25%) of the biopsies in our sample. If 9.25% 
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of all biopsies are guided based using motion correction with TRE > 5 mm, then on average 

every patient undergoing 12-core extended extant biopsy will have one or more biopsies taken 

with sufficient motion correction error such that a tumour of clinically significant size may be 

missed.  Using the new method, the 2D-3D registration had a TRE > 5 mm for 1.16% of the 

biopsies in our sample. If 1.16% of all biopsies are guided based on using motion correction with 

TRE > 5 mm, then on average 1 out of every 86 biopsies will be taken with sufficient motion 

correction error such that a tumour of clinically significant size may be missed. Thus, on 

average, one out of every eight patients undergoing 12-core extended sextant biopsy will have 

one or more biopsies taken with sufficient motion correction error such that a tumour of 

clinically significant size may be missed. 

The calculation of the best rigid transformations (𝑥𝑖𝑗
∗ ) to characterize prostate motion is 

limited by the operator's ability to accurately identify and correspond fiducial locations. Since we 

considered the transformations given by the manually identified fiducials as the ground truth, 

fiducial localization error limits our ability to measure a registration algorithm’s in improvement 

of accuracy. Furthermore, any non-rigid deformation of the prostate would challenge our 

assumption of rigid motion. The ability of the registration to match the best rigid alignment 

calculated based on fiducials identified throughout the prostate could also be limited by the fact 

that we are restricted to using a single 2D slice during registration. In such a situation, non-rigid 

deformation might pose an additional challenge for the algorithm to estimate the overall rigid 

motion of the prostate by only using the image information in the 2D plane.  
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5.5 Conclusions 

In this paper, we demonstrated that the learned prostate motion directions can be used to improve 

2D-3D TRUS registration optimization, which has the potential to improve the clinical outcomes 

of MRI-3D TRUS fusion biopsy. Our results indicate that we can improve the accuracy and 

robustness of the algorithm, at the cost of 1-2 s of additional execution time.  This would help 3D 

TRUS-guided biopsy systems to achieve clinically desired level of accuracy in needle targeting. 
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Chapter 6. 

Conclusions and Directions for Future Work 

6.1 Conclusions 

The work in this thesis intends to improve needle targeting accuracy of 3D TRUS-guided 

biopsy systems.  Towards achieving this goal, the errors due to patient and prostate 

motion during the procedure were quantified and methods were developed to compensate 

for the intermittent motion via rapid image-based registration techniques.  The methods 

developed in this work have been successfully integrated into the mechanically assisted 

3D TRUS-guided biopsy system [1] previously developed in our lab and are currently 

being used in human clinical biopsy procedures as part of an ongoing study.  The work 

was divided into four chapters according to the objectives listed in the Section 1.9, and 

the conclusions of each are discussed in the following. 

In Chapter 2, we used non-rigid registration of 2D TRUS images to quantify the 

deformation that occurs during the needle insertion and the biopsy gun firing procedure 

and compared this effect in biopsies performed using a hand held TRUS probe with those 

performed using mechanically assisted 3D TRUS-guided biopsy system [1].  While such 

errors had been previously quantified in prostate brachytherapy applications where 

accurate needle guidance is necessary for radioactive seed implantations, we investigated 

this problem in the context of 3D TRUS-guided biopsy.  Prostate deformation during 

needle insertion can cause target misalignments after the physician has successfully 

aligned the biopsy needle trajectory with the target locations in preparation for taking a 
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tissue sample.  Since the needle insertion and biopsy gun firing happen in a rapid 

progression within a sub-second interval, the targeting error due to prostate deformation 

in that duration is very challenging to compensate.  However, given the need to 

accurately sample the smallest clinically significant tumours, it is an important 

consideration when setting the design specifications for MR-targeted TRUS-guided 

prostate biopsy systems.  As described in Section 1.10.2, an image registration algorithm 

with RMS TRE ≤ 2.3 mm is required for the central hypothesis of this work to be 

confirmed, in the context of our measured tissue displacement due to biopsy needle 

insertion.  

In Chapter 3, we described a technique to compensate for intermittent patient and 

prostate motion during biopsy, which is the central problem addressed in the work of this 

thesis.  Compared to the errors quantified in Chapter 2, patient motion due to discomfort 

and prostate motion due to applied TRUS probe pressure caused larger target 

misalignments, limiting needle targeting accuracy [2].  We developed an image-based 

2D-3D registration algorithm to align live 2D TRUS images acquired during the 

procedure with the baseline 3D TRUS image acquired immediately prior to performing 

biopsy.  The accuracy was measured by calculating the TRE using manually identified 

fiducials (micro-calcifications) of the prostate.  A GPU-based implementation was used 

to improve the registration speed.  While this showed encouraging results by achieving 

statistically significant improvements in accuracy, there were some registrations with 

error >5 mm and a measured RMS TRE of 3.2 mm.  Therefore, methods to improve the 

accuracy and robustness of this technique would be helpful to meet the clinical 

requirements. 
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In Chapter 4, we evaluated the utility of incorporating additional intra-procedural 

3D TRUS image information in guiding registration for improved motion compensation.  

The limited anatomical context available in a subset of the live 2D TRUS images might 

not capture sufficient information to obtain an accurate registration with the baseline 3D 

TRUS image.  While 2D TRUS images are widely used for intra-procedural guidance, 

some solutions utilize richer intra-procedural images such as bi- or multi-planar TRUS or 

3D TRUS, acquired by specialized probes.  Therefore, the impact of such richer intra-

procedural imaging on displacement compensation accuracy was measured to evaluate 

the tradeoff between cost and complexity of intra-procedural imaging versus improved 

displacement compensation.  We performed an extensive validation using baseline and 

intra-procedural 3D TRUS images acquired from 29 patients.  While the majority of the 

registrations using 2D TRUS images provided a clinically desired level of accuracy, 

intra-procedural 3D imaging helped improve the overall registration accuracy and 

robustness, especially in the base and apex regions of the prostate.  These results are 

helpful for devising image-based registration methods and designing clinical workflow 

for motion compensation in 3D TRUS-guided biopsy systems. 

Towards the objective of improving the robustness of registration for motion 

compensation, we investigated an alternative approach in Chapter 5 that does not require 

additional image acquisitions during the procedure.  Since the patient motion is 

constrained while being in the left lateral decubitus positioning within the biopsy setup 

and the TRUS probe motion is restricted while accessing the prostate transrectally, it is 

reasonable to assume that prostate motion has some characteristic patterns.  Incorporating 
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information of the identified characteristic patterns of prostate motion during registration 

optimization helped to improve the robustness in an effective manner.   

In this thesis, we have demonstrated the use of image-based registration methods 

to quantify and compensate for prostate motion during 3D TRUS-guided biopsy.  

According to our hypothesis, the RMS error of the biopsy systems should be ≤ 2.5 mm in 

order to accurately sample the smallest clinically significant tumours.  The errors due to 

prostate deformation during needle insertion and biopsy-gun firing restrict this 

requirement further to 2.3 mm.  Although 2D-3D registration methods described in 

Chapter 3 were encouraging, with statistically significant improvements in compensating 

for intermittent patient and prostate motion, methods to further improve accuracy and 

robustness were needed for the successful clinical translation of this technique.  Chapter 4 

and 5 describe two different approaches to achieving improved registration accuracies.  

The improved accuracy and robustness either by acquiring intra-procedure 3D image 

information for use during registration or by improving the registration optimization 

using the learned motion characteristics of the prostate have demonstrated performance 

improvements in image-based registration that meet the clinical requirements for needle 

targeting accuracy of the biopsy system.   

Thus, the central hypothesis of this thesis is confirmed when either of the 

approaches described in Chapters 4 or 5 are applied, and the choice of approach to use in 

a given context may be guided by ultrasound probe/machine availability.  The central 

hypothesis of this thesis is not confirmed when only the approach described in Chapter 3 

is applied. 
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6.2 Suggestions for future work 

The registration techniques developed in this work could be directly helpful in ongoing 

clinical investigations related to prostate biopsy.  There are other clinical applications that 

require rapid registration to transform pre-procedure image information to the intra-

procedure image space to improve diagnostic and therapeutic clinical outcomes in image-

guided interventions. Some extensions of the work described in this thesis might lead to 

applications in multiple such areas of currently active research. 

6.2.1 Applications in ongoing clinical studies 

Multiple clinical studies [3-5] have reported improved cancer detection rates using MR-

targeted biopsy schemes.  It would be interesting to investigate how the improved needle 

targeting accuracy after integrating prostate motion compensation into the clinical 

workflow during the procedure impact clinical outcomes of the procedure.  The potential 

impact in cancer detection rates could be investigated in a prospective clinical study.  The 

improved cancer detection rates could elevate the ability of the physician to better 

differentiate between clinically aggressive and indolent tumours by strengthening the 

confidence of the evidence.   During prostate cancer diagnosis and patient risk 

stratification, however, the current standards of interpreting biopsy results are calibrated 

to the conventional random systematic biopsy schemes, which carry a higher degree of 

uncertainty.  The ability to accurately target suspicions foci might lead to re-visit the 

current guidelines to improve the interpretation of biopsy results with more reliable 

evidence of the disease at hand. 
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6.2.2 Applications in other clinical procedures 

The techniques developed in this thesis could have relevance in other image-guided 

interventions that require fast and accurate registration to compensate for organ motion.  

One such example with direct relevance to prostate cancer management is in emerging [6, 

7] interventional systems developed to treat intermediate-risk prostate cancer with 

localized ablation.  In such systems, tumours contoured prior to the procedure need to be 

detected and verified in the intra-procedure images prior to ablation.  Motion correction 

algorithms could be helpful to align the target regions during the procedure to improve 

the accuracy of ablating the intended region and to ultimately reduce the margins ablated 

around the tumour due to uncertainty.  Prostate deformation could be a potential 

challenge in developing such registration algorithms for some applications.  For example, 

during focal laser ablation [6] of tumours, intra-procedure MR images are acquired to 

verify the target region.  The endorectal coil used to acquire MR images could deform the 

prostate differently than when it was acquired prior to the procedure for diagnostic 

purposes.  Non-rigid registration algorithms might be necessary to account for such 

differences in deformation during the procedure after achieving a robust rigid registration 

as an initial step.  The techniques described in this work needs to be extended to account 

for non-rigid deformations in such applications.   

Ultrasound-guided interventional systems have recently been developed for tissue 

ablation in kidney [8] and liver [9].  Organ motion during the procedure could limit their 

accuracy in delivering the treatment to the desired region.  Hence, these systems might 

also potentially benefit from rapid image registration algorithms to compensate for organ 
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motion.  However, the characteristics of motion in the organ of interest are an important 

consideration when developing registration techniques.  The liver motion, for example, 

could be affected primarily by the periodic breathing, since it is an organ with close 

anatomical proximity to the lung.  When compensating for such continuous and periodic 

motion, the registration might need to be performed faster than what was required during 

prostate biopsy.  Efficient software code optimization and parallel implementations could 

help to further improve registration times. 

6.2.3 Applications in image-based tracking  

Intra-procedure image tracking is an essential component when developing systems to 

perform many image-guided interventions.  Electromagnetic, optical and mechanical 

devices are typically used to track real-time imaging devices during the procedures.  Pure 

image-based tracking is an alternative method that can be used to determine the position 

and the orientation of the imaging device via image registration.  Low cost and compact 

design are the major advantages of this approach by eliminating the need for hardware 

tracking devices in the system.  In the experiments described in this thesis, we used the 

transformation given by the mechanical tracking device to initialize the registrations.  If 

the registration is performed without this initialization, it has to simultaneously 

compensate for motion of the prostate as well as the motion of the TRUS probe.  This 

would be a very challenging correspondence problem considering the limited information 

available in a single plane 2D TRUS image.  If the prior knowledge of the prostate 

anatomy and the prostate motion can be used to provide a reasonable initialization to the 

registration algorithm, that could help to make the registration problem more tractable 
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when only using the image information.   Technical advancements in methodology for 

incorporating prior domain knowledge into the registration framework might help to 

achieve accurate and robust results that would benefit the development of software-based 

solutions and their widespread use for tracking purposes.  
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