20 research outputs found

    Evaluating Grasping Visualizations and Control Modes in a VR Game

    Get PDF
    A primary goal of the Virtual Reality(VR) community is to build fully immersive and presence-inducing environments with seamless and natural interactions. To reach this goal, researchers are investigating how to best directly use our hands to interact with a virtual environment using hand tracking. Most studies in this field require participants to perform repetitive tasks. In this article, we investigate if results of such studies translate into a real application and game-like experience. We designed a virtual escape room in which participants interact with various objects to gather clues and complete puzzles. In a between-subjects study, we examine the effects of two input modalities (controllers vs. hand tracking) and two grasping visualizations (continuously tracked hands vs. virtual hands that disappear when grasping) on ownership, realism, efficiency, enjoyment, and presence. Our results show that ownership, realism, enjoyment, and presence increased when using hand tracking compared to controllers. Visualizing the tracked hands during grasps leads to higher ratings in one of our ownership questions and one of our enjoyment questions compared to having the virtual hands disappear during grasps as is common in many applications. We also confirm some of the main results of two studies that have a repetitive design in a more realistic gaming scenario that might be closer to a typical user experience

    Too Hot to Handle: An Evaluation of the Effect of Thermal Visual Representation on User Grasping Interaction in Virtual Reality

    Get PDF
    Influence of interaction fidelity and rendering quality on perceived user experience have been largely explored in Virtual Reality (VR). However, differences in interaction choices triggered by these rendering cues have not yet been explored. We present a study analysing the effect of thermal visual cues and contextual information on 50 participants' approach to grasp and move a virtual mug. This study comprises 3 different temperature cues (baseline empty, hot and cold) and 4 contextual representations; all embedded in a VR scenario. We evaluate 2 different hand representations (abstract and human) to assess grasp metrics. Results show temperature cues influenced grasp location, with the mug handle being predominantly grasped with a smaller grasp aperture for the hot condition, while the body and top were preferred for baseline and cold conditions

    A Virtual Reality Application of the Rubber Hand Illusion Induced by Ultrasonic Mid-Air Haptic Stimulation

    Get PDF
    Ultrasonic mid-air haptic technologies, which provide haptic feedback through airwaves produced using ultrasound, could be employed to investigate the sense of body ownership and immersion in virtual reality (VR) by inducing the virtual hand illusion (VHI). Ultrasonic mid-air haptic perception has solely been investigated for glabrous (hairless) skin, which has higher tactile sensitivity than hairy skin. In contrast, the VHI paradigm typically targets hairy skin without comparisons to glabrous skin. The aim of this article was to investigate illusory body ownership, the applicability of ultrasonic mid-air haptics, and perceived immersion in VR using the VHI. Fifty participants viewed a virtual hand being stroked by a feather synchronously and asynchronously with the ultrasonic stimulation applied to the glabrous skin on the palmar surface and the hairy skin on the dorsal surface of their hands. Questionnaire responses revealed that synchronous stimulation induced a stronger VHI than asynchronous stimulation. In synchronous conditions, the VHI was stronger for palmar stimulation than dorsal stimulation. The ultrasonic stimulation was also perceived as more intense on the palmar surface compared to the dorsal surface. Perceived immersion was not related to illusory body ownership per se but was enhanced by the provision of synchronous stimulation

    I’m sensing in the rain: spatial incongruity in visual-tactile mid-air stimulation can elicit ownership in VR users

    Get PDF
    Major virtual reality (VR) companies are trying to enhance the sense of immersion in virtual environments by implementing haptic feedback in their systems (e.g., Oculus Touch). It is known that tactile stimulation adds realism to a virtual environment. In addition, when users are not limited by wearing any attachments (e.g., gloves), it is even possible to create more immersive experiences. Mid-air haptic technology provides contactless haptic feedback and offers the potential for creating such immersive VR experiences. However, one of the limitations of mid-air haptics resides in the need for freehand tracking systems (e.g., Leap Motion) to deliver tactile feedback to the user's hand. These tracking systems are not accurate, limiting designers capability of delivering spatially precise tactile stimulation. Here, we investigated an alternative way to convey incongruent visual-tactile stimulation that can be used to create the illusion of a congruent visual-tactile experience, while participants experience the phenomenon of the rubber hand illusion in VR

    I'm sensing in the rain: Spatial incongruity in visual-tactile mid-air stimulation can elicit ownership in VR users

    Get PDF
    Major virtual reality (VR) companies are trying to enhance the sense of immersion in virtual environments by implementing haptic feedback in their systems (e.g., Oculus Touch). It is known that tactile stimulation adds realism to a virtual environment. In addition, when users are not limited by wearing any attachments (e.g., gloves), it is even possible to create more immersive experiences. Mid-air haptic technology provides contactless haptic feedback and offers the potential for creating such immersive VR experiences. However, one of the limitations of mid-air haptics resides in the need for freehand tracking systems (e.g., Leap Motion) to deliver tactile feedback to the user's hand. These tracking systems are not accurate, limiting designers capability of delivering spatially precise tactile stimulation. Here, we investigated an alternative way to convey incongruent visual-tactile stimulation that can be used to create the illusion of a congruent visual-tactile experience, while participants experience the phenomenon of the rubber hand illusion in VR
    corecore