566 research outputs found

    Image fusion techniques in permanent seed implantation

    Full text link

    Tools for improving high-dose-rate prostate cancer brachytherapy using three-dimensional ultrasound and magnetic resonance imaging

    Get PDF
    High-dose-rate brachytherapy (HDR-BT) is an interstitial technique for the treatment of intermediate and high-risk localized prostate cancer that involves placement of a radiation source directly inside the prostate using needles. Dose-escalated whole-gland treatments have led to improvements in survival, and tumour-targeted treatments may offer future improvements in therapeutic ratio. The efficacy of tumour-targeted HDR-BT depends on imaging tools to enable accurate dose delivery to prostate sub-volumes. This thesis is focused on implementing ultrasound tools to improve HDR-BT needle localization accuracy and efficiency, and evaluating dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) for tumour localization. First, we implemented a device enabling sagittally-reconstructed 3D (SR3D) ultrasound, which provides sub-millimeter resolution in the needle insertion direction. We acquired SR3D and routine clinical images in a cohort of 12 consecutive eligible HDR-BT patients, with a total of 194 needles. The SR3D technique provided needle insertion depth errors within 5 mm for 93\% of needles versus 76\% for the clinical imaging technique, leading to increased precision in dose delivered to the prostate. Second, we implemented an algorithm to automatically segment multiple HDR-BT needles in a SR3D image. The algorithm was applied to the SR3D images from the first patient cohort, demonstrating mean execution times of 11.0 s per patient and successfully segmenting 82\% of needles within 3 mm. Third, we augmented SR3D imaging with live-2D sagittal ultrasound for needle tip localization. This combined technique was applied to another cohort of 10 HDR-BT patients, reducing insertion depth errors compared to routine imaging from a range of [-8.1 mm, 7.7 mm] to [-6.2 mm, 5.9 mm]. Finally, we acquired DCE-MRI in 16 patients scheduled to undergo prostatectomy, using either high spatial resolution or high temporal resolution imaging, and compared the images to whole-mount histology. The high spatial resolution images demonstrated improved high-grade cancer classification compared to the high temporal resolution images, with areas under the receiver operating characteristic curve of 0.79 and 0.70, respectively. In conclusion, we have translated and evaluated specialized imaging tools for HDR-BT which are ready to be tested in a clinical trial investigating tumour-targeted treatment

    Encapsulated Contrast Agent Markers for MRI-based Post-implant Dosimetry

    Get PDF
    Low-dose-rate prostate brachytherapy involves the implantation of tiny radioactive seeds into the prostate to treat prostate cancer. The current standard post-implant imaging modality is computed tomography (CT). On CT images, the radioactive seeds can be distinctively localized but delineation of the prostate and surrounding soft tissue is poor. Magnetic resonance imaging (MRI) provides better prostate and soft tissue delineation, but seed localization is difficult. To aid with seed localization, MRI markers with encapsulated contrast agent that provide positive-contrast on MRI images (Sirius MRI markers; C4 Imaging, Houston, TX) have been proposed to be placed adjacent to the negative-contrast seeds. This dissertation describes the development of the Sirius MRI markers for prostate post-implant dosimetry. First, I compared the dose-volume histogram and other dosimetry parameters generated by MIM Symphony (a brachytherapy treatment planning system that allow the use of MRI images for treatment planning; MIM Software Inc., Cleveland, OH) and VariSeed (a widely used brachytherapy treatment planning system; Varian Medical Systems, Inc., Palo Alto, CA), and found the dosimetry between both brachytherapy treatment planning systems to be comparable. To gain more insight into the MRI contrast characteristics of the Sirius MRI markers, I measured the Sirius MRI marker contrast agent\u27s spin-lattice and spin-spin relaxivities, and studied the relaxation characteristics\u27 dependence on MRI field strength, temperature, and orientation. From the Sirius MRI marker\u27s contrast agent relaxation characteristics, I systematically studied the effect of varying MRI scan parameters such as flip angle, number of excitations, bandwidth, field of view, slice thickness, and encoding steps, on the Sirius MRI markers\u27 signal and contrast, as well as image noise, artifact and scan time. On patients implanted with Sirius MRI markers, I evaluated the visibility of the Sirius MRI markers and image artifacts. Lastly, I semi-automated the localization of markers and seeds to more enable the efficient incorporation of Sirius MRI markers as part of the clinical post-implant workflow. Ultimately, the Sirius MRI markers may change the paradigm from CT-based to MRI-based post-implant dosimetry, for a more accurate understanding of dose-response relationships in patients undergoing low dose rate prostate brachytherapy

    Prostate volume delineation and seed localization using a 3-T magnetic resonance spectrometer

    Full text link
    With approximately one in six men affected by prostate cancer at some point in their lives, effective treatment of the disease remains a focus of oncology research. Effective treatment using radiation requires the delivery of a significant dose to the prostate volume while sparing surrounding sensitive structures. Treatment success can then be determined by localization of the seeds following implantation and the calculation of a dose distribution across the target volume. Magnetic Resonance Imaging (MRI) yields images with soft tissue contrast that is superior to CT or ultrasound, but has been under-appreciated as a dosimetric tool due to the difficulty in localizing the implanted seeds; To optimize scan parameters for seed localization, a phantom was constructed of tissue-equivalent gelatin. Seeds were implanted during construction so various scan protocols could be tested for seed visualization and volume calculation prior to patient studies. Five healthy volunteers and five patients with permanently implanted seeds were then imaged to validate the phantom studies. Images were evaluated based on anatomical clarity and seed visualization rates; Optimization of the scan protocols for use with this equipment yields images with clearly defined anatomical boundaries as well as clearly defined seeds. Phantom volume measurements deviated from known values by less than 2.5% T2-weighted images provide superior anatomical delineation, but suffer from broad susceptibility artifacts that make determination of seed locations difficult. Proton density-weighted images clearly show seed locations and tissue margins. The selection of a 1 mm slice thickness and a 4 mm interstice gap allowed maximum seed visualization rates of 93.3%; Keywords: prostate, brachytherapy, dosimetry, magnetic resonance imaging

    3D BrachyView System

    Get PDF
    Prostate cancer is quickly becoming the most common form of cancer across the globe, and is commonly treated with low dose rate brachytherapy due to its curative measures and highly conformal dose delivery. It is important to ensure there is a means of real time monitoring of the dose and seed placements when radioactive seeds are implanted in the prostate gland during a low dose rate brachytherapy treatment. The BrachyView system presents as a unique system that provides the capability of 3D seed reconstruction within an intraoperative setting. In this thesis the BrachyView system is tested for its suitability, accuracy and the system is further developed so that its application in real-time intraoperative dosime-try can become a reality. The system was tested with a clinically relevant number of seeds, 98, where previously the system had only been tested with a maximum number of 30 seeds. The BrachyView system was able to reconstruct 91.8% of implanted seeds from the 98 seed dataset with an average overall discrepancy of 3.65 mm without the application of the baseline subtraction algorithm, however with its application to the data the detection efficiency was improved to 100% and an overall positional accuracy of 11.5%, correlating to a reduced overall discrepancy of 3.23 mm, was noted. It was found that with seed numbers of 30 or lower that the addition of a background subtrac-tion algorithm was not necessary, whereas for datasets containing a clinically relevant number of seeds the application of a background subtraction algorithm was paramount to reducing the noise, scatter and means for identification of newly implanted seeds that may be masked by those seed previously implanted

    LOW DOSE RATE PROSTATE BRACHYTHERAPY WITH OBLIQUE NEEDLES TO TREAT LARGE GLANDS AND OVERCOME PUBIC ARCH INTERFERENCE

    Get PDF
    The goal of this thesis was to evaluate the use of oblique needle trajectories in low dose rate prostate brachytherapy for large glands with pubic arch interference (PAI). A planning study was conducted with five Subject prostate contours, from 3D Transrectal Ultrasound (TRUS) images, artificially enlarged to 60 cc to increase PAI. Oblique needles no template plans (OBL) and parallel needle no template plans (PNT), were compared to parallel needle template plans for each prostate. Iodine-125 (145 Gy prescription dose), 0.43 U air kerma strength, and needle angles \u3c 15° were used. Beneficial improvements (p \u3c 0.05) in dose parameters were shown for OBL plans (all organs), and PNT plans (only PTV VI00), when compared to template plans in paired one-sided t-tests. An oblique plan was delivered to a 60 cc prostate phantom with PAI using a 3D TRUS guided mechatronic system. Seed placement accuracy was sub-millimeter in all directions

    Software and Hardware-based Tools for Improving Ultrasound Guided Prostate Brachytherapy

    Get PDF
    Minimally invasive procedures for prostate cancer diagnosis and treatment, including biopsy and brachytherapy, rely on medical imaging such as two-dimensional (2D) and three-dimensional (3D) transrectal ultrasound (TRUS) and magnetic resonance imaging (MRI) for critical tasks such as target definition and diagnosis, treatment guidance, and treatment planning. Use of these imaging modalities introduces challenges including time-consuming manual prostate segmentation, poor needle tip visualization, and variable MR-US cognitive fusion. The objective of this thesis was to develop, validate, and implement software- and hardware-based tools specifically designed for minimally invasive prostate cancer procedures to overcome these challenges. First, a deep learning-based automatic 3D TRUS prostate segmentation algorithm was developed and evaluated using a diverse dataset of clinical images acquired during prostate biopsy and brachytherapy procedures. The algorithm significantly outperformed state-of-the-art fully 3D CNNs trained using the same dataset while a segmentation time of 0.62 s demonstrated a significant reduction compared to manual segmentation. Next, the impact of dataset size, image quality, and image type on segmentation performance using this algorithm was examined. Using smaller training datasets, segmentation accuracy was shown to plateau with as little as 1000 training images, supporting the use of deep learning approaches even when data is scarce. The development of an image quality grading scale specific to 3D TRUS images will allow for easier comparison between algorithms trained using different datasets. Third, a power Doppler (PD) US-based needle tip localization method was developed and validated in both phantom and clinical cases, demonstrating reduced tip error and variation for obstructed needles compared to conventional US. Finally, a surface-based MRI-3D TRUS deformable image registration algorithm was developed and implemented clinically, demonstrating improved registration accuracy compared to manual rigid registration and reduced variation compared to the current clinical standard of physician cognitive fusion. These generalizable and easy-to-implement tools have the potential to improve workflow efficiency and accuracy for minimally invasive prostate procedures

    Brachytherapy

    Get PDF
    Importance of brachytherapy is currently increasing in cancer therapy. In brachytherapy each treatment is best fitted by physician's' hand, and appropriate arrangement and selection of radiation sources facilitates the fitting. This book is full of essences to make a breakthrough in radiation oncology by brachytherapy. I hope this book will encourage all people related. Contents 1: problem of currently popular dosimetric method; 2: Monte Carlo dose simulation of ruthenim-106/rhodium-106 eyes applicators; 3. Progress in Californium-252 neutron brachytherapy; 4. Clinical aspect of endobronchial brachytherapy in central airway tumor obstruction; 5. Review from principle and techniques of Iodine-125 production at nuclear reactor plant to their clinical practive in prostate cancer treatment; 6. Stereotactic Brachytherapy for Brain Tumors using Iodine-125 seed; 7. A brachytherapy procedure with organ-sparing hyaluronate gel injection for safe and eradicative reirradiation

    Anniversary Paper: Evolution of ultrasound physics and the role of medical physicists and the AAPM and its journal in that evolution

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134810/1/mp2048.pd

    Focal Spot, Fall/Winter 1998

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1080/thumbnail.jp
    corecore