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Abstract 

The following work focuses on the objective evaluation of human performance 

for two different interventional tasks; targeted prostate biopsy tasks using a 

tracked biopsy device, and external ventricular drain placement tasks using a 

mobile-based augmented reality device for visualization and guidance. In 

both tasks, a human performance methodology was utilized which respects 

the trade-off between speed and accuracy for users conducting a series of 

targeting tasks using each device. This work outlines the development and 

application of performance evaluation methods using these devices, as well as 

details regarding the implementation of the mobile AR application. It was 

determined that the Fitts’ Law methodology can be applied for evaluation of 

tasks performed in each surgical scenario, and was sensitive to differentiate 

performance across a range which spanned experienced and novice users. 

This methodology is valuable for future development of training modules for 

these and other medical devices, and can provide details about the underlying 

characteristics of the devices, and how they can be optimized with respect to 

human performance. 

Keywords 

Human performance, image-guided surgery, augmented reality, targeted 

TRUS-guided prostate biopsy, external ventricular drain placement 
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Chapter 1  

1. Introduction 

This work focuses on the objective evaluation of human performance for two 

specific surgical tasks. The first task involves a device that is used for 

performing targeted TRUS-guided biopsy of the prostate. Due to high 

prevalence of prostate cancer in men, the targeted biopsy procedure is 

becoming an increasingly desirable method of diagnosing cancer in men. For 

this reason, we proposed a method for the objective evaluation of users using 

a particular targeted biopsy device. The results obtained in this work can be 

used towards further optimization of the device towards more efficient user 

performance. The second surgical task focuses on the neurosurgical procedure 

of placing an external ventricular drain. This procedure is often performed 

free-hand and by novice surgeons, and is therefore susceptible to human 

targeting errors and consequential complications to the patient. The following 

work highlights the development of a mobile-based augmented reality device 

that enables users to visualize and perceive the target location within the 

lateral ventricles of the brain by providing the view of pre-operative 3D scans 

overlaid in Augmented and Virtual Reality presentation to overlay in the 

context of the view of the patient’s head.   In addition to a description of this 

development, human performance data was also collected for users operating 

the device and performing target and trajectory estimation tasks. The 

following section outlines relevant literature in prostate cancer diagnosis, the 

external ventricular drain insertions procedure, augmented reality with a 

focus on surgical applications, as well as human performance evaluation 

1.1 Prostate Cancer: Disease and Diagnosis Techniques 

Prostate cancer is the most common form of cancer found in men in North 

America, with an estimated 23,600 new cases in Canada alone during the 



 
 

2 

year 2013 [1]. This equates to an approximate probability of 14.3% of men, or 

1 in 7, to develop prostate cancer in his lifetime. It is estimated that a total of 

3,900 men will die as a result of prostate cancer in the year 2013 [2]. In 

addition to premature death as a result of this disease, there are significant 

impacts upon the health-related quality of life (HRQOL). In a study 

comparing the impact on HRQOL for men before and after prostate cancer 

diagnosis with a control group, Reeve et al. found that there was a significant 

decline in both the physical and mental health of a patient within the first 6 

months of diagnosis compared to the control group [3]. In addition, certain 

social aspects of the patient’s life were noted to also suffer as a result of 

diagnosis. Although this particular study was limited to patients above the 

age of 65 years, it is reasonable to assume that prostate cancer diagnosis has 

a significant impact on younger men [4]. In addition, many of the therapies 

that exist to treat prostate cancer have an increased likelihood of increasing 

the chance for complications that can result in urinary, bowel and sexual 

health issues [5]. This due to the close proximity of the patient’s rectum, 

bladder, urethra, and neurovascular bundles with the prostate. One 

particular instance of such treatment is the radical prostatectomy procedure 

which is often detrimental to urinary function [6]. 

1.1.1 Diagnosis 

There are four methods that are most commonly used to diagnose prostate 

cancer: prostate specific antigen (PSA) test, digital rectal examination (DRE), 

imaging, and prostate biopsy. The following section describes each of the 

stated diagnostic methods for detecting and characterizing prostate cancer in 

men, with a focus on targeted biopsy. 

1.1.1.1 Prostate Specific Antigen Test  

Prostate specific antigen (PSA) is a protein that is secreted by epithelial cells 

of the prostate gland. A study performed by [7] showed that there was a 
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correlation between the level of PSA in a patient’s blood and the stage of the 

cancer. In addition, a relationship between the PSA levels and the estimated 

volume of the tumour was also determined and reported by [8]. The increase 

in PSA levels detected in the bloodstream has been attributed to the 

disturbance of the prostate glandular structure due to the presence of cancer 

[9]. Although this discovery was a significant step towards more effective 

prostate cancer diagnosis, there is much debate over the value of such 

screening methods, since it often results in overdiagnosis, and consequently 

overtreatment of the disease, which may be undesirable for men with slowly 

progressing cancer. 

1.1.1.2 Digital Rectal Examination 

The digital rectal examination (DRE) is a method for cancer detection where 

a physician uses a finger to palpate the prostate through the patient’s 

rectum. This diagnostic examination is sensitive to cancer contained in the 

peripheral zone (PZ) of the prostate, as this area is located adjacent to the 

rectal wall. The physician attempts to detect hardened areas of the prostate 

tissue which may indicate the presence of cancer, often indicated by 

asymmetric tissue stiffness across the left and right lobes of the prostate. The 

result of the DRE is typically used in conjunction with the detected PSA 

levels in a patient’s blood to determine the risk and/or presence of prostate 

cancer. However, in patients with low PSA levels (< 4.0 ng/ml), the DRE  has 

a low positive predictive value (PPV), and therefore the DRE alone is not a 

reliable predictor in all patients. Furthermore, the DRE is prone to missing 

areas of the prostate outside of the PZ, and therefore must be accompanied by 

alternative diagnostic tests to accurately identify the presence of prostate 

cancer. 
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1.1.1.3 Prostate Imaging 

The following section provides a brief overview of the most commonly used 

and state-of-the-art prostate cancer imaging modalities. Although there are 

many modalities used in relation to prostate cancer, including computed 

tomography (CT), positron emission tomography (PET), and others, this 

section is limited to ultrasound (US) and magnetic resonance (MR) imaging 

techniques. The former modalities (PET, CT, etc.) are typically used in the 

evaluation of metastases and/or lymph node analysis, and therefore will not 

be discussed in the following section. 

1.1.1.3.1 Ultrasound 

Ultrasound provides many advantages over MR imaging for prostate cancer 

imaging. Ultrasound provides real-time image sequences, allowing it to be 

useful intra-operatively during procedures such as prostate biopsy or 

brachytherapy [10, 11]. Furthermore, ultrasound has been used to obtain 

prostate volume information, which is necessary for determining PSA density 

[10]. In addition, the low cost of ultrasound devices allow for greater access in 

many hospitals over MR imaging, which is both expensive and physically 

large. 

Although ultrasound provides some clear advantages, it is not without its 

trade-offs. For instance, ultrasound is typically only sensitive to large, higher 

grade tumour volumes as noted by [12]. In addition, ultrasound is not 

typically sensitive to tumors located in the transition zone of the prostate, 

which can contain around 20% of prostate cancer [13].  

1.1.1.3.2 Magnetic Resonance Imaging 

In a review performed by Hricak et al. it was demonstrated that magnetic 

resonance imaging (MRI) has the potential for efficiently detecting and 

localizing prostate cancer [10]. There is growing evidence that suggests this 
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to be possible from the improvement in MR performance with combined 

modern multiparametric MRI (mpMRI) techniques, such as T1- and T2-

weighted images, dynamic contrast, diffusion weighting, and proton 

spectroscopy [14, 15]. Despite this fact, there is much debate in the 

professional community over the accuracy and clinical usefulness of such 

techniques stemming from the variability in quality and methodology of 

reported studies in the field [16]. To address these issues, Dickinson et al 

conducted a meeting with 16 European prostate cancer experts to determine 

a set of recommendations towards a standardized method for interpreting 

and reporting of prostate mpMRI for prostate cancer detection and 

localization [17]. Despite the variability present in the literature, the use of 

MRI in the clinical setting is certainly promising, especially for determining 

optimal targets for targeted biopsy in men whom are suspected to have 

cancer [18].  

1.1.1.4 Biopsy 

A biopsy of the prostate involves the insertion of specialized needles into the 

prostate to obtain small tissue samples of the prostate tissue for pathological 

analysis. The collected samples, also called biopsy cores, are then prepared 

for further examination under a microscope by a pathologist. A pathologist 

observes the appearance and structure of the glands and the cells that 

compose them, and is able to determine if the tissue is cancerous as well as 

grade the aggressiveness of the identified cancer.  The Gleason grading 

system is used to rate the cancer in all obtained biopsy cores. Although this 

grading system has become a significant tool for the estimation of the 

prognosis of prostate cancer in a patient (it is currently considered as the gold 

standard method for grading cancer [19]), there is still a potential for errors 

inherent in the prostate biopsy procedure that can contribute to unreliable 

estimates of the total prostate’s burden and/or aggressiveness of the cancer 

[20], despite the accuracy of the pathologist. 
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1.1.1.4.1 Transrectal Ultrasound (TRUS)-Guided Biopsy 

The transrectal ultrasound-guided biopsy (TRUS-GB) procedure is currently 

the most commonly used method for obtaining biopsy cores for the purpose of 

diagnosing prostate cancer in men. In this approach, the patient is positioned 

in a lateral decubitus position (lying down on the side) and an ultrasound 

probe is inserted through the patient’s rectum allowing the physician to 

visualize the prostate and biopsy needles via ultrasound through the rectal 

wall. The needles are directed through a needle guide that is attached to the 

ultrasound probe, such that they can be visualized on an external display. 

The physician directs these needles to regions within the prostate that are 

known to have a high incidence of developing prostate cancer and proceeds to 

collect multiple biopsy cores. Approximately 75% of prostate cancers are 

found in the peripheral zone (PZ) and as a result, the initial round of biopsies 

is typically directed at this region. Recently the standard number of biopsy 

cores collected during a procedure increased from 6 (sextant) to 10-12. This 

increase is attributed to the result demonstrated in [21] that reveals that in 

up to 1 in 3 cases the sextant biopsy configuration will underestimate the 

reported Gleason grade. Although the increased number of biopsy cores 

collected increases the likelihood of detecting cancer, it also increases the 

potential symptoms occurring after biopsy procedure, including urinary 

retention, sepsis and dysuria [22]. Furthermore, the anterior, midline and 

apex regions of the prostate are difficult to perform a biopsy using the TRUS-

GB approach due to their physical locations with respect to surrounding 

anatomy [23]. The TRUS-GB procedure has potential for delivering an 

accurate diagnosis of prostate cancer, and recent developments in imaging 

have gained the targeted biopsy method attention among physicians. 

Upon an initial negative biopsy of the prostate, there remains a chance that 

cancer is still present in the prostate. It is therefore common practice to 

perform a repeat biopsy procedure to collect additional biopsy cores for 
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analysis. The repeated biopsy not only increases the patient’s discomfort and 

the potential for undesirable side-effects, but it has been shown that the 

repeat biopsy is no more sensitive to detecting cancer than the initial biopsy 

[24]. Although the physician attempts to obtain biopsy cores from areas that 

were not sampled in the initial or previous biopsy, there is no guarantee that 

regions are not resampled. Both groups in [24, 25] showed that the detection 

rate of a repeated biopsy after an negative first biopsy was in the range of 10-

20%, indicating that repeat biopsies have  poor sensitivity for cancer 

detection in certain patients. 

1.1.1.4.2 Targeted Biopsy 

To accommodate some of the sensitivity issues with TRUS-GB procedures, 

there has been growing interest in incorporating magnetic resonance images 

(MRI) to provide specific targets for biopsy, as well as using such images for 

detection, localization and grading of the cancer [26]. By incorporating the 

location of suspicious areas into the biopsy procedure, and ensuring that 

those areas are sampled, the probability of detecting cancer potentially 

increases and the number of subsequent biopsies decreases, resulting in a 

decrease of the accompanying side-effects of the biopsy procedure. By 

consequence, the accuracy of the Gleason score obtained from the biopsy can 

be therefore increased by using targeted biopsy [23]. This becomes important 

when determining therapeutic treatment options, since each treatment 

method has different associated side effects [21].  

The targeted biopsy method has been evaluated with respect to diagnostic 

outcomes and clinical utility. Two studies determined that that targets 

deemed as being suspicious for cancer on MRI had an estimated prevalence of 

63% when an MRI was acquired preceding the biopsy [27, 28]. This result is 

promising and has potential to improve the outcome of biopsy procedures. 

Several other studies concluded that there was an average probability of 36% 
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for detecting cancer using standard systematic biopsy, and a 48% probability 

for detecting cancer using the target biopsy approach [23]. It was also 

determined that 30% of targeted biopsy cores contained cancer, while only 7% 

did while using the non-targeted approach. Therefore it can be concluded that 

less biopsy cores are required to detect cancer using the targeted biopsy 

method. 

1.1.1.4.3 Targeted Biopsy Devices 

As a result of the increasing interest in targeted biopsy of the prostate, 

several groups have developed systems that promote improved diagnosis of 

cancer through the inclusion of techniques such as tracked US and in-bore 

MR guided devices. Bax et al. [24] developed a passive mechanical device that 

utilized existing 2D ultrasound equipment used for biopsy to allow physicians 

to perform biopsies at predetermine locations with high accuracy. This 

functionality is valuable, allowing for locations in the prostate to be re-

biopsied if needed, as well as for enabling the precise recording of sampled 

locations during systematic biopsies. In addition, there is opportunity for 

such tracked devices to use image fusion with other image modalities, such as 

MRI, which can further assist the physician with planning the procedure. 

Other groups have developed similar devices that have showed promising 

results towards optimizing the efficiency of the targeted prostate biopsy 

procedure and consequently improving the efficiency of cancer diagnosis 

overall [29, 30] 
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1.2 External Ventricular Drain Insertion † 

Placing an external ventricular drain (EVD) is a fundamental neurosurgical 

procedure performed to treat acute hydrocephalus – a condition characterized 

by an accumulation of cerebrospinal fluid within the ventricular system, 

either due to obstruction or by a problem of reabsorption [31, 32]. The 

procedure consists of drilling a burr-hole in the skull, followed by a bling 

placement of an external ventricular drain using external landmarks for 

guidance. This procedure allows drainage of cerebrospinal fluid to relieve 

intracranial pressure. While most neurosurgical interventions are usually 

performed in an operating room (OR) while the patient is under sedation [33], 

this is rarely the case for this procedure. Since the insertion of an EVD is 

usually performed on critically ill patients (either for acute hydrocephalus or 

after a trauma), the predominant difficulty involves transportation of the 

patient [34] mostly due to life-support equipment [35]. To accommodate such 

a scenario, manual operation of mobile drills for burr-hole trephine can be 

performed within the Intensive Care Unit or in the Emergency room. While 

advantageous in avoiding the difficulties in relocation to the OR, this 

technique precludes the use of certain immobile equipment present within 

the OR. 

While external ventricular drain placements are among the most common 

and basic of neurosurgical procedures, they are generally performed free-

hand, relying on surface landmarks on the patient as well as the spatial 

reasoning of the operating surgeon to determine optimal trajectory of tools 

within the complex workspace. While it might be relatively easy to target 

large ventricles placed in a normal anatomical position, most patients will 
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have small ventricles with some anatomical variation, possibly displaced by 

lesions occurring after the trauma. As a result of navigational error due to 

free-hand placement, a number of complications can occur, including 

malposition, non-function, infection and haemorrhage [36]. While 

neurosurgeons generally consider the manual procedure to be safe, a number 

of studies have identified the technique as suboptimal [37-39]. In addition, 

this procedure is often performed by junior residents who are on-call. Indeed, 

many of these complications are a result navigational error, often requiring 

repositioning of the EVD into the ventricular system. In addition to the 

complications resulting from such misplacements, the procedure time is 

increased and additional, un-necessary tissue damage occurs. 

1.3 Augmented Reality 

Augmented reality (AR) is a form of virtual reality that combines the 

physical, real-world environment with computer generated elements, such as 

video and graphics. In a definition provided by Azuma et al. [40], AR is 

described as system that can perform the following tasks: 

- Combines real and virtual imagery 

- Be capable of interaction in real-time 

- Be able to perform 3D registration of virtual objects within the real-

world scene 

While using AR, a user’s visual perception can be altered, such that virtual 

objects appear to be part of the real physical scene. By providing a means of 

interaction with the scene, the AR system can provide additional visuospatial 

information to the user through visual cues such as lighting and motion 

parallax. This capability is advantageous in surgery, since it enables the 

visualization of medical images and anatomical surface models in a more 

natural way. This approach attempts to minimize the cognitive load faced by 

a surgeon, who is typically required to mentally reconstruct the images from 

2-D, slice-based, images displayed on an external monitor.  
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The following section discusses different devices and methods for providing 

users with an immersive AR experience, followed by an overview of several 

tracking techniques employed in AR. Finally, several existing mobile AR 

devices aimed towards assisting surgeons will be reviewed. 

1.3.1 Tracking Techniques 

In a review performed by Zhou et al., it was determined that research 

directed towards tracking technology in AR was the most popular topic for 

participants of several AR focused conferences over the last decade [41]. The 

following section outlines the three main categories of tracking technologies, 

and their application and feasibility in a surgical environment.  

1.3.1.1 Sensor-Based Tracking Techniques 

Sensor-based tracking involves the use of sensors in order to provide the 

information necessary for effective AR. These sensors employ technology 

based on magnetic, acoustic, inertial, optical, and/or mechanical technologies. 

Although each of the sensor technologies are capable providing sufficient AR 

tracking, each implementation comes with its own set of trade-offs. For 

instance: optical (infrared) tracking is capable of providing high tracking 

accuracy in six degrees of freedom (6DOF), however, it requires the cameras 

used to have continuous line of sight, as well as the necessity of physically 

attaching markers to the object of interest [42]. In a surgical environment, 

these requirements may be difficult to satisfy due to the number of people 

within the operating room, as well as the space requirements needed for 

existing surgical equipment. In addition, the footprint of such optical tracking 

systems may not be feasible in certain operating rooms. Magnetic tracking 

may provide accurate and fast tracking for AR; however the presence of 

ferromagnetic materials can significantly degrade the tracking accuracy of 

the system. In a study performed by Milne et al., it was found that mild steel 

produced a significant tracking error in both the translation and rotation 
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components  when magnetic tracking was used [43]. Since many elements of 

the surgical environment may contain these materials, this type of tracking 

may be difficult to accommodate. In the case of mechanically tracked AR 

system, such as the first head-mounted display (HMD) AR device by 

Sutherland et al. [44], user interaction may be restricted due to the fixed 

nature of the device. As a result, this may lead to limited mobility of the 

surgeon, which is disadvantageous. 

1.3.1.2 Vision-Based Tracking Techniques 

The use of image processing based methods to extract camera pose 

information was noted as being the most active area within AR tracking 

research [41]. This type of tracking can be divided into two categories: feature 

based and model based [45]. Feature based tracking uses the minimization of 

the distance between features extracted from a 2-D image and projected 3-D 

object features to determine the camera pose [46]. Some particular feature-

based tracking methods use methods such as Harris feature detection along 

with the random sample consensus (RANSAC) algorithm to match the 

detected features with a known configuration [47]. In recent work by Pilet, 

the tracking non-rigid (non-planar) surface markers were achieved using 

advanced featuring detection and matching techniques In addition, there is a 

growing trend towards using marker-less tracking by detecting natural 

features within the scene, such as lines and edges [48-51]. Methods that 

employ marker-less tracking offer many advantages, despite the associated 

computational cost. One particular method of natural feature detection, 

present by Park et al. demonstrated the tracking robustness of initially 

registering the AR device with known features, and then constantly 

accumulating natural features in order to correct the registration even after 

the original marker is out of sight [52]. These natural feature tracking 

techniques utilize the relative ease of discerning edges from images, which 

are also robust to lighting changes within the real world scene. Some 
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researchers have further explored natural feature tracking methods by 

incorporating gradient and texture information observed in the scene [53].  

1.3.1.3 Hybrid Tracking Techniques 

There are some specific instances where features of each of the above 

methods of tracking are desirable, and therefore some researchers have 

explored the application of a combination of sensor- and vision-based 

techniques to achieve AR tracking. For example, vision-based tracking has 

low jitter and no drift but requires extensive computation and therefore can 

be slower than some of the sensor-based approaches. In addition, quick 

movements of the camera may result in a disruption in the AR scene since 

the vision-based algorithms are not robust to such drastic changes in its 

input. Inertial tracking can act to compliment vision-based techniques, by 

providing motion prediction information to the tracking algorithms and 

therefore strengthen the overall accuracy of the system [54, 55]. It has been 

reported that the hybrid tracking approach is the most favorable method of 

providing tracking information to the AR scene [56].  

1.3.2 Display Platforms and Devices 

With respect to augmented reality in surgery, there are three primary 

categories of display methods that have been adopted: Video see-through 

displays, optical see-through displays and projective displays [57].  Each of 

these methods uses one of following display device types to present virtual 

objects to the user: Head worn displays, hand-held displays and spatial 

displays. Each of these device types and display methods is discussed in the 

following section. 

1.3.2.1 Video See-Through Displays 

Video see-through displays utilize a screen to display a video of the real-world 

scene with virtual objects augmented within it. This type of display is often 
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the most inexpensive solution for providing users with AR, and in turn often 

tends to be the easiest to implement and most readily available. One 

particular advantage of video see-through displays over alternative 

technologies is that the brightness and contrast of the virtual objects can be 

adjusted such that the objects blend into the scene more naturally [58]. One 

drawback of this type of display is that it is limited by the screen’s resolution, 

which for head-mounted displays can be low. In addition, some 

implementations provide users with a limited field of view, although this can 

be addressed by simply increasing the size of the display, if possible. 

Depending on the position of the display relative to the user, especially in 

head-mounted setups, video see-through displays may cause disorientation 

for the user caused by the eye-offset, which requires the user to adjust their 

perception of the scene [59]. Another disadvantage of head-mounted video 

see-through displays is that, depending on the ocular configuration, it may 

cause the user to experience eye strain and fatigue, which may constrain the 

effectiveness of AR [60]. 

1.3.2.2 Optical See-Through Displays 

The optical see-through approach involves combining computer graphics with 

the actual view of the real world. In this approach, a special mirror is 

constructed that allows virtual objects to be projected upon the user’s field of 

view, and may be worn by surgeon [61] or can be fixed upon a patient's bed 

between the surgeon and the patient [62]. Optical see-through head-mounted 

displays provide users with a lesser sense of immersion within the 

augmented scene than with the video see-through approach. In addition, 

since the augmented elements appear on a 2-D plane in front of the real 

scene, there are more requirements for the surgeon to perform additional 

visual processing in order to fully obtain the visuospatial information 

provided by AR. In addition, virtual objects displayed using the optical see-

through method may suffer from a lack of brightness and contrast, and have 
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difficulties portraying occlusion, although some researchers have found ways 

around this [63]. Despite these disadvantages, the optical see-through 

method permit more control of the surgeon in an emergency situation, as they 

have direct view of the patient and operating site and have a higher chance of 

recognizing misalignment between the scene and the augmented elements 

[64].  

1.3.2.3 Projective Displays 

The final primary display technology involves the use of projectors to project 

virtual objects onto target surfaces. This method is advantageous since it 

does not require any additional eye wear for the user. In addition, projection 

alleviates the need for the user to focus their eyes, since the virtual objects do 

not appear directly in front of their eyes, like in head mounted approaches. 

This method does, however, require additional input devices to allow for user 

interaction and registration within the augmented scene. In addition, 

projectors require recalibration for every instance that the target moves, 

which may be difficult to achieve in dynamic settings. Fortunately, there are 

methods for automated projector calibration that have the potential to 

alleviate this issue [65]. 

1.3.3 Visualization Techniques 

Visualization systems are essential to image guided medical interventions. 

Generally, such systems are used to incorporate preoperative information 

into the surgery.  The data used is usually derived from volumetric medical 

images, such as CT and MR scans, although other preoperative information 

can also be used, such as surgeon-defined navigational paths and 

annotations.  The overall goal of such a system is to provide the operating 

surgeon with additional information to better perform a task. In many 

applications, particularly in minimally invasive surgical techniques, the goal 

is to provide the surgeon with a window into the inner anatomy of a patient 
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when the view of target anatomical features is obstructed. With an 

augmented reality environment, such internal information can be overlaid 

onto the patient from the perspective of the operating surgeon, providing 

context for the task that is otherwise unavailable. While clinicians are 

familiar with slice-based, two-dimensional views of the imaging data, the 

spatial reasoning required in mentally reconstructing the scene using these 

techniques increases cognitive load, which may slow the task and inject error 

[66]. For these reasons, Traub et al. proposed a hybrid navigation interface 

that combines the both slice-based approach with the in-situ augmented 

visualization [67]. By subjecting different surgeons with varying experience 

levels to each of the different combinations of slice-based and volume 

rendering visualization strategies, a comparison of task completion time and 

accuracy was made. It was found that overall performance was largely 

determined by the individual surgeon’s experience with each visualization 

method. However, it was shown that the hybrid visualization approach 

improved the surgeon’s accuracy when compared to in-situ visualization 

methods, and also improved speed when compared to standard, slice-based 

visualization. Therefore, it is important to consider the method of 

visualization within the augmented reality scene and measure surgeon 

performance to find the optimal means of visualization. 

In general, there are two ways to visualize spatial structures deriving from 

volumetric medical images: isosurface rendering and direct volume rendering 

(DVR) [68].  DVR allows for the visualization of desired structures directly 

from the raw medical volume (or with minimal pre-processing). There are 

numerous algorithms for DVR, which usually involve classification of image 

voxels based on intensity, position and local gradient. The advantage of DVR 

is that it preserves the internal information within the image and requires 

minimal pre-processing. Difficulties in the technique include occlusion from 

non-target features in the volume as well as high computational demand. 
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Additionally, specifying the required transformations to fine-tune the 

algorithm may be a complex task with a steep learning curve.  

Isosurface rendering is technically easier to achieve, but requires 

significantly more effort within the pre-operative workflow. Features of 

interest must be segmented from the medical volumes and then represented 

geometrically. Geometric representations predominantly involve surface 

meshes composed of a number of vertices in space that define triangles to 

cover the surface of the structure. While the intensity information is lost from 

the original image, this approach allows for accurate surface representation 

without a heavy computational load – ideal for platforms with limited 

computational capability. 

1.3.4 Augmented Reality in Medicine and Surgery 

Although AR has the potential to be a valuable tool for both surgeons as well 

as trainees, a surgical AR system must abide by a higher set of standards 

than other AR systems since errors in AR guidance can result in surgical 

errors or complications, which can cause significant damage to the patient. 

Therefore, tracking implementations used in surgical AR must be highly 

precise in order to prevent this from occurring. In addition, since human 

organs and tissue are not rigid, they typically do not behave as expected 

throughout the operation, and therefore the surgeon must take additional 

caution when using and relying on an AR system [64]. Another important 

consideration for surgical AR applications is the surgical workflow. For an AR 

system to be useful in a clinical context, it must be readily available and not 

provide a significant change in the existing workflow [69]. It is also vital that 

any image processing required to prepare the anatomical structures used in 

AR systems does not significantly impede the standard workflow [67]. It is 

important to note the variability of an AR system, and how the fundamental 

components, including definition of accuracy, image acquisition, registration, 
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software interfaces, localization and tracking devices, integration of real-time 

data, and most importantly, judgment and clinical experience, contribute to 

the variability and probability for error and must be carefully addressed 

when designing a surgical AR system [70].  

Several groups have recently been working towards bringing augmented 

reality into the field of medicine and image-guided surgery. One particular 

group explored the application of AR to improve upon the traditional methods 

of viewing medical images, by developing an interactive display device that 

uses a Time-Of-Flight camera to provide AR tracking via surface matching 

algorithms [71]. By aiming the device at a patient, medical images were 

overlaid such that the user was able to interpret the images with additional 

spatial context relative to the patient. In work completed by Müller et al., an 

augmented reality mobile device was evaluated for use with assisting 

clinicians with the insertion of needles for percutaneous nephrolithotomy. 

Results from this study indicated that trainees performed best with respect 

to needle insertion time while using the AR device, while experts performed 

best under traditional fluoroscopic guidance [72]. In work performed by 

Masutani et al., an AR visualization system was developed to allow 3D 

vascular models to be overlaid on live X-ray fluoroscopy by using 2D to 3D 

registration via fiducial markers [73]. Another group used a see-through 

HMD device to implement AR that acted to overlay segmented 3D virtual 

objects onto the brain for the purpose of cranial neurosurgery. For this 

particular implementation, IR reflective markers were used to perform 

tracking of the subject, in this case a head phantom. Different visualization 

techniques were discussed, including the use of wireframe models to improve 

user depth perception of the virtual objects [74]. Other groups have used 

similar techniques in other areas of surgery, including laparoscopy [75-78], 

and percutaneous needle-based procedures including biopsy [79] and focal 

ablation [80]. It is clear that the field of surgical AR is quickly growing and 
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has an excellent potential to assist both trainee and experienced surgeons to 

perform tasks more efficiently. 

1.4 Human Performance: Theory, Application 

The objective evaluation of human performance is important for enabling 

researchers to quantify the ability of a user to perform motor control tasks 

while using a particular device. Since many, if not all, modern surgical 

procedures require a surgeon to perform a series of tasks using human motor 

control, the application of objective evaluation methods is essential in order 

to understand and identify the underlying characteristics of a device that 

enables a user to perform optimally. Although there have been many 

proposed methods of human performance evaluation, our work focuses on the 

application and various extension of the Fitts’ Law methodology, which 

involves the use of a human performance model that enables the 

quantification of human pointing task performance. The following section 

discusses the Fitts’ Law methodology and the various extensions that have 

been developed to allow for the evaluation of tasks of different nature. 

Several different applications of this particular model are discussed, with a 

focus on surgical task performance evaluation. In addition, other performance 

evaluation methods are discussed. 

1.4.1 Fitts’ Law 

In 1954, researcher Paul Fitts demonstrated that human performance for 

simple motor control tasks could be modeled using a theory adapted from the 

information science field [81]. This model identifies a relationship between 

speed and accuracy that can evaluated by subjecting a user to a series of 

targeting tasks, each with varying difficulty. In order to quantify task 

difficulty, Fitts proposed the following formulation for index of difficulty for a 

particular one-dimensional task: 
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���     (1) 

where ID represents index of difficulty in units of bits/response, W represents 

the tolerance range of the target (target width) and D represents the distance 

or amplitude of the target from the user’s starting position to the centre of 

the target [81]. This representation was derived in a manner analogous to 

Shannon’s theorem (for the information capacity of a communication channel) 

by Fitts with the assumption that the logarithm of the signal-to-noise (SNR) 

ratio corresponds to the resolution of a signal into quanta that have bands of 

tolerance [81-83]. Many researchers have developed and applied different 

variations for the formulation of index of difficulty. Welford’s variation has 

been adopted by many researchers as it often results in more optimal results. 

�� � ���� 	�

  0.5�     (2) 

By comparing this with Shannon’s theorem, the SNR is equivalent to the 

ratio of target amplitude to target width in Fitts’ original equation, and since 

Fitts’ original experiments had D:W ratios as low as 1:1, it is noted that it 

may be more favorable to use the direct analogy to Shannon’s theorem as 

follows: 

�� � ���� 	�

  1�     (3) 

This particular model ensures that task difficulty is always positive, which is 

a necessary condition, since a negative task difficulty would contradict the 

theory underlying the human performance models in question (i.e. what 

would a negative task difficulty imply?). It should be also noted, as [82] 

implies: there is no particular model that is “correct”, since each formulation 

is only a representative of a human performance task, although there is still 

much debate over which model should be used [84].  What is important to 
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note is that these logarithmic expressions all provide relative measures 

which allow subsequent measures to be compared objectively. 

Upon selecting the task difficulty model, it must be ensured that an adequate 

range of task difficulties are selected in order to fully evaluate a user’s 

performance for a range of conditions. MacKenzie et al. suggest that a range 

of 2-8 bits shall be selected in each Fitts’ Law related experiment, and that 

the user preforms each task difficulty condition around 15-25 times so that a 

performance tendency can be observed [85]. During each task, the movement 

time of each task is recorded such that the following linear trade-off of speed 

and accuracy can be determined as follows: 

�� � ��   �� · ��     (4) 

where MT represents observed movement time, ID represents index of 

difficulty as discussed above, and C1 and C2 represent experimentally 

determined parameters calculated by a linear regression of the collected data. 

It can be noted that by rearranging the linear equation in (4), the value of 

1 �2⁄  can be interpreted as the index of performance, or IP, measured in bits 

per second (bps). 

To further improve the correlation between speed and accuracy, [82] suggest 

that adjustments for accuracy can be applied to the observed task completion 

times in order to fully represent a user’s “actual” performance. By analyzing 

the collected end-point data, an effective target width, denoted We, can be 

determined as: 

�� � 4.133�      (5) 

where σ represents the standard deviation of measured end-point positions 

calculated independently for each user and for each condition. In addition, an 

effective distance De can be determined. Effective distance is determined by 
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calculating the mean movement distance between a user’s starting and end-

point position independently for each user under each condition. Using both 

adjusted values to calculate an accuracy adjusted index of difficulty as 

follows: 

�� � ���� 	��

�  1�     (6) 

It should be additionally noted, that the above models for index of difficulty 

were originally developed for discrete translational tasks, however the model 

has been shown to be provide similar results for  rotational tasks, where 

instead of translational units of D and W, angular units can be substituted 

[86]. 

1.4.2 Application 

The predictive abilities of the Fitts’ Law methodology are often used in 

graphical user interface (GUI) design, where it is useful to predict the 

amount of time a user takes to perform a task, such as pointing and clicking 

on a button dialog. Soukoreff et al. used this model to examine and predict 

the performance of users instructed to spell out words using a stylus-based 

soft-keyboard [87]. In order to examine multiple tasks (each letter of the 

word), the Fitts’ movement times were summed over each letter-to-letter 

movement of the stylus. Effectively, the larger task of spelling a word was 

broken down into smaller sub-tasks that were modeled using Fitts’ Law [87]. 

Another example of the application of Fitts’ Law for GUI development and 

optimization was presented by [88], where commonly used buttons and 

menus were either placed closer to the input device (i.e. computer mouse) or 

the targets themselves were enlarged to allow for increased user proficiency 

as a result of decreased index of difficulty and therefore task time. In work 

performed by Bi et al., a variation of Fitts’ law was used to model user 

performance for a set of touchscreen based interaction tasks [89]. Fitts’ Law 
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has also been used to explore the interaction of users with an augmented 

reality mobile application for selecting buildings in an urban area, as shown 

by Rohs et al. [90]. In addition, Fitts’ Law has been used in the field of 

laparoscopic surgery, cardiovascular surgery, as well as neurosurgery to 

assess the surgical skill of surgeons performing tasks with respect to varying 

magnification, task amplitude, and approach angle [91-94].  

1.4.3 Additional Performance Evaluation Methods 

Although Fitts’ Law is capable of accurately describing the trade-off between 

speed and accuracy for human motor control tasks, other methods of 

evaluating human performance in surgery have been developed and applied 

in human performance evaluation research. For instance, there has been a 

great deal of interest in the objective evaluation of laparoscopic surgical skill 

since it is relatively new field of surgery and requires a high degree of skill 

compared to traditional open-adnominal surgery [95, 96]. This is due to 

reduced instrument maneuverability, impaired vision of the surgical field, 

and decreased tactile sensation [97]. In the past, techniques such as the 

Halstedian Technique had expert surgeons evaluate novice surgeons based 

on witnessed performance, however it has been noted that this method is 

prone to variation in how performance is rated due to subjectivity [98]. In 

contrast, objective evaluation techniques were introduced by Martin et al. 

that compared the difference in global ratings forms, operation-specific 

checklists and pass/fail judgments for the evaluation of surgeons working 

both on live animals, as well as simulators. This study determined that global 

ratings forms were capable of discriminating between levels of residents, 

while the checklists and pass/fail judgments were not [99]. Alternative 

methods were proposed through the development Imperial College Surgical 

Assessment Device, which uses video recording and motion analysis software 

to further assess performance in the following areas: compact spatial 

distribution of the instrument tip, smooth motion, depth perception, response 
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orientation, and ambidexterity [100]. Furthermore, techniques involving the 

application of algorithms such as Hidden Markov models have been applied 

to hand movements in laparoscopic surgery in order to compare the general 

behavior of a novice with an expert surgeon model [101, 102]. Although these 

findings indicate potentially viable methods for evaluating human 

performance, the Fitts’ Law methodology remains as one of most widely used 

methods for evaluating motor task performance from the standpoint of speed 

and accuracy, which are arguably the two task metrics that form a basis for 

all motor control tasks. Since the following work focuses on the use and 

evaluation of novel devices for performing interventional tasks via discrete 

translational and rotational movements, we primarily utilized the Fitts’ Law 

methodology for our evaluation. 
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Chapter 2  

2. Evaluating Human Performance for Needle Guidance 

Tasks Using a Prostate Biopsy Device† 

2.1 Introduction 

Prostate cancer is among the leading causes of death in men in North 

America, with an estimated 238,590 new cases in the United States in 2013 

[1]. In many instances, early diagnosis of this disease can allow for effective 

treatment and management of the disease [2]. A number of techniques exist 

to diagnose prostate cancer including prostate specific antigen (PSA) test, 

digital rectal exam (DRE), prostate biopsy, and imaging. A biopsy of the 

prostate is often performed under transrectal ultrasound (TRUS) guidance, 

and allows a clinician to guide a specialized needle into the prostate (see 

Figure 2-1) to collect samples of prostate tissue (biopsy cores) for analysis by 

a pathologist to detect the presence and grade of cancer at each of the 

biopsied regions. In a typical biopsy procedure, an average of 10 biopsy cores 

are acquired from the patient’s prostate [3]. This method is prone to 

generating a false-negative result upon the patient’s initial biopsy procedure, 

leading to mischaracterization of the disease and requiring the patient to 

undergo additional repeat biopsy procedures [4]. Recently, a device was 

developed by [5] to provide navigation for performing targeted prostate 

biopsy based on imaging to ensure that physicians could collect tissue 

samples at precise 3D positions within the prostate. Using a tracked passive 

mechanical arm along with a 3D ultrasound (US) imaging system, the device 

enables biopsy core centre targeting accuracy of approximately 3.87 ± 1.81 

mm [5].  

                                            

†. A version of this chapter is being prepared for submission to IEEE Transactions on 

Systems, Man, and Cybernetics: Kramers, M., Fenster, A., Eagleson, R. 
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Figure 2-1: Biopsy procedure schematic with TRUS probe inserted into the 

patient’s rectum along with needle aligned in parallel to the ultrasound 

image plane 

With the amount of prostate cancer related deaths reaching an estimated 

total of 29,720 in the United States in 2013 [1], it becomes increasingly 

necessary to make the biopsy procedure as efficient as possible so that the 

maximum number of patients can be diagnosed and treated effectively. A 

study performed by [6] demonstrates the increased accuracy of simulated 

biopsies performed using guided 3D guidance compared to 2D and 3D non-

guided biopsies. Additionally, it was found that it took experts less time to 

perform guided 3D biopsies versus novices. The authors in this study 

however performed analysis on both time and accuracy as independent 

results. In order to determine the efficacy of a biopsy procedure with respect 

to both total biopsy core acquisition time and biopsy needle placement 
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accuracy, a unifying evaluation of performance must be established for 

objective evaluation of both the user and the device. 

We propose a method for the objective evaluation of human performance for 

user’s performing targeting tasks with the prostate biopsy device. Although 

there have been a number of groups focusing on evaluation of human 

performance in laparoscopic surgery [7-9], there has been limited focus on the 

objective evaluation of human performance for needle guidance tasks. It is 

therefore important to apply and validate a standardized method for 

evaluating human performance for such procedures. 

2.2 Modeling Image-Guided Human Performance 

We base our evaluation on the Fitts’ Law human movement model [10], 

which models the relationship between speed and accuracy for human 

pointing tasks. Fitts’ Law has been used in an assortment of graphical user 

interface evaluation and optimization studies [11, 12], as it allows designers 

to evaluate how well users are able to perform pointing tasks within a 

graphically driven environment. The basis of this paradigm is that a target 

can be parameterized by its size as well as its distance from a user’s starting 

position. Using these values, an index of difficulty for a given targeting task 

can be calculated using the following Shannon formulation [13]: 

     �� � ���� 	�

  1�     (1) 

where ID denotes index of difficulty, D denotes translational distance 

between user starting position and target centre, and W denotes target width. 

The index of difficulty is then used in the following linear equation to relate 

to task completion time: 

     �� � ��   �� · ��    (2) 
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where MT denotes task movement time, and C1 and C2 denote experimentally 

determined constants. C2   can be interpreted as the slope of the linear 

regression formed by this relationship, and 1 �2⁄  can be interpreted as the 

index of performance, or IP, measured in bits per second (bps). 

By subjecting users to targets with a range of index of difficulties and 

measuring the associated movement time for each task, a speed-accuracy 

trade-off can be observed by performing a linear regression against MT and 

ID, and an index of performance can be determined for a particular user. It 

should be noted, that since the index of difficulty of each task is composed of 

a ratio of two parameters, rotational tasks can be considered in the same way 

as translational tasks by using units of degrees instead of translational 

distance measurements [14, 15]. 

In addition to the traditional formulation of index of performance, [16] 

suggest that adjustments for accuracy should be applied to the collected data 

in order to represent a user’s actual performance. By using the collected end-

point data, an effective target width, denoted We, can be determined as 

     �� � 4.133�     (3) 

where σ represents the standard deviation of measured end-point positions 

for each user for each condition. To further account for accuracy, an effective 

distance De can be calculated. Effective distance is determined by calculating 

the mean movement distance between the user’s starting position and end-

point position for each user under each condition. Using both adjusted values 

to calculate an accuracy adjusted index of difficulty as follows: 

     �� � ���� 	��

�  1�     (4) 
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2.3 Methods 

2.3.1 Prostate Biopsy Device 

The prostate biopsy device consists of a tracked mechanical arm that affixes 

the TRUS probe and biopsy needle assembly (Figure 2-2). The mechanical 

arm was designed using a spherical linkage to create a remote centre of 

motion (RCM). As with many interventional procedures, the RCM is 

necessary for minimize patient damage from maneuvering tools within a 

single, confined entry point; in this case, the patient’s rectum. Using encoders 

at each of the rotational axes of the linkage, along with a linear encoder 

aligned with the long axis of the TRUS probe, the position and orientation of 

the probe and needle can be computed with respect to the RCM. The device 

allows the TRUS probe and biopsy needle to be actuated by the user in 4 

degrees of freedom (DOF), including three degrees of rotational freedom 

about the RCM. In addition, the probe and needle can be translated linearly 

in the axial direction to allow for insertion of the probe into the patient, as 

well as for any adjustments required to accommodate prostate movement 

during the procedure. For this study, we have excluded evaluation of the 

linear degree of freedom, since it ideally held fixed during the duration of the 

biopsy. We have also neglected the axial rotation degree of freedom since it 

was determined that each of the targets, when distributed on the surface of a 

sphere, could be acquired without having to rotate the probe axially. In the 

clinical setting, the device uses axial rotation of the TRUS probe to acquire 

and reconstruct the 3D prostate image, which is then registered to a pre-

operative image containing the predetermined targeted regions. For this 

study, we excluded this image acquisition task, as it is only performed once at 

the beginning of the procedure and employs automatic segmentation 

algorithms which have a fixed processing time.  

We have developed software to collect user movement data by computing the 

forward kinematics of the needle using the encoders. The visual interface 



component of the software allows

the biopsy needle trajectory projection as a cursor and a target volume

shown in Figure 2-2. In this study, spherical targets were used to simulate 

target biopsy regions and were displayed in red. 

updates the position of the biopsy needle at approximately 60 Hz, 

provides minimal lag and sufficient visu

To aid in the visualization of small targets, crosshairs were added to both the 

cursor as well as the displayed target so that users could identify the location 

of both objects quickly. To allow all chosen target config

visualized on the monitor without modification of the magnification during 

the pointing tasks, the magnification of the visualization was selected to be of 

the same scale at the physical device. It should be noted that since the linear 

degree of freedom in the axial direction was held constant for this study, 

movement along this axis would result in a change in the visual scale of the 

interface visualization and would add an additional degree of difficulty to the 

tasks. 

Figure 2-2: User Interface for visualization of biopsy needle and targets and 

Prostate Biopsy Device for performing targeting tasks

2.3.2 Targeting Tas

To measure performance of users with the prostate biopsy device, we

created a set of 9 unique targets with va
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component of the software allows the user to visualize the relative position of 

the biopsy needle trajectory projection as a cursor and a target volume

In this study, spherical targets were used to simulate 

target biopsy regions and were displayed in red. The graphical user interface 

updates the position of the biopsy needle at approximately 60 Hz, 

provides minimal lag and sufficient visual feedback for the targeting tasks

To aid in the visualization of small targets, crosshairs were added to both the 

cursor as well as the displayed target so that users could identify the location 

of both objects quickly. To allow all chosen target configurations to be 

visualized on the monitor without modification of the magnification during 

the pointing tasks, the magnification of the visualization was selected to be of 

the same scale at the physical device. It should be noted that since the linear 

e of freedom in the axial direction was held constant for this study, 

movement along this axis would result in a change in the visual scale of the 

interface visualization and would add an additional degree of difficulty to the 

User Interface for visualization of biopsy needle and targets and 

Prostate Biopsy Device for performing targeting tasks

Targeting Task Design 

To measure performance of users with the prostate biopsy device, we

unique targets with varying difficulties shown in 

 

relative position of 

the biopsy needle trajectory projection as a cursor and a target volume as 

In this study, spherical targets were used to simulate 

The graphical user interface 

updates the position of the biopsy needle at approximately 60 Hz, which 

al feedback for the targeting tasks. 

To aid in the visualization of small targets, crosshairs were added to both the 

cursor as well as the displayed target so that users could identify the location 

urations to be 

visualized on the monitor without modification of the magnification during 

the pointing tasks, the magnification of the visualization was selected to be of 

the same scale at the physical device. It should be noted that since the linear 

e of freedom in the axial direction was held constant for this study, 

movement along this axis would result in a change in the visual scale of the 

interface visualization and would add an additional degree of difficulty to the 

 

User Interface for visualization of biopsy needle and targets and 

Prostate Biopsy Device for performing targeting tasks 

To measure performance of users with the prostate biopsy device, we have 

rying difficulties shown in Table 2-1 
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which were performed at 12 equally spaced approach angles, resulting in a 

total of 108 unique target configurations. For each user, the order of the 

unique target configurations was randomized such that each user performed 

the tasks in a different order. In addition, each of the 108 target sets were 

repeated by each user a total of 3 times, with the sequence of each target 

configuration randomized between sets. To avoid any fatigue induced effect 

on performance, users were given 5 minute breaks between sets, and were 

also able to take breaks between targets when necessary. 

Table 2-1: Target Distance and Tolerance Configuration Parameters 

Condition 
Target Distance 

(degrees) 

Target Tolerance 

(degrees) 
ID* (bits) 

1 6 4 1.32 

2 6 1 2.81 

3 24 4 2.81 

4 12 1 3.70 

5 24 2 3.70 

6 12 0.5 4.64 

7 48 2 4.64 

8 48 1 5.61 

9 48 0.5 6.60 

*Note that the Shannon formulation was used to calculate Index of Difficulty 

for each task configuration 

According to [17], it is suggested methodological approach that the  

performance be estimated over a range of task difficulty between 2.0-8.0 bits 

in order to adequately quantify the normal range of human performance. It 

should be considered that in the clinical context of prostate biopsies, 

suspected tumor regions typically have a minimum size of 5 mm in diameter, 

so using this range of task difficulties will adequately take all biopsy target 

sizes into consideration. This was justified by the linear axial distance of the 

probe from the RCM was approximately 50 mm and the smallest target width 

of 0.5 degrees, and so using 50 · tan$0.5°& ' 0.44 (( plus the inherent device 

error, determined that our method covered well beyond the smallest desirable 
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target width. It should be noted that tasks with difficulty above 6.6 bits were 

not practical to measure, since the targets would either exceed the full range 

of devices motion, would be too small for users to point to, or would not be 

practical with respect to the clinical biopsy procedure. Since the devices is 

actuated by rotation about a RCM, both target parameters are expressed in 

units of degrees, and therefore all of the targets are located on the surface of 

a sphere as shown in Figure 2-3. The users’ view is directly along the z-axis 

in the 3D coordinate space, and therefore the users are able to visualize the 

targets as if they were projected onto a 2D plane (XY plane) as shown in 

Figure 2-3. 

 

Figure 2-3: Isometric view of all target configurations and approach angles 

distributed on a sphere (left) and from users’ viewpoint along the z-axis 

2.3.3 Participants and Experimental Procedure 

A total of 8 users, consisting of 7 males and 1 female with a mean age of 27.2 

years (24-51 years), were selected at random from the Western University 

population to perform the targeting tasks using the device. One of the users 

had significant experience with operating the device in a laboratory setting. 

Each user was required to have experience with graphical user interfaces as 



 
 

41 

well as a practice session with the device to ensure that the targeting task 

procedure was fully understood. In the experiment, each user was required to 

place the projected biopsy needle cursor at a home position located at the 

centre of the RCM sphere. After pressing a footswitch connected to the device, 

one of 108 target configurations appeared on the display. The user was then 

required to move the cursor within the target by rotating the device about the 

RCM. Once the user was satisfied with the position of the cursor with respect 

to the target, the footswitch was again pressed to represent a biopsy core 

acquisition. The user was then instructed to return the cursor to the home 

position and press the footswitch again in order to initiate the next targeting 

task. This process was repeated for all 108 unique target configurations a 

total of 2 times. To reduce the effects of muscle memory on the users’ 

performance, the target configuration order was randomized for each user for 

each iteration. During this process, the software recorded the target 

configuration parameters (target distance, width, and approach angle), the 

elapsed pointing time in milliseconds, as well as the complete trajectory of 

the cursor for each task at approximately 10 millisecond intervals throughout 

the experiment. Users were able to take a short break at intervals of 60 

targets if they desired one. 

2.3.4 Hypothesis 

The focus of this experiment was to apply and validate a model to represent 

human performance for needle guidance tasks. The experiment described was 

tested against the following hypotheses (H): 

H1. User performance with the prostate biopsy device conforms to the Fitts’ 

Law model of human performance, indicating that there is a significant 

linear relationship between task difficulty and task completion time. 
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H2. The target approach angle does not contribute to users’ performance as a 

result of device being unbalanced or difficult to maneuver.H3. An experienced 

user will have a higher index of performance compared to novice users. 

2.4 Results 

Upon collecting all of the movement data for all users, the results were 

analyzed to test whether Fitts’ Law was indeed an appropriate model for 

explaining the performance of the users (H1). A one-way ANOVA test 

comparing each of the users’ task completion time with the index of difficulty 

revealed that there was a significant relationship between task condition and 

completion time for all users ()$9, 2307& � 213.09; . / 0.0001 (9 task 

conditions, 2307 observed movement times). To test the second hypothesis 

(H2), an ANOVA test was used to compare the effect of approach angle on 

task completion time. There was found to be no significant contribution of 

approach angle on time and therefore our second hypothesis can be accepted, 

indicating that approach angle had no contrbution to movement time. The 

final hypothesis was tested using an independent variable t-test. It was found 

that the experienced user had a significantly higher index of performance 

(p<0.05) compared to the group of novice users, and therefore the third 

hypothesis (H3) can be accepted.  

A Fitts’ Law relationship for a single user is shown below in Figure 2-4. 
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Figure 2-4: Fitts’ Law profile and regression line for a single user for a total 

of 216 task configurations 

All results were collected and linear regressions were performed on each 

users’ index of difficulty versus movement time relationship. Using (2) and 

finding the inverse of C2, the index of performance was calculated along with 

the intercept. In addition, linear polynomial fitting was used to calculate the 

coefficient of determination (R2) for each user. The results are displayed 

below in Table 2-2. 

Table 2-2: Performance results for all users without adjustments to accuracy 

User Experience 
Index of 
Performance 
[bits/s] 

Intercept 
[ms] 

R2 
Average Hit 
Rate [%] 

F-Statistics 
(p<0.0001) 

1  Expert 5.65 307.88 0.68 86.58 

)$9, 2307&
� 213.09 

2  Novice 4.88 201.67 0.51 92.06 
3  Novice 3.77 -131.28 0.63 98.09 
4  Novice 3.40 431.17 0.53 96.76 
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5  Novice 4.15 766.53 0.46 89.61 
6  Novice 4.16 136.58 0.63 89.02 
7  Novice 4.08 177.08 0.57 89.37 
8  Novice 3.37 407.24 0.46 95.10 

As discussed in [16, 17], an adjustment for accuracy can be made to better 

account for users’ actual performance during each pointing task experiment. 

The results after making the adjustments for accuracy are shown below in 

Table 2-3. It should be noted that the first degree of freedom in the ANOVA 

test for significance between task difficulty and movement time changed to 

represent the increased number of unique index of difficulties generated by 

the accuracy adjustment method. 

Table 2-3: Performance results for all users with accuracy adjustments 

applied 

User Experience 
Index of 
Performance 
[bits/s] 

Intercept 
[ms] 

R2 F-Statistics (p<0.0001) 

1  Expert 4.66 249.46 0.63 

)$71, 2307& � 56.80 

2  Novice 4.15 227.40 0.48 
3  Novice 3.63 -40.13 0.57 
4  Novice 3.22 446.39 0.41 
5  Novice 4.15 1027.8 0.37 
6  Novice 3.54 136.73 0.64 
7  Novice 3.47 152.17 0.48 
8  Novice 3.05 418.58 0.37 

In addition to the performance analysis using the Fitts’ Law approach, the 

movement velocity profiles for each pointing task were observed. Figure 2-5 

shows the averaged and normalized velocity profiles for each task condition. 

Velocity in each case was determined by calculating the tangential velocity, 

or the velocity in the direction of the target. This particular comparison is 

based strictly on the shape of the velocity profile; therefore each profile was 

normalized such that each trajectory was aligned at peak velocity. 
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Figure 2-5: Tangential velocity profiles for all users averaged and 

normalized for each target condition. 

2.5 Discussion 

As demonstrated, Fitts’ Methodology was adapted within this clinical context 

and Fitts’ Law was used to provide an objective model of human performance 

for pointing tasks when using the prostate biopsy device. Prior to applying 

accuracy adjustments, the results for each user were comparable with the 

performance evaluation of other pointing devices, such as a stylus or 

computer mouse [17]. The fact that there was no significant relationship 

between approach angle and performance indicates that the prostate biopsy 

device is mechanically balanced such that users are able to actuate the TRUS 

probe in any direction with negligible degradation to performance. It is also 
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promising that the most experienced user of the device also attained the 

highest index of performance, indicating that additional  training and time 

with the device can lead to higher performance, and this learning curve can 

be established using this methodology. 

When accuracy adjustments were made, each index of performance, intercept, 

and coefficient of correlation typically decreased for the majority of users, 

although there was still a significant relationship between effective index of 

performance and movement time. Upon analysis it was found that the 

effective width had a larger impact than the effective distance when 

calculating the effective index of difficulty. This could indicate that there was 

a greater spread of end-point positions for each user, which may be a result of 

the mechanical arm momentum during actuation and resulting in larger 

over/under shooting of the target. Despite these discrepancies, the target hit 

rate was moderately high indicating that users were able to compensate for 

this additional momentum in most cases.  

The tangential velocity profiles when visually compared show that there are 

trends among each individual condition. It appears that for conditions 1, 2, 4, 

and 6 there was much more variance on the deceleration phase of the velocity 

profile. To further investigate trends in the tangential velocity, the profiles 

were grouped by target distance (parameter A). By calculating the variance of 

each profile under each distance condition and then summing the variance 

along the time axis, the variance can be quantified and compared. As shown 

in Figure 2-6 and Table 2-4 below, the total variance decreases with 

increasing A. In other words, users had a tendency to follow a similar velocity 

trajectory pattern for longer target reaches. 
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Figure 2-6: Tangential velocity profiles sorted by target distance (solid) and 

variance of each trajectory for all users (dotted) 

Table 2-4: Sum of variance vs. target distance 

Distance (A) (degrees) Sum of Variance 

6 19.494 

12 9.2546 

24 6.2015 

48 4.5979 

2.6 Conclusion 

The work presented intended to provide a detailed methodology for the 

objective evaluation and quantification of human performance for users 

performing virtual needle guidance tasks on a prostate biopsy device. We 

have described the details of the application of Fitts’ Methodology to prostate 

biopsy tasks and how the paradigm can be used to effectively evaluate users 
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and distinguish those with more experience with the device. This information 

is a crucial step towards optimization of both the prostate biopsy device as 

well as the procedural workflow. 
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Chapter 3  

3. A Mobile Augmented Reality Application for Image 

Guidance of Neurosurgical Interventions† 

3.1 Related Work 

According to the literature, tracking of an object’s position is the main aspect 

which influences accuracy of a system and determines the level of 

interference with the medical workflow. The majority of AR systems take 

advantage of Head Mounted Displays (HMD), hand-held or fixed displays to 

show computer generated scenes to the user. Visualization techniques are 

used to incorporate preoperative medical images during the intervention as 

3D objects rendered in real-time. Considering these three methods of AR, we 

can classify some recent work and indicate their advantages and deficiencies. 

As an early prototype, in 1968 Sutherland et al. [1] developed a mechanical 

tracking system for their HMD 3D display. It was realized by attaching a 

mechanical linkage to the HMD which measured head position by computing 

axial displacement of the joints of a passive robotic arm. In similar work in 

1992, Bajura et al. [2] replaced the mechanical linkage with electromagnetic 

sensors to determine the pose of a HMD and an ultrasound probe. Measuring 

position remotely (by magnetic or optical tracking systems) leads to a 

significant improvement in terms usability of the system, since they give 

more freedom to move the HMD within the operation site. Shamir et al. [3] 

used magnetic trackers and point based registration to align images, risk 

surfaces and segmented models to physical head models. In further work, 

Shamir et al. utilized the ability to track multiple objects simultaneously 

                                            

†. A version of this paper has been published. Kramers, M., Armstrong, R., Bakhshmand, 

S.M., Fenster, A., de Ribaupierre, S., Eagleson, R., A Mobile Augmented Reality Application 

for Image Guidance of Neurosurgical Interventions. American Journal of Biomedical 

Engineering 2013, 3(6): 169-174 
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using optical tracking to develop an AR probe that incorporated a camera 

attached to a reference plate [4]. The output of the system was an augmented 

video image of the therapeutic site with relevant superimposed graphical 

content rendered according to the position of the probe. HMDs interfere with 

medical work flow and may restrict a surgeon’s natural movement. As a 

result, hand held displays and cameras (AR probe as an example) are 

becoming more feasible within the operating room. DEX-ray [5] is a 

miniaturized version of a hand held probe with an integrated video camera. 

Naturally, in [4] and [5], displays are fixed at some point in operation room 

and a surgeon is required to switch between the real scene and the displayed 

AR scene, and thus increases the system’s complexity. Mischkowski et al. 

found that camera and display units could be combined, as demonstrated by 

their X-scope [6]. X-Scope could be used for detection of bony segments in 

real-time and results were displayed on a hand held LCD. This configuration 

resembles current mobile devices. Infrared optical tracking became feasible 

by attaching reflective frames to portable display devices. These mobile 

devices enable surgeons to inspect patients from different points of view. In 

contrast, optical trackers impose limitations on this procedure, due to their 

limited workspace, necessity of attaching multiple reflectors to objects of 

interest and line of sight issues. An alternative method for tracking utilizes 

image-based tracking algorithms, which require adequate speed and 

accuracy.  Fisher et al. developed a hybrid tracking scheme to calculate final 

estimation of the pose in an AR framework for a neurosurgical application 

[7]. Two streams of sensory data (Infrared and vision based tracking results) 

are combined by a pose estimation algorithm based on RANSAC (RANdom 

SAmple Consensus) which is an iterative parameter estimation algorithm. 

Simulations of this work were performed on an artificially textured cube as a 

reference model. 
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3.2 Methods 

For an AR system to be useful in a clinical context, it must be readily 

available and not provide a significant change to the existing workflow [8].  It 

is therefore important that the pre-processing required to prepare and 

segment medical images for use in AR systems is relatively rapid and 

uncomplicated [9]. Additionally, for our application to be suitable for use in 

the intensive care unit, it must be portable and requiring minimal setup. 

These are all of the requirements that affect the design of our system. In 

section 3.1 we discuss the use of image-based tracking through the Vuforia 

software development kit.  In section 3.2, the design and implementation of 

the pipeline for importing patient-specific data is described. Section 3.3 

covers the user interface design and section 3.4 describes our pilot evaluation 

of system accuracy. 

3.2.1 Vuforia and Augmented Reality Implementation 

AR can provide users with additional visuospatial context by overlaying 

anatomical images on the head of the patient. This can be beneficial to 

surgical planning and navigation by offering additional contextual 

information to a procedure through incorporation of preoperative medical 

imaging data. This gives surgeons the ability to not only view patient 

anatomy extracted from medical images, but to do so with spatial context 

relevant to the tasks performed during the procedure. The placement of an 

external ventricular drain requires surgeons to estimate entry points and 

trajectory paths relying on preoperative medical images and experience. Our 

AR tool allows surgeons to visualize – using a mobile device as a viewport - 

the location of internal anatomical features projected onto the patient. This 

provides the surgeon with additional contextual information to aid in 

navigational tasks with the intent of increasing accuracy compared to blind 

navigation. 
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The implementation of our application included the use of an AR software 

development kit, Vuforia, developed by Qualcomm [10]. The essential 

requirement of our system was the ability to register the three-dimensional 

virtual image-space to the physical world’s three-dimensional space utilizing 

image-based marker tracking through a single on-board device camera. 

Qualcomm delivers an API capable of tracking multiple planar images using 

the mobile device’s camera. For our application we constructed a 40mm x 60 

mm x 80 mm rectangular cuboid shaped tracking object and printed unique, 

feature-rich, images on each of its six faces. Using Vuforia’s API, the 

approximate pose of each of the detectable image faces were averaged and 

used as an approximate pose transformation for the entire tracker geometry. 

The tracker was attached to a pair of safety glasses that would be placed on 

the patient, as illustrated in Figure 3-1. We made the assumption that when 

the glasses rested on the patients head, they will rest directly on the nasion – 

the region between the frontal bone of the skull and nasal bones, which is 

easily discernable in CT images and exhibits high reproducibility among 

experts [11]. In this case, the tracker would be 5mm anterior to the patient’s 

nasion, providing a landmark relative to the tracker. Using OpenGL ES, 

surface representations of the patient’s segmented anatomy extracted from 

the CT images could be then be displayed to the user through the device’s 

viewport. 
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Figure 3-1: Tracking marker fixed to safety glasses for patient head pose 

estimation and registration of anatomy to scene. 

An additional feature that was implemented was a second tracking device 

that could be used as a stylus within the augmented environment. This 

enables the user to view entry point trajectories with respect to the projected 

anatomy. In addition, this feature may provide cues to improve the user’s 

depth perception by providing interaction with the objects in the scene. To 

achieve this, we rendered a virtual beam that emitted outwards from the 

pointing device towards the patient’s head. This feature is depicted in Figure 

3-2. 



Figure 3-2: The tracked pointing devic

planning entry point locations and trajectories. The device also allows for 

additional interaction between the user and the AR scene.

The ability for a user to perceive the augmented surface graphics and gain 

contextual knowledge from the device depends on its ability to render 

graphics with appropriate visual cues for perceiving depth from 2D images. 

The skull surface, generated during the segmentation process, is used in the 

visualization with controlled blending to give the

transparent as the user views a patient’s head through the device. By 

combining this visual element, texturing, shading, perspective projection, as 

well the pointing stylus, an adequate viewport for ventricle navigation can be 

achieved. 

3.2.2 Segmentation and Registration of Patient Data

In order to portray the internal anatomy of the patient overlaid in the scene, 

the anatomy of interest must first be segmented and registered into the 

scene. For these tasks, we have developed a custom inter

user through such content creation. The software pipeline is modeled as a 
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The tracked pointing device provides visual feedback for 

planning entry point locations and trajectories. The device also allows for 

interaction between the user and the AR scene.

The ability for a user to perceive the augmented surface graphics and gain 

edge from the device depends on its ability to render 

graphics with appropriate visual cues for perceiving depth from 2D images. 

The skull surface, generated during the segmentation process, is used in the 

visualization with controlled blending to give the effect of being semi

transparent as the user views a patient’s head through the device. By 

combining this visual element, texturing, shading, perspective projection, as 

well the pointing stylus, an adequate viewport for ventricle navigation can be 

Segmentation and Registration of Patient Data

In order to portray the internal anatomy of the patient overlaid in the scene, 

the anatomy of interest must first be segmented and registered into the 

scene. For these tasks, we have developed a custom interface to guide the 

user through such content creation. The software pipeline is modeled as a 

 

 

e provides visual feedback for 

planning entry point locations and trajectories. The device also allows for 

interaction between the user and the AR scene. 

The ability for a user to perceive the augmented surface graphics and gain 

edge from the device depends on its ability to render 

graphics with appropriate visual cues for perceiving depth from 2D images. 

The skull surface, generated during the segmentation process, is used in the 

effect of being semi-

transparent as the user views a patient’s head through the device. By 

combining this visual element, texturing, shading, perspective projection, as 

well the pointing stylus, an adequate viewport for ventricle navigation can be 

Segmentation and Registration of Patient Data 

In order to portray the internal anatomy of the patient overlaid in the scene, 

the anatomy of interest must first be segmented and registered into the 

face to guide the 

user through such content creation. The software pipeline is modeled as a 
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wizard-style application that runs the user through the stages required to 

create all of the content, prompting for appropriate input when required.  As 

we are targeting a neurosurgical procedure that is performed as an 

emergency, CT images will primarily be the imaging modality of choice 

preoperatively and thus, will serve as the input to our pipeline (contrasting 

with MR images that are done when the patient is stable).  There are two 

anatomical features that are essential in our guidance system: the lateral 

ventricles to guide proper positioning of the EVD, and the outer skin of the 

head to visually verify alignment of the virtual and physical scenes. The 

outer skin segmentation can be performed automatically by selecting the 

entire outer boundary voxels of the input image.  Segmentation of the lateral 

ventricles is less trivial due to strong inter-patient variation that occurs as a 

result of hydrocephalus and/or head trauma, as well as artifacts inherent to 

the preoperative images such as image noise, intensity inhomogeneity, low 

contrast and the resulting partial-volume effect.  While there are automatic 

algorithms for segmentation of the lateral ventricles from CT images [12-14], 

the majority of these rely on prototypical model priors and are not robust 

when dealing with strong anatomical variations in the ventricular system. 

Additionally, while numerous segmentation platforms exist for semi-

automatic extraction of features [15, 16], such platforms require algorithmic 

domain knowledge to achieve appropriate segmentations by fine-tuning 

parameters of the algorithm. As such, we have developed our pipeline as a 

standalone platform for ease of use by non-experts.  In order to achieve an 

optimal balance of pipeline efficiency and segmentation accuracy, our 

approach employs a semi-automatic algorithm that relies on user knowledge 

and interaction. A recent survey [17] of semi-automatic techniques applied to 

segmentation of hydrocephalic ventricles indicated that the level set 

approach [18] was most effective compared to random walk [19] and min-

cut/max-flow [20] algorithms. For maximum user efficiency, the level set 

algorithm is incorporated in our pipeline with the addition of a knowledge-
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based region growing approach for initiation. Initially, the user must select 

two rectangular regions that correspond to each lateral ventricle, allowing 

placement of initial region growing seed points in image space as well as 

determination of image characteristics, such as noise. This allows fine-tuning 

of the algorithms without user intervention. When the segmentation of both 

lateral ventricles is complete, they are merged as we are only concerned 

about the general spatial features of the lateral ventricles, so leakage 

between them is of no concern. 

After the segmentation, the user must verify that the ventricles were 

correctly segmented by examining either the raw image slices with the 

segmentation overlaid, or a volumetric rendering of the ventricles.  The 

volumetric rendering module was developed to aid in quick verification of 

segmentation by emphasizing strong variations in intensity values of the 

segmented region, which are generally indicative of a region growing leak. 

When the user is satisfied with a given segmentation, a marching cubes [21] 

algorithm is performed on the volume and meshes of the ventricles and head 

are extracted. These meshes are further smoothed and decimated to achieve 

suitable performance on mobile devices. The amount of decimation will 

depend on the amount of video memory available. 

Once the segmentation is complete, the coordinate system of the image space 

must be registered to the application’s virtual space to ensure proper 

correspondence between the rendered ventricles in the display with the 

patient’s head. To simplify this process, we make the assumption that the 

rectangular prism image-based marker is aligned perfectly with the patient’s 

head. With orientation known, only position and scale of the anatomy must 

be determined. Scale is determined by saving a mapping from image space 

(where voxel millimeter spacing is known) to virtual space in relation to 

vertices in the scene.  The relation of physical space to virtual space is 

determined by the tracking system since the dimensions of the image-based 
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marker are known.  This allows proper scaling of the anatomy.  Position is 

determined by prompting the user to select the point in the initial CT image 

that corresponds to the nasion. From the nasion, we know the distance to the 

center point on the attached side of the marker, allowing positioning of the 

anatomy at the appropriate location. The registration is depicted in Figure 3-

3. 

 

Figure 3-3: Anatomy segmented from preoperative images aligns with the 

physical tracker and is positioned using the nasion as a positional landmark. 



3.2.3 User Controlled Registration Correction

Although the segmented surfaces were registered to several points on the 

patients head chosen during segmentation, an accurate placement of the 

tracking glasses cannot always be achievable. This can be caused by a 

number of factors, such as nose and head shape variations. For this reason, a 

user interface was developed to allow users

alignment of the physical and virtual scenes. The user is able to manipulate 

the pose of the virtual space through translation, rotation and scaling 

controls using the skull as a reference as it is superimposed over the view of 

the patients head. This is illustrated in Figure 

visually correct misalignment due to improper or abnormal placement of the 

head-mounted marker or inaccurate placement of landmarks during scene 

generation. 

Figure 3-4: Users have access to multiple sliders and buttons to manually 

adjust the virtual models to achieve appropriate alignment of anatomy, as 

well as visual settings that aid in guidance.
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User Controlled Registration Correction 

Although the segmented surfaces were registered to several points on the 

ts head chosen during segmentation, an accurate placement of the 

tracking glasses cannot always be achievable. This can be caused by a 

number of factors, such as nose and head shape variations. For this reason, a 

user interface was developed to allow users to make adjustments to the 

alignment of the physical and virtual scenes. The user is able to manipulate 

the pose of the virtual space through translation, rotation and scaling 

controls using the skull as a reference as it is superimposed over the view of 

the patients head. This is illustrated in Figure 3-4. This allows the surgeon to 

visually correct misalignment due to improper or abnormal placement of the 

mounted marker or inaccurate placement of landmarks during scene 

Users have access to multiple sliders and buttons to manually 

adjust the virtual models to achieve appropriate alignment of anatomy, as 

well as visual settings that aid in guidance. 

 

 

Although the segmented surfaces were registered to several points on the 

ts head chosen during segmentation, an accurate placement of the 

tracking glasses cannot always be achievable. This can be caused by a 

number of factors, such as nose and head shape variations. For this reason, a 

to make adjustments to the 

alignment of the physical and virtual scenes. The user is able to manipulate 

the pose of the virtual space through translation, rotation and scaling 

controls using the skull as a reference as it is superimposed over the view of 

4. This allows the surgeon to 

visually correct misalignment due to improper or abnormal placement of the 

mounted marker or inaccurate placement of landmarks during scene 

 

Users have access to multiple sliders and buttons to manually 

adjust the virtual models to achieve appropriate alignment of anatomy, as 
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3.2.4 Evaluation of System Accuracy 

To evaluate the accuracy of our system, we performed a pilot study to 

quantify accuracy of the system applied to an environment of similar scale to 

the implementation. Our evaluation focused on system accuracy rather than 

user performance which will be evaluated in future work.  

Accuracy was assessed by having users target corners of two-dimensional 

shapes projected onto a plane with known coordinates. A sheet of paper 

represented the plane in physical space, which was registered to the virtual 

plane. Rectangles and triangles were used as the shapes projected onto the 

plane as they offer clearly distinguishable corners for localization. The shapes 

were rendered transparently as to not impede the localization of points by the 

user. 

As this is a pilot study to initially assess system accuracy, the study was 

limited to two users performing targeting tasks. The tasks required the user 

to place markers at the location that they perceived as the corners of the 

shapes as they were displayed to them. In addition, the virtual plane with 

targets was displayed on an external monitor so that the user had exposure 

to the position and shape of each target, prior to and during the targeting 

task. Since only accuracy was being evaluated, no constraints on time were 

imposed. The tasks were performed on a total of 10 shapes per user, with half 

of the tasks being guided by our augmented reality device, while the 

remaining tasks required users to rely only on the external monitor for 

reference. Analysis involved examining the deviation of the points on the 

physical plane placed by the user to their known positions on the plane in the 

virtual space. 
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3.3 Results 

The Euclidean distance between each of the users’ points and the virtual 

targets were calculated to determine targeting error. With AR guidance, the 

mean error for targeting was 9.88 ± 5.34 mm over a total of 35 individual 

points. When users did not have AR guidance, the mean error rose to 13.03 ± 

6.15 mm, again over 35 individual points. To test the significance of this 

result, a Student’s t-test was performed on both series of errors. The test 

indicated that the error when using AR guidance was significantly lower (p < 

0.05) than the error without guidance. This result implies that our system 

may provide users with increased targeting accuracy compared to non-guided 

tasks. 

Table 3-1: Targeting error measured as the Euclidean distance between 

targeted corner location and actual corner location 

3.4 Discussion 

We have presented an application of AR for image guidance in emergency 

neurosurgical procedures. We focused on requirements of portability, ease of 

use, and cost efficiency to deliver an implementation that is suitable for use 

in intensive care unit interventions, particularly for placement of an EVD for 

treatment of hydrocephalus. Evaluations of the user interface will follow in 

future studies. An initial pilot studied examined the accuracy of the system, 

as well as offered insight into accuracy compared to non-guided tasks. Initial 

results look promising, but more evaluation must take place to further 

characterize the accuracy of the system, particularly with a focus on clinical 

relevance. Future work will involve assessing user driven segmentation, the 

 No AR Guidance AR Guided 

Mean Error [mm] 13.04 9.88 

Standard Deviation [mm] 6.15 5.34 

P Value 0.0126 
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alignment of anatomical features internal to the head, and targeting and 

navigational performance for neurosurgical tasks augmented with the 

system. Additionally, future work will involve incorporating algorithms to 

account for the possibility of brain shift, offsetting the position of key 

anatomy at the time of surgery as well as examining variation in position of 

the patient-mounted tracker. 

3.5 Conclusion 

Effectively inserting an external ventricular shunt is a surgical task that 

relies heavily on the spatial relationships of neuroanatomical features and 

the surgeon’s ability to recognize such relationships. Preoperative planning is 

essential to proper navigation, but operating surgeons must still rely on their 

spatial reasoning skills to perform the task blindly, increasing cognitive load. 

We have developed an AR application for mobile deployment in intensive care 

units for image guided shunt placement and performed a pilot assessment of 

the system’s accuracy. Our results indicate that the accuracy of the system is 

in the range of a few millimeters, but such data is largely inconsequential in 

the absence of clinically defined thresholds and performance standards. As 

such, future work will determine the feasibility of the application for use in 

the clinic, as well as provide performance feedback to fine-tune the 

implementation and potentially validate its use compared to blind 

navigation. 
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Chapter 4  

4. Evaluation of a Mobile Augmented Reality 

Application for Image Guidance of Neurosurgical 

Interventions† 

4.1 Introduction 

The placement of an external ventricular drain (EVD) is a common 

neurosurgical procedure performed to treat hydrocephalus[1]. The procedure 

involves identifying an entry point on a patient’s skull to place a burr-hole 

and thereby gain access to the ventricular system. Unlike many 

neurosurgical procedures, the placement of an EVD is often performed at a 

patient’s bedside using mobile tools, as there are difficulties imposed by the 

relocation of a patient to an operating room [2]. This procedure is also 

frequently performed ‘freehand,’ without technical assistance, relying only on 

the operating surgeon’s spatial abilities to plan an optimal trajectory. For 

these reasons, navigational error is not uncommon, and may lead to repeated 

targeting attempts as well as unnecessary complications such as infection or 

haemorrhage [3]. To address these issues, we have prototyped a mobile device 

application that utilizes augmented reality (AR) to provide spatial context of 

a patient’s inner-anatomy to a surgeon, intra-operatively, by incorporating 

segmented preoperative CT images. 

4.2 Methods 

Our guidance system consists of a mobile device as well as a pair of modified 

safety glasses (see Figure 4-1) that are placed on the patient during the 

                                            

†. A version of this chapter (with the exception of section 4.6 Additional Experiments) has 

been published: Kramers, M, Armstrong R., Bakhshmand, S.M., Fenster A., de Ribaupierre 

S., Eagleson R.: Evaluation of a mobile augmented reality application for image guidance of 

neurosurgical interventions. Studies in Health Technology and Informatics. 2014; 196:204-8. 
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procedure. The glasses are far away from the surgical field and therefore do 

not need to be sterile. 

 

Figure 4-1: Glasses with attached tracking marker 

The mobile device utilizes the Vuforia software development kit, developed by 

Qualcomm [4], to achieve image-based tracking required for augmented 

reality. The glasses used in our system include a tracking box fixed to the 

frame. The tracking box contains unique planar images on each of its visible 

faces. The Vuforia Target Manager was used to define the geometric 

relationships between each of the faces on the tracking box, as well as to 

encode the images into the proper format required by the framework. Using 

the real-time pose information provided by Vuforia, surface models of 

anatomy can be overlaid on the displayed image stream at the appropriate 

geometric locations and visualized by the user through the device’s display. 

In the case of EVD placement, the surgeon would use the device as a viewport 

to visualize a patient’s ventricular system as demonstrated in Figure 4-2. 



Figure 4-2: User viewing ventricular anatomy through device

Since at any point in time the display presents only monocular views, the 

user must control the vi

from motion parallax. Movement of the augmented display relative to the 

patient induces motion cues, providing additional depth information in the 

scene. 

In order to compute the transformation between th

and the display, the system requires that a CT image of the patient’s head be 

segmented, uploaded to the device, and registered within the augmented 

scene. In addition to the AR application, we have developed a user interface 

to perform the segmentation of a patient’s ventricles and skull. Despite the 

availability of automated segmentation algorithms 

automated platforms [

not require the user to have knowledge of the underlying algorithms, thus 

simplifying the process for a wider audience of users. To ensure that

standard workflow is not significantly disrupted, the segmentation process 

simply requires the user to place rectangular regions around the 
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User viewing ventricular anatomy through device

Since at any point in time the display presents only monocular views, the 

user must control the viewpoint of the display in order to induce depth cues 

from motion parallax. Movement of the augmented display relative to the 

patient induces motion cues, providing additional depth information in the 

In order to compute the transformation between the tracked environment 

and the display, the system requires that a CT image of the patient’s head be 

segmented, uploaded to the device, and registered within the augmented 

scene. In addition to the AR application, we have developed a user interface 

rm the segmentation of a patient’s ventricles and skull. Despite the 

availability of automated segmentation algorithms [5, 6] as well as semi

[7, 8], we chose to create a semi-automatic tool that did 

not require the user to have knowledge of the underlying algorithms, thus 

simplifying the process for a wider audience of users. To ensure that

standard workflow is not significantly disrupted, the segmentation process 

simply requires the user to place rectangular regions around the 

 

 

User viewing ventricular anatomy through device 

Since at any point in time the display presents only monocular views, the 

ewpoint of the display in order to induce depth cues 

from motion parallax. Movement of the augmented display relative to the 

patient induces motion cues, providing additional depth information in the 

e tracked environment 

and the display, the system requires that a CT image of the patient’s head be 

segmented, uploaded to the device, and registered within the augmented 

scene. In addition to the AR application, we have developed a user interface 

rm the segmentation of a patient’s ventricles and skull. Despite the 

as well as semi-

automatic tool that did 

not require the user to have knowledge of the underlying algorithms, thus 

simplifying the process for a wider audience of users. To ensure that the 

standard workflow is not significantly disrupted, the segmentation process 

simply requires the user to place rectangular regions around the 
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corresponding lateral ventricles in the image. The user is also directed to 

localize three point-based landmarks for scene registration, located in 

proximity to the external auditory canal and the nasion.  Upon user 

initialization of the segmentation, the algorithm first employs a region 

growing algorithm as an initialization stage for a level set segmentation of 

the ventricles. This choice reflects the findings of a recent survey [9] of semi-

automatic segmentation techniques applied to ventricles, which suggests that 

the level set approach [10] was most effective compared to random walk [11] 

and min-cut/max-flow [12] algorithms. This process then generates a surface 

mesh for the combined ventricles as well as the skull using the marching 

cubes algorithm [13]; both of which are rendered during the operation of the 

device. When the tracking glasses are placed on the patient, the arch of the 

glasses rests approximately on the patient’s nasion – the region on the skull 

between the frontal bone and nasal bones, and the branches rest on the 

patient’s ears. The glasses are adaptable to any head shape. Using the 

landmarks defined during the pre-processing stage, a registration of the 

virtual anatomy within the augmented scene can be performed. Since 

accurate placement of the glasses is subject to variability, the application 

provides an interface for manual adjustment of the scene registration. This 

allows the user to align the skull surface rendering visually with the patient’s 

skull during operation, thus alleviating any scene misalignment caused from 

improper tracker positioning. 

4.3 Evaluation 

To assess the system’s ability to provide consistent visuospatial context to a 

user, a series of five pilot experiments were conducted. In each experiment, 

users were required to perform pointing tasks on a physical head-phantom 

using a Polhemus Patriot electromagnetically tracked stylus. 
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In the first two experiments, users were required to localize the four corners 

of rectangular plane using the stylus a total of five times each. In the first set 

of tasks (Experiment #1), users performed the task without the AR device. 

Users then proceeded to perform the same task while looking through the 

device’s viewport (Experiment #2). Both the position of the tip of the stylus 

was measured at each location along with the elapsed pointing time for each 

task. In the third experiment, a triangle was augmented within the scene. 

Users were required to localize each of the three corners of the triangle while 

stylus tip location and pointing time were recorded. In the final two 

experiments, a total of eight spherical landmarks were augmented onto the 

surface of the head phantom at various locations. Users were required to use 

the device to visualize and then localize each target. This was repeated a 

total of five times per target per user. In Experiment #4, the user was only 

able to visualize the targets projected onto the head. In Experiment #5, a 

texture was applied to the entire surface of the head phantom. By measuring 

the location of the stylus tip as well as pointing time, an evaluation of user 

variability could be achieved. 

4.4 Results 

Each experiment was performed a total of five times by a group of six 

participants, including one experienced neurosurgeon. The experiments 

focused on inter- and intra- user variability for performing pointing tasks 

while using the device. Summaries of the observed results are shown in Table 

4-1 – 4-3. 

Table 4-1: Average Intra-User Deviation from Target [mm] 

Expt. # User 1 User 2 User 3 User 4 User 5 User 6 Avg. 
Std. 

Dev 

1 1.01 3.36 1.04 0.99 0.99 2.06 1.57 0.97 

2 2.67 2.95 2.19 2.24 3.61 3.36 2.84 0.58 

3 1.36 2.73 1.72 1.55 1.38 1.93 1.78 0.51 

4 5.12 5.54 6.92 4.39 3.30 8.09 5.56 1.73 
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5 4.50 6.53 3.82 7.73 5.03 6.39 5.67 1.46 

Table 4-2: Average Inter-User Deviation from Target [mm] 

Expt. 

# 
User 1 User 2 User 3 User 4 User 5 User 6 Avg. 

Std. 

Dev. 

1 7.31 10.31 2.79 4.77 7.42 3.30 5.98 2.88 

2 6.11 6.43 5.82 4.60 9.81 3.45 6.04 2.15 

3 7.18 11.83 6.86 9.03 9.26 6.70 8.48 1.98 

4 7.59 10.22 10.48 8.97 9.63 12.31 9.87 1.58 

5 9.76 8.09 14.01 9.22 6.87 11.05 9.83 2.50 

Table 4-3: Average pointing time [s] 

Expt. # User 1 User 2 User 3 User 4  User 5 User 6 Avg. 
Std. 

Dev. 

1 2.07 4.29 2.79 2.93 3.11 3.51 3.12 0.74 

2 4.17 7.39 5.32 5.17 5.52 4.58 5.36 1.12 

3 4.21 7.31 3.88 4.97 4.78 2.65 4.63 1.55 

4 6.57 13.76 9.23 6.69 6.57 7.60 8.40 2.82 

5 4.93 8.02 8.14 6.88 7.89 7.35 7.20 1.21 

The results shown indicate that users were able to perform tasks consistently 

based on their perception of where each target was within the augmented 

scene. The difference between users (Table 4-2) was larger, which we suggest 

was caused by the slight misalignment of the tracking system with the AR 

device between trials. The average pointing time demonstrates the increased 

task time that arises when using the AR device, along with the increased 

standard error, thus quantifying the small incremental cost of using the 

‘Augmented Reality’ device when compared with ‘Reality’. 

4.5 Conclusion 

We have presented an augmented reality application for mobile devices that 

provides image-guidance for neurosurgical tasks, specifically the placement of 

an external ventricular drain. The goal of the application was to improve a 

surgeon’s ability to perform three dimensional targeting tasks. A method for 

the evaluation of the system has been outlined and presented in detail. Pilot 

study results indicate that users can perform targeting tasks consistently 
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while using the device. The methodology developed here can be used to 

evaluate user performance for targeting tasks involving hand-held 

Augmented Reality displays.  The small decrease in pointing accuracy 

provides a baseline with which to compare the future addition of augmenting 

the view with additional information such as pre-operative anatomical 

structures. 
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Chapter 5  

5. Conclusion 

The work presented in this thesis was focused on developing and validating a 

methodology to evaluate human performance for image-guided surgical tasks. 

Two different interventional procedures that employ image-guidance devices 

were evaluated; the TRUS-guided prostate biopsy and external ventricular 

drain insertion, however the methodology discussed can be easily applied to a 

wide range of surgical and interventional procedures that rely on image 

guidance systems, including percutaneous procedures as well as other tasks 

related to targeting. Our work is based on the Fitts’ Law methodology, which 

respects the speed-accuracy trade-off observable in human targeting tasks. It 

is important to note that although in many circumstances it may be desirable 

to place more focus on speed than accuracy, in surgery and interventional 

tasks, accuracy is typically the most important aspect of the task, especially 

when performing on human patients. Errors caused by user inaccuracies 

during a procedure can result in undesirable consequences to the patient, 

including tissue and organ damage leading to potential infection, as well as 

other potentially damaging side-effects. In this work, participants were 

advised to focus on both speed and accuracy equally such that optimal 

performance measurements could be observed and performance could be 

accurately quantified for a particular user performing a task. Our work 

focused more on the usability of image-guidance systems and devices than on 

the direct clinical outcome of the procedures the devices were designed for. 

Since new and unique image-guidance tools are constantly being developed 

and put into clinical practice, it is important to establish a standardized 

method for evaluating the human factors attributed with such devices, in this 

case, performance. Doing so effectively enables characteristics of such devices 

to be quantitatively evaluated with respect to user performance. In this work, 

we compared users to each other; however the same method could be applied 
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to compare system features such as visualization schemes, or device 

ergonomics and maneuverability. In addition, quantitative user performance 

information can also be useful for evaluating other related human factors 

associated with image-guidance systems; such as training strategies, learning 

curve evaluation, and proficiency testing. In general, we proposed and 

employed a method to collect human performance information for image-

guided systems. This method can be applied in ways that enable the 

measurement of aforementioned human factor components of each system, 

and how users are introduced to, trained, and interact with the systems 

directly. 

In summary, the TRUS-guided biopsy procedure and augmented reality 

guided external ventricular drain procedures were both analyzed, and user 

performance data was observed and collected for multiple users. Using 

techniques derived from the Fitts’ Law methodology we were able to 

successfully determine and quantify an index of performance for each user. 

Using statistical evaluation methods we were able to confirm that the results 

collected throughout the study were significant, indicating that the 

methodology used was suitable for the purpose of evaluating human 

performance for these particular devices and the surgical procedures in 

general.
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Appendix A: Additional Experiments 

In addition to the targeting experiments performed in this work, an 

experiment was conducted to compare the performance of a novice user and 

an experienced neurosurgeon. Two users were instructed to perform 

trajectory estimation tasks by aligning an optically tracked stylus with 

virtual spherical targets placed within a head phantom. The users began the 

task by placing the stylus in a home position located at the parietal bone 

calvaria (top of the skull). Users then moved the stylus to a positon and 

orientation on the surface of the skull such that the line projected from the 

long axis of the stylus intersected a virtual target within the lateral ventricle, 

representing the target location for EVD placement. The tasks were repeated 

a total of 50 each for both the left and right ventricle targets, alternating 

from left to right locations. The tasks were performed both blindly and with 

AR guidance provided by the mobile AR application. For blind tasks, users 

were shown the positions of the targets on an external monitor. In AR guided 

tasks, users viewed the head phantom through the mobile device, allowing 

the targets to be visualized within the head phantom. Error was measured as 

the minimum Euclidean distance between the line projected from the long 

axis of the stylus and the center of the target sphere. Time was recorded 

between the user beginning the task at the home position, and when the user 

pressed a footswitch upon satisfactory alignment of the stylus. The 

experimental setup is displayed in Figure A-1 below and the results are 

reported below in Table A-1. 
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Figure A-1: Experimental setup for additional experiments described above 

Table A-1: Experimental results for additional experiments comparing users 

of the mobile AR device 

 
Expert User Novice User 

 

Avg. 

Error 

[mm] 

Std. 

Deviation 

[mm] 

Avg. 

Pointing 

Time [ms] 

Avg. 

Error 

[mm] 

Std. 

Deviation 

[mm] 

Avg. 

Pointing 

Time 

[ms] 

Blind 

Targets 
14.75 7.84 1046.04 24.20 9.96 1706.7 

AR 

Guided 

Targets 

14.03 8.48 1986.50 23.15 9.07 3113.69 

Based on the observed results, the expert user performed the trajectory 

alignment tasks more accurately using both guidance methods and with 

lower standard deviation compared to the novice user. In addition, the expert 

user performed the tasks in less time on average. When comparing the 
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blindly guided tasks with the AR guided tasks, both users performed the 

tasks with lower error while using AR guidance, however the average 

pointing time increased as well. This may be indicative of the trade-off 

between speed and accuracy that users face when using the AR guidance 

device. In future work, additional users will be included in this study to allow 

for a more complete comparison of both experts versus novices, as well as the 

effect on performance while using the device when compared to blindly 

guided tasks. 
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Appendix B: Software Design and Architecture 

A number of different software languages and development tools were used in 

this project. This section provides an overview of the software architecture 

and development details for both the TRUS-guided prostate biopsy interface 

and data collection program, and the augmented reality application. 

TRUS-guided Prostate Biopsy Interface 

The prostate biopsy device and the associated clinical software was originally 

designed in our lab prior to starting this project, however a number of major 

modifications were required to allow the software to generate and display 

custom targets to be displayed to the user and adequate user data to be 

collected during the experiments. Instead of modifying the existing software 

to fit our purpose, a new application was developed utilizing some of the 

existing components. The new application was developed using the C# 

language primarily with the Visual Studio 2012 [1] (Visual Studio 2013 was 

used in the later versions) integrated development environment. In addition 

to the standard .NET Windows Forms for user input via buttons, textboxes, 

and sliders, a managed version of Visualization Toolkit (VTK) [2] was used 

for the purpose of displaying graphics to the user. To establish a link between 

the software and the physical encoders on the device, the .NET serial 

communication functions were used (SerialPort class [3]). In addition to the 

existing hardware, a footswitch was modified to allow serial notification to 

the software from the user to progress the experiment. Using the .NET 

StreamWriter class [4], file logging functionality was incorporated into the 

application such that trajectory data (updating at approximately 100Hz), 

foot-press timing data, and user information could be stored for analysis. In 

order to provide continuous updating of the graphics as the user actuated the 

physical device, the BackgroundWorker class [5] was used to provide 

background updates of the VTK rendering window on a separate thread. This 
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allowed for user interaction to not have any effect on the rendering loop, 

ensuring that smooth visual feedback was provided to the user. The serial 

communication was performed using an event driven pipeline, for both the 

device encoders as well as footswitch. An Ardunio [6] microcontroller was 

attached inline to the footswitch to allow for customized serial commands to 

be sent to the computer USB port when a foot press was detected. To ensure 

smooth operation, the footswitch signal was denounced and the character ‘A’ 

was sent over serial to ensure proper handling of the signal within the 

application. In order to transform the 4 device encoders’ readings to needle 

tip position, the device’s kinematics were evaluated, and then used to 

calculate the position for each iteration of the update loop. For testing and 

development purposes, three sliders were created using the Visual Studio 

Windows Forms [7] toolbox to emulate the encoders. 

Augmented Reality Application 

The augmented reality application utilized the Vuforia software development 

kit by Qualcomm to design an image cube for tracking as well as implement 

the tracking required to achieve augmented reality. The Vuforia API is called 

by the Android Native Development Kit (NDK) [8] which is based on the 

C++language. The graphics that were overlaid (segmented later ventricle 

surface models) were visualized using OpenGL ES 2.0 [9] which can run on 

mobile Android devices. For all user interface components, Java was used 

along with the available widgets such as TextView [10] and SeekBar [11] to 

allow user interaction through sliders and text selection. All NDK calls were 

made from the Java application layer, allowing for native code (C++) to be 

run on top of the Java user interface layer. The Vuforia SDK provided all 

camera control and calibration components as well as visualization of camera 

images, which were then augmented with graphics. Using the online 

developer application, an image cube was created and then loaded into the 

application. The SDK provided functions that output the 3D transformation 
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matrix of the image cube when it was in view of the camera, and then 

functions were developed to display the overlaid graphics in the proper 

position and orientation with respect to the image cube. All development was 

performed using the Eclipse Integrated Development Environment [12]. 

In order to measure user performance with the device, the experimental 

setup used the NDI Polaris Infrared tracking system [13]. A stylus with 

spherical reflective markers was calibrated such that the position and 

orientation of the stylus tip could be calculated when in view of the tracking 

system. The development used a custom VTK class developed as part of the 

Atamai Image Guided Surgery Toolkit [14] that communicated with the 

tracking system, and allowed for the transformation matrix to be computed 

and used within the application. In addition, the head phantom also 

contained reflective spheres that were calibrated with the tracking system 

such that its position and orientation could be calculated and used as a 

reference position for the stylus. Using built-in VTK timer call-backs, the 

tracker was updated in real-time allowing the pose of the stylus to be 

calculated with respect to the head phantom in real-time. Targets were 

generated using VTK and placed both on the surface of the head phantom as 

well as within the head phantom for user targeting. The targets were 

exported using a custom application that converted VTK polydata into a 

header file that could be read and visualized by the Android application. A 

footswitch connected to an Arduino microcontroller was used to allow for the 

user to indicate that a target was successfully reached and to progress the 

experiment. 
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Appendix C: Supplementary Data 

Table A-1: User performance data for guided prostate biopsy experiments for 

8 users performed in Chapter 2 
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Appendix D: Supplementary Images 

 

Figure B-1: Updated tracking glasses used for mobile AR application 

 

Figure B-2: Demonstration of AR visualization where the surface of the head 

phantom is rendered using alpha blending, and ventricle surface model are 

rendered to appear embedded within the skull 



Figure B-3: Detailed image of experimental setup 
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Detailed image of experimental setup used in experiments 

described in Chapter 3 and 4 

 

 

experiments 
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Appendix E: Permissions 

 

Figure C-1: Permission to reproduce previously published material in 

Chapter 3. 

 

Figure C-2: Permission to reproduce previously published material in 

Chapter 4. 
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