4,081 research outputs found

    Stabilisation of descriptor Markovian jump systems with partially unknown transition probabilities

    Get PDF
    This paper is concerned with the stability and stabilisation problems for continuous-time descriptor Markovian jump systems with partially unknown transition probabilities. In terms of a set of coupled linear matrix inequalities (LMIs), a necessary and sufficient condition is firstly proposed, which ensures the systems to be regular, impulse-free and stochastically stable. Moreover, the corresponding necessary and sufficient condition on the existence of a mode-dependent state-feedback controller, which guarantees the closed-loop systems stochastically admissible by employing the LMI technique, is derived; the stabilizing state-feedback gain can also be expressed via solutions of the LMIs. Finally, numerical examples are given to demonstrate the validity of the proposed methods

    Necessary and sufficient conditions for analysis and synthesis of markov jump linear systems with incomplete transition descriptions

    Get PDF
    This technical note is concerned with exploring a new approach for the analysis and synthesis for Markov jump linear systems with incomplete transition descriptions. In the study, not all the elements of the transition rate matrices (TRMs) in continuous-time domain, or transition probability matrices (TPMs) in discrete-time domain are assumed to be known. By fully considering the properties of the TRMs and TPMs, and the convexity of the uncertain domains, necessary and sufficient criteria of stability and stabilization are obtained in both continuous and discrete time. Numerical examples are used to illustrate the results. © 2006 IEEE.published_or_final_versio

    A review on analysis and synthesis of nonlinear stochastic systems with randomly occurring incomplete information

    Get PDF
    Copyright q 2012 Hongli Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modeling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Such a phenomenon typically appears in a networked environment. Examples include, but are not limited to, randomly occurring uncertainties, randomly occurring nonlinearities, randomly occurring saturation, randomly missing measurements and randomly occurring quantization. Randomly occurring incomplete information, if not properly handled, would seriously deteriorate the performance of a control system. In this paper, we aim to survey some recent advances on the analysis and synthesis problems for nonlinear stochastic systems with randomly occurring incomplete information. The developments of the filtering, control and fault detection problems are systematically reviewed. Latest results on analysis and synthesis of nonlinear stochastic systems are discussed in great detail. In addition, various distributed filtering technologies over sensor networks are highlighted. Finally, some concluding remarks are given and some possible future research directions are pointed out. © 2012 Hongli Dong et al.This work was supported in part by the National Natural Science Foundation of China under Grants 61273156, 61134009, 61273201, 61021002, and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Science Foundation of the USA under Grant No. HRD-1137732, and the Alexander von Humboldt Foundation of German

    On stabilization of bilinear uncertain time-delay stochastic systems with Markovian jumping parameters

    Get PDF
    Copyright [2002] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, we investigate the stochastic stabilization problem for a class of bilinear continuous time-delay uncertain systems with Markovian jumping parameters. Specifically, the stochastic bilinear jump system under study involves unknown state time-delay, parameter uncertainties, and unknown nonlinear deterministic disturbances. The jumping parameters considered here form a continuous-time discrete-state homogeneous Markov process. The whole system may be regarded as a stochastic bilinear hybrid system that includes both time-evolving and event-driven mechanisms. Our attention is focused on the design of a robust state-feedback controller such that, for all admissible uncertainties as well as nonlinear disturbances, the closed-loop system is stochastically exponentially stable in the mean square, independent of the time delay. Sufficient conditions are established to guarantee the existence of desired robust controllers, which are given in terms of the solutions to a set of either linear matrix inequalities (LMIs), or coupled quadratic matrix inequalities. The developed theory is illustrated by numerical simulatio

    Stabilization of markovian systems via probability rate synthesis and output feedback

    Get PDF
    This technical note is concerned with the stabilization problem of Markovian jump linear systems via designing switching probability rate matrices and static output-feedback gains. A novel necessary and sufficient condition is established to characterize the switching probability rate matrices that guarantee the mean square stability of Markovian jump linear systems. Based on this, a necessary and sufficient condition is provided for the existence of desired controller gains and probability rate matrices. Extensions to the polytopic uncertain case are also provided. All the conditions are formulated in terms of linear matrix inequalities with some equality constraints, which can be solved by two modified cone complementarity linearization algorithms. Examples are given to show the effectiveness of the proposed method. © 2010 IEEE.published_or_final_versio

    Weight Try-Once-Discard Protocol-Based L_2 L_infinity State Estimation for Markovian Jumping Neural Networks with Partially Known Transition Probabilities

    Full text link
    It was the L_2 L_infinity performance index that for the first time is initiated into the discussion on state estimation of delayed MJNNs with with partially known transition probabilities, which provides a more general promotion for the estimation error.The WTOD protocol is adopted to dispatch the sensor nodes so as to effectively alleviate the updating frequency of output signals. The hybrid effects of the time delays, Markov chain, and protocol parameters are apparently reflected in the co-designed estimator which can be solved by a combination of comprehensive matrix inequalities
    corecore